
RESEARCH ARTICLE

On the estimation of wall pressure coherence using time-resolved
tomographic PIV
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Abstract Three-dimensional time-resolved velocity field

measurements are obtained using a high-speed tomo-

graphic Particle Image Velocimetry (PIV) system on a

fully developed flat plate turbulent boundary layer for the

estimation of wall pressure fluctuations. The work focuses

on the applicability of tomographic PIV to compute the

coherence of pressure fluctuations, with attention to the

estimation of the stream and spanwise coherence length.

The latter is required for estimations of aeroacoustic noise

radiation by boundary layers and trailing edge flows, but is

also of interest for vibro-structural problems. The pressure

field is obtained by solving the Poisson equation for

incompressible flows, where the source terms are provided

by time-resolved velocity field measurements. Measured

3D velocity data is compared to results obtained from

planar PIV, and a Direct Numerical Simulation (DNS) at

similar Reynolds number. An improved method for the

estimation of the material based on a least squares esti-

mator of the velocity derivative along a particle trajectory

is proposed and applied. Computed surface pressure fluc-

tuations are further verified by means of simultaneous

measurements by a pinhole microphone and compared to

the DNS results and a semi-empirical model available from

literature. The correlation coefficient for the reconstructed

pressure time series with respect to pinhole microphone

measurements attains approximately 0.5 for the band-pass

filtered signal over the range of frequencies resolved by the

velocity field measurements. Scaled power spectra of the

pressure at a single point compare favorably to the DNS

results and those available from literature. Finally, the

coherence of surface pressure fluctuations and the resulting

span- and streamwise coherence lengths are estimated and

compared to semi-empirical models and DNS results.

1 Introduction

The spanwise coherence of pressure fluctuations at the wall

under a turbulent boundary layer is of great importance in

aeroacoustics, for instance for the estimation of trailing

edge noise, and in vibro-structural problems. Several

authors (Amiet 1976; Howe 1999) have discussed dif-

fraction theory in the framework of trailing edge noise,

relating the power spectral density and the spanwise

coherence length of hydrodynamic pressure fluctuations to

an estimation of the acoustic far-field spectrum. It is

assumed that incident pressure fluctuations on the wall

below the turbulent boundary convect over the trailing

edge, an impedance discontinuity, where these fluctuations

are scattered in the form of acoustic waves. In the past, the

aforementioned theory has been applied using both,

numerical and experimental data. For instance, Christophe

(2011) applied data obtained from Large Eddy Simulation

(LES) as input for the model. Brooks and Hodgson (1981)

have performed surface pressure measurements on a

NACA0012 aerofoil model and demonstrated very good

agreement with acoustic measurements.
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Nevertheless, measurements of the space-time coher-

ence of the pressure field require complex instrumentation

involving several surface pressure transducers or micro-

phones, installed inside the model or flush mounted on the

model’s surface, at multiple points. Furthermore, trans-

ducer based measurements of pressure within the turbulent

boundary layer have been proven difficult due to the

intrusiveness of the methods and the obstacles encountered

in installing a large number of pressure sensors closely

spaced within thin geometries, such as sharp trailing edges.

In recent years, the development of high-speed PIV

time-resolved velocity field measurement techniques

opened new possibilities for the investigation and under-

standing of complex flows including turbulent flow phe-

nomena and aeroacoustic sources. In particular, analysis of

aeroacoustic problems and sources based on time-resolved

PIV approaches has become of interest (Morris 2011).

Examples include the estimation of turbulence-structure

interaction noise (Lorenzoni et al. 2012) and cavity noise

(Koschatzky et al. 2011). Under the assumption of

incompressible flow, the momentum equation provides a

relation between the spatially and temporally resolved

velocity field and the hydrodynamic pressure. Therefore,

within the limitations of this assumption, reconstruction of

the pressure field becomes possible with time-resolved

PIV, which provides a non-intrusive and more flexible

alternative for the determination of pressure fluctuations

within the flow.

Early application of pressure reconstruction based on

PIV is due to Liu and Katz (2006). Further studies con-

centrated on the assessment of the measurement accuracy

and robustness of different pressure reconstruction methods

(Charonko et al. 2010). de Kat and van Oudheusden (2012)

investigated the quality of pressure reconstruction methods

in the turbulent flow past a square cylinder and proposed

guidelines regarding the required temporal and spatial

resolution of the measurements. In more recent experi-

ments Ghaemi et al. (2012) have obtained the single point

wall pressure spectrum under a turbulent boundary layer

using a time-resolved thin-volume tomographic PIV

approach. In their study, the measurement volume was

aligned with the dominant flow direction and the results

were compared to the signal captured by a single pinhole

microphone measuring the surface pressure and a good

agreement was found. However, the spatio-temporal

structure of the wall pressure field cannot be assessed in

this configuration due to the limited depth of the mea-

surement volume.

The estimation of the coherence function and coherence

length requires the evaluation of the wall pressure auto-

and cross-power spectral densities. Restrictions on the

spatial dynamic range pose a limit on the attainable

imaging resolution for a given choice of the measurement

volume. This limitation becomes particularly severe when

operating the system at hight frequencies (here 10 kHz),

where the energy per laser pulse and therefore the illumi-

nation intensity is significantly less when compared to

lower repetition rates. Therefore, the measurement volume

cannot be extended to include the entire boundary layer.

Despite of this limitation, Ghaemi et al. (2012) have

demonstrated that uniform and constant boundary condi-

tions can be applied within the boundary layer maintaining

the spectral content of pressure fluctuations over a wide

range of frequencies. Therefore, a measurement configu-

ration with a thin volume parallel to the wall could respond

to the requirements of a measurement domain of sufficient

stream- and spanwise extent. This measurement configu-

ration is not new, for instance Schröder et al. (2008)

applied it to fully developed boundary layers, and Atkinson

et al. (2011) assessed the inner region of the boundary

layer in a similar way. However, time-resolved experi-

ments have not been performed in this configuration, which

is required for the current experiment. The present study

aims at determining the feasibility of an experimental

approach based on volumetric time-resolved velocity field

data from tomographic PIV to obtain wall pressure spatio-

temporal characteristics and in particular an estimation of

its coherence length. Because little reference data is

available on this specific issue, the assessment of this

approach is corroborated with a Direct Numerical Simu-

lation (DNS) at similar conditions as those encountered

experimentally. Moreover, simultaneous pressure mea-

surements by a pinhole microphone are used to compare

the pressure evaluated with PIV.

2 Wall pressure fluctuations and estimation

2.1 Wall pressure fluctuations

The properties of the wall pressure spectrum, especially for

channel flows and zero pressure gradient boundary layers,

have been thoroughly investigated in the past (Bull 1996).

Research converged on the fact that single scaling

approaches do not lead to a satisfactory collapse of

experimental data over the entire frequency range, even

when transducer-resolution effects are taken into account.

This is ascribed to the complexity of the pressure field and

its dependency on all parts of the domain, which involves

the convection of turbulent velocity fluctuations at different

characteristic velocities, depending for instance on the

distance from the wall. A subdivision of the pressure

spectrum U xð Þ in dependence on the angular frequency

x = 2pf into four parts has been proposed: The low, mid,

universal, and high frequency range (Bull 1996) and the

suitability of the scaling rules over different frequency
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ranges mostly depends on the Reynolds number. In a recent

work due to Hwang et al. (2009) the scaling of the wall

pressure spectrum and empirical models are reviewed.

Two different scaling rules are most commonly applied in

literature, demonstrated by a better collapse of the low or

high frequency range, respectively. The pressure spectrum

scaled using outer flow variables, namely the free stream

velocity u1; displacement thickness dH; and dynamic pres-

sure q1 ¼ 1=2qu2
1; is expressed as ~Uo ~xoð Þ ¼ U xð Þu1=

q2
1dH;where ~xo ¼ xdH=u1:Based on inner flow variables,

namely the kinematic viscosity m, wall shear stress

sw ¼ qmou=oyjy¼0; shear velocity us ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

; and viscous

wall unit dm = m/us, the pressure spectrum is scaled with
~Ui ~xið Þ ¼ U xð Þu2

s=s
2
wm; where ~xi ¼ xm=u2

s (Goody 2004).

The outer scaling shows a better collapse at low frequencies,

while the inner scaling applies at high frequencies and shows

a generally accepted decay rate of x-5 in the limit of high

frequencies.

A model describing the pressure spectrum with depen-

dence on Reynolds number has been proposed by Goody

(2004). The dependence on Reynolds number is introduced

through a parameter representing the ration between outer

and inner time scales RT ¼ du2
s=mu1; where d is the

boundary layer thickness. The model has been calibrated

for a range of Reynolds numbers (based on the boundary

layer momentum thickness h) 1,400 \ Reh \ 23,400 with

empirical constants C1 = 0.5, C2 = 3, and C3 = 1.1.

U xð Þu1
s2

wd
¼

C2
xd
u1

� �2

xd
u1

� �0:75

þC1

� �3:7

þ C3

R0:57
T

xd
u1

� �h i7
ð1Þ

Schewe (1983) presents experimental data for a flat

surface in air and conditions of similarly low Reynolds

number Reh = 1,400 as considered in the present study and

will therefore be recalled for comparison. The

displacement thickness in these experiments is reported

to be dH ¼ 4:6 mm, the free stream velocity u1 ¼ 6:3 m=s

and the ratio of outer and inner boundary layer time scales

is ReT & 25. As pointed out by Hwang et al. (2009) the

universal range showing a decay in UðxÞ of approximately

x-0.7 between 0:6�xdH=u1 � 1:2 for low Reynolds

number flows is narrow. At higher frequencies the model

converges to the generally accepted x-5 decay.

2.2 Definition and estimation of coherence

and coherence length

The coherence length is defined in terms of the coherence

function (Eq. 2), which involves the auto-power and cross-

power density of the signals, where Uðx; z1; z2Þ denotes the

cross-power spectral density between two points along a

given dimension and Dz ¼ z2 � z1 is their spatial separation.

c2 x;Dzð Þ ¼ jU x; z1; z2ð Þj2

jU x; z1; z1ð ÞjjU x; z2; z2ð Þj ð2Þ

Note that this representation applies for the case that the

flow statistics are homogeneously distributed along the

spatial dimension, stationary in time and for an infinite

observation period. For a flat plate boundary layer the first

condition is fulfilled when considering the spanwise

dimension and, with restriction to short separations, for

the streamwise direction.

By definition, the coherence length is related to the

integral of the coherence function cðx;DzÞ over the spatial

separation Dz and therefore reduces to a function of fre-

quency only (Eq. 3).

lz xð Þ ¼ lim
L!1

Z

L

0

c x;Dzð ÞdDz ð3Þ

Several models for the spatial structure of the wall

pressure spectrum have been proposed and a review has been

provided by Graham (1997). Corcos (1964) proposed a

model for the cross-spectrum of the turbulent wall pressure

field (Eq. 4), implying that the normalized cross-power

spectral density U x; 0;Dzð Þ=U x; 0; 0ð Þ can be represented

by a function depending on a single dimensionless variable

xDz=Ucð Þ; with Uc a characteristic convection velocity of

the pressure fluctuations.

U x;Dx;Dzð Þ ¼ U xð Þe�
ax jxDxj

Uc e�
az jxDzj

Uc eixDz
Uc ð4Þ

A model for the coherence length (Eq. 5) is based on its

definition in Eq. 3 and the expression for the pressure

cross-spectrum in Eq. 4. It is often referred to as Corcos

model.

lz xð Þ � Uc

a1x
ð5Þ

Amiet (1976) suggests a value of a1 = 1/2.1, while later

literature suggests a value of a1 = 0.77 for an estimation of

the spanwise coherence length, but slightly different values

have been reported (Graham 1997). An extension of the

model to low frequencies has been proposed by Efimtsov

(1982).

In principle, the coherence length can be obtained on the

basis of its definition in Eq. 3 by numerical integration.

Due to convergence issues also observed by Christophe

(2011) for LES data and a finite observation period, the

coherence does not approach zero for large separations Dz

and therefore, the integral in Eq. 3 is unbounded. Instead, a

curve fitting approach based on an exponential function has

been used by Palumbo (2012) as a more robust approach in
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the case of limited time series. The fit is performed for each

discrete frequency and assumes the form in Eq. 6, which is

consistent with the form of the pressure cross-spectrum in

Eq. 4.

c x;Dzð Þ ¼ e
� jDzj

lz xð Þ ð6Þ

2.3 Pressure evaluation from PIV

In incompressible flows, the pressure field can be determined

from time-resolved velocity field measurements as discussed

extensively in de Kat and van Oudheusden (2012). The

method invokes the use of the momentum equation further

reformulated in the form of the Poisson equation. Knowledge

of the pressure gradient and of the value of the pressure on the

boundary of the measurement domain is required at every

time instant in order to close the problem. In the past, even

planar PIV data has been used as basis for pressure recon-

struction approaches, however, it was demonstrated that

three-dimensional measurements enable a more accurate

evaluation of the pressure gradient (de Kat and van Oudh-

eusden 2012), when compared to planar input data. In most

cases, the pressure reconstruction technique is based on a

form of the momentum equation. For incompressible flow

the momentum equations reduce to Eq. 7, where u is the

velocity vector.

5p ¼ �q
Du

Dt
� m5 u

� �

ð7Þ

For time-resolved data, the material derivative, can be

evaluated by means of a Lagrangian computational

approach as proposed by Liu and Katz (2006). Violato

et al. (2011) have shown that, when dealing with

convection dominated flows such as in wakes and

boundary layers, the Lagrangian approach yields more

accurate estimates of the material derivative when

compared to the Eulerian scheme.

In the present study, the material derivative is estimated

using a new method based on a least squares fit of the

velocities along a reconstructed particle trajectory. Starting

at time t0 an estimate of the particle location at

t�i ¼ �iDt þ t0 for i ¼ 1. . .M is obtained through the fol-

lowing recurrence relation:

xðt�iÞ ¼ �uðxðt�ði�1ÞÞ; t�ði�1ÞÞDt þ xðt�ði�1ÞÞ ð8Þ

Assuming a constant acceleration over the evaluation time,

the components of the material acceleration vector

Duj/Dt, corresponding to the velocity components uj, are

related to the time differences Dti ¼ ti � t0ð Þ and the

velocity differences DujðDtiÞ ¼ ujðxðtiÞ; tiÞ � ujðxðt0Þ; t0Þ
as follows:

Dt
Duj

Dt
¼ Duj ð9Þ

Here, Dt ¼ Dt�MDt�Mþ1. . .DtM½ �T with M the number of

forward and backward steps used for the reconstruction of

the particle trajectory, and similarly Duj for the velocity

differences. An approximation of the acceleration

component dDuj=Dt is subsequently obtained through the

Least Squares estimate:

dDuj

Dt
� DtTDt
� �

DtTDuj ð10Þ

Application of the continuity equation for

incompressible flow leads to a cancelation of the viscous

terms and to a form of the Poisson equation 11.

Dp ¼ �q5 � Du

Dt

� �

� �q5 �
cDu

Dt

" #

ð11Þ

The above Poisson equation is discretized using a second

order accurate central difference scheme on the regular grid

of velocity vector data obtained from tomographic PIV

measurements and the resulting system of linear equations is

solved by a pre-conditioned iterative method (GMRES).

Ragni et al. (2011) applied this approach based on phase-

locked stereoscopic PIV measurements in a volume.

In the present work, the component of the gradient

normal to the boundary surface (Neumann boundary con-

dition) is derived from the momentum Eq. 7 and applied on

all boundary surfaces but the one closest to the free stream,

where the value for the pressure is prescribed (Dirichlet

boundary condition). Figure 1 shows a schematic of the

reconstruction domain, where D and N denote Dirichlet and

Neumann boundary conditions, respectively. The evalua-

tion of the velocity in close proximity of the wall is

affected by increasing noise level due to the combined

effect of the interrogation volume overlapping with the

wall and the large rate of shear. Therefore, an artificial

interface is introduced at y/d[ 0 at which the pressure is

computed. The analysis conducted on the DNS data shows

that this procedure does not affect significantly the results

of the surface pressure fluctuations for the range of fre-

quencies considered to be well measured.

In the framework of pressure reconstruction, de Kat

(2012) has proposed Dirichlet boundary conditions based on

an extended version of the Bernoulli equation, corrected for

an unsteady advective perturbation. Following this

approach, the Dirichlet boundary conditions in form of the

unsteady pressure fluctuations p0 are expressed through a

Reynolds decomposition of the velocity field u ¼ uþ u0 as:

p0 ¼ � 1

2
q u0 � u0ð Þ ð12Þ

Ghaemi et al. (2012) suggests that also constant

boundary conditions can be imposed at y/d[ 0.5 without

greatly influencing the pressure fluctuations close to the
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wall within a certain frequency range, indicating that the

local structure of the flow field dominates the pressure

fluctuations away from this boundary.

3 Experimental set-up

Planar and time-resolved tomographic PIV experiments are

performed on a flat plate of 60 cm chord, wetted span

40 cm, and 10 mm thickness in a low speed wind tunnel

facility (W-Tunnel) at Delft University of Technology. The

leading edge is formed elliptically, while it terminates in a

sharp trailing edge at a surface angle of 2.4� with respect to

the free stream. The boundary layer is tripped 10 cm

downstream of the leading edge using a 5 mm wide strip

with 3D roughness elements of 0.84 mm nominal grain

size.

The measurement volume is located at the center of the

span 43.5 cm downstream of the leading edge on the flat

section of the plate. At a free stream velocity of u1 ¼
10 m=s the Reynolds number based on the local boundary

layer thickness d = 9.4 mm is Red& 6,240 and that based

on the momentum thickness is Reh& 730.

3.1 Planar PIV measurements

The characterization of the boundary layer is performed

with planar PIV as it is possible to measure the flow sta-

tistics over its entire thickness. A single LaVision High-

SpeedStar CMOS camera (1,024 9 1,024 px2, 12 bit, pixel

pitch 20 lm) equipped with a Nikon Micro-Nikkor

105 mm prime lens records images taken over a field of

view (FOV) of 58 9 58 mm2. The numerical aperture is

set to f# = 2.8 to maximize the amount of collected light.

At such a value of the numerical aperture the particle

image diameter is lower than 1 px at the plane of focus,

which would lead to large bias errors. Therefore, the plane

of focus is slightly shifted away from the illumination

plane leading to defocused particle images encompassing

approximately 2 pixels. The boundary layer is illuminated

from behind the plate, which strongly reduces light

reflections from the wall. A light sheet of approximately

2 mm thickness is formed in the field of view. Illumination

is provided by a Quantronix Darwin Duo Nd:YLF laser

(2 9 25 mJ/pulse at 1 kHz). The tracer particles seeding

the flow are water-glycol droplets of mean diameter 1lm.

With a magnification M = 0.37 one pixel is equivalent

to 54 lm in the object plane. The recording comprises

4,500 image pairs at 125 Hz. The pulse separation is set to

dt = 80 ls, corresponding to a displacement of approxi-

mately 0.8 mm (15 px) in the free stream. The illumination

and imaging system are synchronized with a LaVision

High-Speed-Synchronizer controlled by their DAVIS 8

software. The latter is also used for the image pre-pro-

cessing and interrogation.

An iterative, multigrid correlation with window defor-

mation procedure 75 % overlap yields velocity vectors on a

grid with a pitch of 0.16 mm (4 px). For the correlation

procedure, the wall region is masked and for the final pass

elongated Gaussian weighted windows are used with an

aspect ratio of 4:1, resulting in a rectangular window size

of approximately 1.5 9 0.37 mm2 (28 9 7 px2). Effects of

Gaussian weighting and other weighting functions have

been theoretically investigated and reported by Astarita

(2007). The main advantage of Gaussian compared to top

hat weighting is the reduction in random errors due to

signal truncation at the edges. Table 1 gives an overview of

the parameters for the planar PIV experiment.

3.2 Tomographic PIV

Four LaVision HighSpeedStar CMOS cameras equipped

with Nikon Micro-Nikkor 105 mm prime lenses are

arranged as indicated in Fig. 2 and their optical axes

deviates from the surface normal by an angle of approxi-

mately 25� in the y–z plane and 15� in the x–y plane. The

numerical aperture is adjusted to f# = 11 for the tomo-

graphic experiments. Scheimpflug adapters adjust the lens

plane such that the measurement median plane is parallel to

the focal plane. To maximize the scattered light intensity, a

multi-pass light amplification system consisting of an

N
N N

N

N
N N

D
N

u∞

xy

z

Fig. 1 Schematic of reconstruction domain indicating the choice of

Dirichlet (D, red) and Neumann (N) boundary conditions

Table 1 Parameters for planar PIV experiment

Parameters Symbol Value

Field of view FOV/d 6.2 9 6.2

FOV/dm 1990 9 1,990

Magnification M 0.37

Interrogation window size ws/d 0.16 9 0.04

ws/dm 53 9 13

Pulse separation dt 80 ls

Acquisition frequency f 125 Hz

Number of samples N 4,500
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arrangement of two mirrors and knife-edges is used

(Schröder et al. 2008; Ghaemi and Scarano 2010) and

illumination is provided by a Quantronix Darwin Duo

Nd:YLF laser. Figure 2a shows a photograph of the

experimental apparatus as installed and Fig. 2b shows a

schematic for clarity.

At an average magnification of M = 0.45 the voxel size

in the object space is 42.3 lm. The image sequence is

recorded at a frequency f = 10 kHz and the resulting

particle displacement in the free stream is approximately

u?/f& 1 mm (24 voxels, vxl). The region of interest (ROI)

of the CMOS cameras is halved at this framing rate and the

active sensor size is 512 9 1,024 px2. On average the

particle image diameter is ds = 1.8 px (standard deviation

0.4 px) and the seeding density is 0.07 ppp (particles per

pixel).

LaVision DAVIS 8 is used for volume self-calibration

(Wieneke 2008) and the MART algorithm is applied for

iterative reconstruction (Elsinga et al. 2006) over a domain

of 19.7 9 4.2 9 41.3 mm3. To obtain the vector field, the

sequence of objects is analyzed with a volume deformation

iterative multigrid technique with a final interrogation

volume size of 32 9 16 9 32 vxl3 at 75 % overlap

resulting in vector spacing of 0.16 mm along the wall-

normal and 0.33 mm in the other coordinate directions.

The high-speed acquisition allows to strengthen the cor-

relation signal by a short-time sliding-average correlation

technique, whereby the interrogation kernel encompasses

four subsequent objects (three object pairs), and has

recently been compared to other approaches for multi-

frame interrogation (Sciacchitano et al. 2012). The no-slip

condition at the wall is imposed by setting to zero the

velocity vectors at or below the position of the wall during

the iterative correlation process. This condition has been

shown to stabilize the interrogation and reduces the num-

ber of spurious vectors (Theunissen et al. 2008). The

normalized time step and measurement frequency are

Dtu1=d ¼ 0:011 and f d=u1 ¼ 9:4 ðxdH=u1 ¼ 9:4Þ,
respectively. Table 21 gives an overview of the parameters

for the tomographic PIV experiment.

3.3 Surface pressure fluctuations

The fluctuating pressure at the surface of the plate is mea-

sured at a single point within the measurement volume using

a Sonion 8010T condenser microphone. Sensitivity charts

(a) (b)

Fig. 2 Photograph (a) and schematic (b) of tomographic PIV experiment (schematic not to scale)

Table 2 Parameters for tomographic PIV experiment

Parameters Symbol Value

Reconstructed volume V/d 2.1 9 0.45 9 4.4

V/dm 668 9 146 9 1,430

Magnification M 0.45

Interrogation volume size v/d 0.14 9 0.07 9 0.14

v/dm 45 9 23 9 45

Acquisition frequency f 10 kHz

Number of samples N 1,500

Table 3 Comparison of vector spacing and extension of domain

Symbol PIV DNS

Dx=d 0.036 0.033

Dy=d 0.018 0.004–0.1

Dz=d 0.036 0.030

Lx/d 2.1 45.00

Ly/d 0.45 2.25

Lz/d 4.4 4.50

1 The vector spacing for PIV is one quarter the interrogation element

size (overlap factor 75 %).
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provided by the manufacturer specify the response of this

microphone to be constant between 300 Hz and 7 kHz with

equivalent noise levels of about 15 dB sound pressure level

(equivalent to approximately prms = 100 lPa). The sensor is

installed in a cavity below a pinhole with a diameter of

200 lm. Further details on the installation are documented in

(Ghaemi et al. 2012).

The microphone measurement is performed simulta-

neously with tomographic PIV at a frequency of 30 kHz,

where the acquisition sequence was triggered through the

PIV synchronization system. For the purpose of obtaining

converged statistics of the wall pressure measurements, a

sequence of 30 s duration is recorded.

3.4 Direct numerical simulation

A compressible DNS of a turbulent boundary layer at a

Reynolds number of Reh = 1,000 and a Mach number of

Ma = 0.3 is performed. The numerical algorithm is

described by Pirozzoli (2010) and Bernardini and Pirozzoli

(2011). Reference length and velocity scales are the

boundary layer thickness at the center of the computational

domain and the free stream velocity, respectively. Data are

sampled on a domain extending over Lx/d = 45 stream-

wise, Ly/d = 2.25 wall-normal, and Lz/d = 4.5 in span. For

the purpose of the present study, the spatio-temporal res-

olution of the DNS data is redundant. Therefore, the data

are sub-sampled with a factor two in each coordinate

direction, which results in a temporal sampling of

Dtu1=d ¼ 0:045 ðxdH=u1 ¼ 25:4Þ and a vector spacing

of Dx=d ¼ 0:033 and Dz=d ¼ 0:030 in streamwise and

spanwise direction, respectively. In wall-normal direction

the sampling resolution ranges from Dy=d ¼ 0:004 near the

wall to Dy=d ¼ 0:1 in the free stream. For the present

study, a subset of 3,000 samples equivalent to a non-

dimensional time interval of T u?/d = 137 is considered.

4 Results

4.1 Characterization of boundary layer

Outer scales have been determined by trapezoidal inte-

gration based on the time-averaged velocity fields obtained

from planar PIV and the solution of the DNS. For the

simulation, the friction velocity us=u1 is determined based

on a linear fit in the inner region of the boundary layer.

Instead, for the experiment, where this information is not

accessible, the friction velocity is determined based on a fit

in the logarithmic region (Clauser 1956) with constants

j = 0.4 and B = 4.0 (Buschmann and Gad-el-Hak 2003),

which are likely to apply at low Reynolds number

(Reh = 730) and also confirmed by the DNS results.

Figure 3 shows the mean velocity data scaled based on the

constants determined with the procedures outlined above.

Table 4 lists the parameters of the turbulent boundary layer

at the measurement location and Table 5 provides a com-

parison of the dimensionless parameters relevant to both

experiment and simulation.

In the experiment, a shape factor of H ¼ dH=h ¼ 1:45

confirms the presence of a fully developed turbulent

boundary layer. Average velocity profiles and components

of the Reynolds stress tensor for experimental data and

simulation are shown in Fig. 4 and show a good agreement.

For the given choice of the measurement domain, the

tomographic PIV measurement encompasses only the

lower half of the boundary layer.

The tomographic PIV data exhibit slight deviations

within 3 % of the free stream velocity. The distributions of

the normal components of the Reynolds stress tensor is

shown in Fig. 4b. The two measurements agree very well

with the DNS data in the outer region. Approaching the

wall, the streamwise velocity fluctuations measured with

planar PIV overestimate the maximum given by the DNS.

Instead, the tomographic data show a lower value of the

peak, which is ascribed to the averaging effect of the

interrogation volume.

As an indication for the outer time scale the eddy turn

over time is estimated with d=u1 � 1ms or a non-dimen-

sional frequency of xdH=u1 = 1. Inner time scales

correspond to dm/us = 56 ls or xdH=u1 = 18. The

acquisition frequency of 10kHz therefore appears to be

sufficient for resolution of the outer time scale, but not the

inner one. The ratio of inner and outer time scales

ReT = 16.8 is required as parameter in the model of Goody

(2004) for the wall pressure spectrum. In the remainder of

this study dH=u1 and dH are used as outer time and length

Fig. 3 Mean velocity profiles scaled based on inner boundary layer

scales
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scale, respectively, while dm/us and dm = m/us are used as

inner scales.

As illustrated with the Poisson equation, the velocity

field turbulent fluctuations are profoundly linked to pres-

sure fluctuations. The spatial organization of the turbulent

velocity fluctuations is compared qualitatively by means of

snapshot visualization (Fig. 5). The salient features of the

turbulent boundary layer are represented by means of the

streamwise velocity component iso-surface (u=u1 = 0.6)

that return the organization of the flow into streamwise

aligned low- and high-speed regions (Fig. 5a, c). The

spacing between regions of low and high-speed velocity in

the inner region of the boundary layer, about half the

spanwise distance between two velocity iso-surfaces, is on

the order of 100 viscous lengths dm = m/us& 2.9 mm,

typical for Reynolds numbers Reh B 6,000 (Robinson

1991). Pirozzoli (2012) has investigated the size of the

energy-containing eddies in the outer turbulent wall layer

and found a typical integral length scale of 0.3d for the

streamwise velocity fluctuations. Examination of the

instantaneous pressure coefficient in a plane parallel to the

wall shows slightly spanwise elongated patches of low and

high pressure on the same order of magnitude for simula-

tion and experiment (Fig. 5b, d).

4.2 Velocity spectrum and coherence

The spectral energy distribution and the coherence are first

examined for the streamwise and wall-normal velocity

components. For this comparison, data are sampled in a

plane parallel to the surface at y/d = 0.1. Figure 6 depicts

the average power spectral density of the velocity fluctu-

ations. Note that streamwise velocity fluctuations show a

higher energy content at lower frequency, likely caused by

streamwise coherent regions of low speed fluid protruding

from the viscous sublayer into the upper regions of the

boundary layer. On the other hand, wall-normal velocity

fluctuations are associated with ejection and sweep events

of smaller extent (Robinson 1991). In the experiment, for

both velocity components the spectra start to level off at

xdH=u1 ¼ 2:5 and converge to a plateau at approximately

Uu1=d
H ¼ 3 � 10�5 for higher frequencies, indicating the

threshold for random errors. Assuming the random error to

be uniformly distributed over the measured frequency

range at this level, this is equivalent to fluctuations of

0.1 m/s or an error of roughly 0.2vxl.

This difference between streamwise and wall-normal

velocity components is emphasized when examining the

coherence of the streamwise and wall-normal fluctuating

Table 4 Characterization of boundary layer in experiments

Parameters Symbol Value

Boundary layer thickness d 9.4 mm

Displacement thickness dH 1.5 mm

Momentum thickness h 1.1 mm

Wall shear velocity us 0.52 m/s

Table 5 Comparison of boundary layer parameters from experiment

and simulation

Parameters Symbol PIV DNS

Displacement thickness dH=d 0.16 0.18

Momentum thickness h/d 0.12 0.12

Wall shear velocity us=u1 0.052 0.053

Shape factor H 1.45 1.50

Reynolds number Red 6,240 8,185

Reh 730 1,000

Res 436 325

Timescale ratio ReT 16.8 23.3

(a) (b)

Fig. 4 Mean velocity (a) and

Reynolds stress profiles (b) for

planar, tomographic PIV and

DNS in outer scaling
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velocity components in Figs. 7 and 8, respectively: The

streamwise velocity component exhibits a larger stream-

wise coherence at low frequencies when compared to the

wall-normal component in Figs. 7a and 8a. For frequencies

xdH=u1.1:5 the streamwise coherence of the streamwise

velocity component compare well for experimental data

and the DNS solution, while the comparison for the wall-

normal component is less favorable. The more pronounced

loss in coherence of the latter might be explained with the

arrangement of the measurement volume, which implies an

unfavorable condition for the measurement of the wall-

normal velocity component, and therefore, a larger random

error. The hatched area indicates the frequency range

exceeding 2.5 kHz which was identified in Fig. 6 as

dominated by measurement noise.

Further note the large difference in the length scale

between streamwise and spanwise velocity fluctuations.

For separations equal to the displacement thickness dH and

frequencies xdH=u1.1 both velocity components show a

streamwise coherence greater than 0.4. The spanwise

coherence falls below this value within approximately half

of the distance, which approaches the resolution of PIV in

this case.

The limitations in the experimental determination of the

velocity coherence presented in this section might be

regarded as upper bounds for the estimation of the pressure

coherence. Both, maximum frequency and spatial resolu-

tion define these bounds.

4.3 Point pressure frequency spectrum

The pressure in the measurement domain is reconstructed

following the methodology presented Sect. 2.3 with

(a) (b)

(c) (d)

Fig. 5 Instantaneous

visualization of streamwise

velocity iso-contours (0:6u1)

and velocity vectors for PIV

(a) and DNS (c). Instantaneous

reconstructed pressure field

(b) and DNS solution

(d) visualized by contours of

p0=q1

Fig. 6 Normalized power spectral density of streamwise and wall-

normal velocity components. Comparison of tomographic PIV and

DNS data at y/d = 0.1
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convection correction Bernoulli boundary conditions

(Eq. 12) and compared to the fluctuating wall pressure

measured by the pinhole microphone. Note that the artifi-

cial interface for the reconstruction process is located at y/

d = 0.07. The power spectral density based on the PIV

data is estimated with a window averaging procedure

(Welch 1967) with windows of 96 samples and an overlap

of 50 % and applying the Hamming window function to

each segment. The same procedure is applied to the DNS

data (windows of 192 samples) and for the microphone

signal (288 samples).

Random noise can influence the estimation of the power

spectral density and coherence to a large extent. For the

attenuation of the random noise component, a larger number

of time steps should be considered in the reconstruction of

the particle path and evaluation of the material derivative.

Figure 9 shows the influence of this parameter on the spectral

estimate and the microphone measurement for comparison.

For small stencils M = 2 (4Dt) random noise leads to an

overestimation of the power over almost the entire measured

frequency range. With increasing stencil size M = 3 (6Dt)

and M = 4 (8Dt) the spectral estimate converges to the

results obtained by the direct measurements, showing a

dynamic range extending over two decades.

Since no single scaling rule leads to a collapse of

boundary layer pressure spectra over the entire frequency

range, two scaling rules based on inner and outer flow

variables are adopted following previous works. In general,

scaling based on outer variables is expected to yield a

satisfactory collapse in the low frequency range, the

opposite is true for higher frequencies.

Figure 10a shows a comparison of the pressure spectra

scaled based on outer flow variables. The data obtained

using the PIV approach (M = 4), microphone measure-

ments and the DNS solution are shown together with the

data of Schewe (1983) for comparison and at y/d = 0.1 are

indicated. The solid line indicates an estimation of the

spectrum provided by the model of Goody (2004) for the

present data, while the dashed line indicates the modeled

spectrum for the data of Schewe (1983). For the present

experiment, the measured and reconstructed spectrum

show a very good agreement for frequencies between

0:8�xdH=u1� 2:5. Over the this frequency range also

the DNS data at y/d = 0.05 agrees well with the data at the

wall. For higher and lower frequencies the reconstruction

results and measurements agree within approximately 3dB.

At low frequencies the PIV based spectra tend to overes-

timate the levels provided by the microphone, while an

underestimation is observed at higher frequencies up to the

range where noise starts to dominate the spectrum. A

plateau corresponding to the random noise level is

encountered for frequencies exceeding xdH=u1 � 3:5 at a

level of Uu1=q2
1dH ¼ 3 � 10�7: Therefore, an estimate of

the noise level for the fluctuating pressure is ~p=q1 ¼ 10�3;

obtained by assuming a uniform noise level equal to the

value at the plateau over the frequency range.

(a) (b)

Fig. 7 Streamwise coherence c2
u x;Dxð Þ (a) and spanwise coherence c2

u x;Dzð Þ (b) of streamwise velocity fluctuations at y/d = 0.1

(a) (b)

Fig. 8 Streamwise coherence c2
v x;Dxð Þ (a) spanwise coherence c2

v x;Dzð Þ (b) of wall-normal velocity fluctuations at y/d = 0.1
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As expected, in this outer scaling representation, the

collected data collapse well at lower frequencies up to

xdH=u1 � 1: Due to the lower value for the ratio of outer

and inner time scales in the experiments ReT, the spectrum

starts to fall off at lower frequencies when compared to the

DNS and reference data at higher Reynolds number, in line

with the model.

The pressure spectrum scaled on inner flow variables in

Fig. 10b is consistent with previous works as the data show

an improved collapse for higher frequencies and a constant

slope of x-5 is retrieved in the high frequency range. The

indicated slope of x-1 is characteristic for the overlap

range, which, however, becomes narrow for low Reynolds

numbers (Goody 2004). The levels obtained from numer-

ical data and simulation agree well over the entire fre-

quency range, but show a discrepancy with respect to the

model and measured data of Schewe (1983). The model has

been calibrated based on the data of Schewe (1983) for low

Reynolds numbers, and thus, the perfect agreement for this

case should not be surprising. On the other hand, the lack

of reference data at low Reynolds numbers might provide

an explanation for the discrepancy.

4.4 Wall pressure fluctuations

For the computation of the correlation coefficient, both

signals are band-pass filtered for 0:3�xdH=u1 � 3

(300 Hz B f B 3 kHz) and the microphone signal is sub-

sampled to match the sampling frequency of the tomo-

graphic PIV system. Figure 11a shows a comparison of the

time signals for a subset of the data. The cross-correlation

coefficient reaches a maximum close to 0.6 (Fig. 11b).

With regard to the spatial structure of the pressure fluc-

tuations, the averaged spatial correlation of the pressure field

shows slightly spanwise elongated iso-contours (Fig. 12) for

experiment and simulation, a drop of the correlation to 0.1

within approximately twice the displacement thickness for

the streamwise coordinate, and negative values for larger

separations. These features resemble closely the generic

shape of the wall pressure correlation function reported by

Bull (1967). In his later review, Bull (1996) comments that

small scale structures contribute to circular contours, while

large-scale fluctuations preferably contribute to spanwise

elongated oval contours as observed for the instantaneous

snapshots in Fig. 5b, d.

4.5 Span- and streamwise coherence of pressure

Based on the reconstructed pressure fields, the coherence

defined in Eq. 2 can be evaluated by estimating cross- and

auto-spectral densities. Choosing the spatial separation

along the spanwise coordinate direction Dz yields spanwise

coherence function cp x;Dzð Þ: Similarly, varying the

Fig. 9 Comparison of pressure spectrum scaled with outer variables

for different number of steps M considered for the estimation of the

material derivative

(a) (b)

Fig. 10 Pressure spectrum

scaled with outer (a) and inner

(b) variables, M = 4
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streamwise separation leads to the streamwise coherence

function cp x;Dyð Þ:
For the coherence in streamwise direction a clear dif-

ference can be observed for stencils of different length

(M = 2, 3, and 4) as demonstrated by the contour plots in

Fig. 13a through 13c in comparison to results obtained

from the DNS solution, respectively. The size of the

interrogation window used during the correlation procedure

is indicated for reference (dashed line) and the hatched area

indicates the frequency range not regarded to be well

measured as indicated for the measured velocity spectra in

Fig. 6.

In general, the coherence along the streamwise direction

attains higher values at low frequency and decays beyond

the resolvable scales at higher frequencies xdH=u1[ 2:5:

For larger stencils results compare increasingly better with

the reference, indicating that random noise causes the

underestimation of the coherence function for M = 2. The

results for larger stencils appear to converge as also

observed for the power spectra in Fig. 9 and show a very

good agreement with the reference over a comparatively

large frequency range 0:5\xdH=u1\2:5:

The spanwise coherence estimated based on the mea-

surements in Fig. 13d shows a larger discrepancy by

overestimating the coherence when compared to the DNS

data. Moreover it barely shows a frequency dependence,

with only a slow decay over the considered range of fre-

quencies. Considering the decay of the square coherence

below levels of 0.2 over the width of one interrogation

volume, it has to be considered that the overestimation

stems from limits imposed by the spatial resolution.

Comparison to the coherence of the wall-normal

velocity component in Fig. 8 reveals similar tendencies.

Coherence of pressure fluctuations over the span show a

substantially faster decay compared to the streamwise

direction, indicating the measurement resolution in this

dimension to be a critical parameter. The data displayed in

Fig. 13c, d provides the basis for data fitting to estimate the

coherence lengths.

4.6 Estimation of coherence length

The estimation of the coherence length in Eq. 3 involves an

integration of the pressure coherence function over its

spatial coordinate. Direct integration is prone to conver-

gence issues, since limitations in the total number of

samples prevent the coherence function to converge to

zero. The exponential fit discussed earlier significantly

(a) (b)

Fig. 11 Comparison of

pressure time series (a) and

cross-correlation coefficient

(b) between microphone signal

and reconstruction from PIV

data, M = 4

(a) (b)

Fig. 12 Time-averaged spatial

correlation of pressure

fluctuations based on PIV (a)

and DNS (b) data filtered

between 0:3\xd=u1\3,

M = 4
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improves the robustness of the estimation. Note that the

limited resolution and overlap between neighboring inter-

rogation volumes in the correlation process of PIV provides

a lower limit for the coherence since velocity vectors are

correlated over the this scale.

Figure 14a demonstrates the exponential fit leading to

the streamwise coherence length for two discrete frequen-

cies, xdH=u1 ¼ 0:73 and 1.47 based on the PIV data. The

fitting procedure has been applied to the first 20 data points

shown in the graph. Similarly, Fig. 14b demonstrates the

exponential fit for the spanwise coherence. Comparison

indicates the comparatively small spanwise coherence

length and marginal differences between the frequencies

displayed, pointing to the relative difficulty of the estima-

tion in this dimension.

An estimation for the error �c on the coherence is

evaluated through the root mean square estimator based on

the fitted data points with respect to the exponential fit,

under the assumption that the error is uniform all spatial

separations. The error bars in Fig. 14 indicate the assumed

error distribution (2�c one-sided, 95.4 % confidence level).

Based on this fitting procedure the coherence length is

determined for each frequency, shown in Fig. 15a, b.

Comparison confirms that the streamwise coherence length

assumes substantially larger values than its spanwise

counterpart for lower frequencies. The estimation obtained

(a) (b)

(c) (d)

Fig. 13 Contour plot of streamwise coherence c2
p x;Dxð Þ with M = 2 (a), 3 (b), and 4 (c), and spanwise coherence c2

p x;Dzð Þ with M = 4 (b) of

pressure fluctuations (dashed line indicates size of interrogation window)

(a) (b)

Fig. 14 Exponential fit to

streamwise (a) and spanwise (b)

coherence data at xdH=u1 ¼
0:73 and 1.47, M = 4

Exp Fluids (2013) 54:1567 Page 13 of 15

123



using the empirical models of Corcos (1964) and Efimtsov

(1982), with a1 ¼ 0:1 0:77ð Þ; is added for comparison. The

horizontal line at l=dH ¼ 0:87 indicates the measurement

resolution of the PIV measurements.

The estimated error on the coherence function �c is

assumed to be normally distributed with zero mean and

propagated to the value for the coherence length �l through

a Monte Carlo simulation with 10,000 iterations. Error bars

in Fig. 15 indicate the estimated error for this case (2�l one-

sided, 95.4 % confidence level).

The streamwise coherence length estimated by Corcos

and Efimtsov models (Fig. 15a) starts to collapse at

approximately xdH=u1 = 1.5. PIV and DNS results show

a similar behavior with almost identical slope for

0.8�xdH=u1� 2, but with values of the coherence length

lower than predicted by the models (lx=d
H ¼ between 1

and 4). Note that both models rely on empirical constants

and have been validated for considerably higher Reynolds

numbers, which might explain the discrepancy. Interest-

ingly, at lower frequencies, the PIV results suggest a

constant or decaying value of lx, consistently with the

extended model of Efimtsov. Instead, the DNS simulation

indicates a increase to far larger values of lx. These dis-

crepancies are not fully understood and need further

attention and scrutiny. The current measurements and

simulations yield a decaying value of lx for increasing

frequency, consistent with both models.

Both predictions and measurements are more challeng-

ing in the spanwise direction. Here, the baseline value for

the coherence length is significantly smaller than that in the

streamwise direction (Fig. 15a). Both, the Corcos and

Efimtsov models start collapsing at xdH=u1[ 1. How-

ever, in the latter range, the estimate of lz is only a fraction

of dH; which implies very small structures also of rather

small amplitude. Estimates from PIV and DNS appear to

agree with the model predictions in a fairly limited range

(xdH=u1\0.7). The spatial resolution and measurement

dynamic range are considered as the main limiting factors,

since the value of the estimated length converges to the

value of the window size.

5 Conclusion

In the present study, information on the spatio-temporal

structure of the pressure field below a turbulent boundary

layer at low Reynolds numbers has been obtained using

volumetric velocity fields measured by high-speed tomo-

graphic PIV. Results have been compared to reference data

from literature, empirical scaling models, pinhole micro-

phone measurements and a DNS solution for a zero pres-

sure gradient boundary layer at similar Reynolds number.

Estimates of the wall pressure spectrum and coherence

function depend on an appropriate choice of the scheme to

estimate the material derivative. Small stencils lead to a

large random noise component and therefore to an under-

estimation of the coherence function and coherence length.

The estimation of the single point pressure wall spec-

trum obtained using tomographic PIV compares very well

with the measurement of fluctuating surface pressure

obtained using pinhole microphones. Compared with the

DNS solution and data available from literature, a good

collapse of the data is demonstrated. This collapse is

obtained for higher frequencies when scaled on inner and

for lower frequencies when scaled on outer flow variables,

consistent with previous results in literature. Measurement

noise causes a substantial deviation from the measured wall

pressure spectrum at about xdH=u1[ 3.

In the case of streamwise coherence, PIV based results

show a very good agreement with the reference data

obtained from the DNS simulation over a comparatively

large range of frequency range 0:5\xdH=u1\2:5: In

contrast, the spanwise resolution of the coherence function

(a) (b)

Fig. 15 Streamwise (a) and

spanwise (b) coherence

estimated from PIV and DNS

data. Models of Corcos (1964)

(solid line ) and Efimtsov (1982)

(dotted lines) for comparison

and resolution of tomographic

PIV in a plane parallel to the

wall (��), M = 4
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is limited by the small spanwise coherence length relative

to the measurement resolution and a consistent overesti-

mation of the coherence function is observed.

For estimating the stream and spanwise coherence

length, an exponential fit is applied. For the streamwise

coherence length, results compare well with the DNS

solution for a frequency range 0.8�xdH=u1� 2.5. PIV

and DNS results follow similar trends when compared to

the models of Corcos (1964) and Efimtsov (1982). At

frequencies exceeding xdH=u1 ¼2.5 the estimate of the

coherence length is questionable due to limits on the spatial

and temporal resolution available in the experiment.
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