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Abstract Results from experiments on the near field of a

turbulent circular pipe jet at Reynolds numbers between

3,000 and 30,000 are compared to analytical models

derived from assuming a perfect balance between axial and

radial flow rates. This assumption is proved to be valid on

average by taking measurements on both longitudinal and

transverse planes and by direct evaluation of axial and

radial flow rates. The experimental campaign is carried out

by performing measurements by means of high-speed

particle image velocimetry. The analytical models describe

approximately the behavior of measured average radial

velocities and entrainment rates with indications of a sig-

nificant Reynolds number dependence which disappears for

values larger than 10,000. This behavior is also confirmed

by velocity rms and integral scale results.

1 Introduction and motivation

Jet flows have been widely considered in turbulence research

due to their relatively simple geometry coupled with the huge

variety of large- and small-scale phenomena involved.

Restricting the investigations to relatively low Reynolds

number conditions (less than 50,000), as those considered in

this paper, jets are largely employed in engineering devices

for mixing, combustion, propulsion, biomedical, ventilation

and energy production purposes. One of the main directions

of investigation was to find asymptotic behaviors which

could enable a description of the flow field as much as pos-

sible independent of the details of each experiment (Xu and

Antonia 2002; Hussein et al. 1994).

In such a description, several geometrical, kinematic and

dynamical parameters are involved. Restricting the analysis to

single-phase, low-Mach number, isothermal steady jets, it is

possible to summarize these parameters under the frameworks

inlet conditions (IC), boundary conditions (BC) and Reynolds

number (based on pipe diameter and exit velocity, Re). In the

moderate-far jet field (x/D [ 15, where x is the streamwise

coordinate starting from the jet exit and D is the jet diameter)

and for rather high Reynolds numbers (Re [ 50,000), the

hypothesis of self-similarity (self-preservation) holds

(Malmstrom et al. 1997; Hussein et al. 1994; Wygnanski and

Fiedler 1969). Prediction of the jet centerline velocity self-

similar streamwise decay is given by Pope (2000)

U0

UxðxÞ
¼ 1

Ku

ðx� xpÞ
D

� �
ð1Þ

where U0 is the jet exit velocity, Ux(x) is the local

centerline axial velocity and xp is the so-called virtual

origin of the jet. Similarly, the streamwise behavior of the

jet half-width R1
2

(where the axial velocity is one half that at

the centerline) is

R1
2
ðxÞ
D
¼ Kd

ðx� xpÞ
D

� �
ð2Þ
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Università degli Studi di Udine, 33100 Udine, Italy

e-mail: alessandro.capone@uniud.it

A. Soldati

e-mail: soldati@uniud.it

A. Soldati

Department of Fluid Mechanics, International Center for

Mechanical Sciences, 33100 Udine, Italy

G. P. Romano

Department of Mechanics and Aeronautics, Università degli
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The values of the constants Ku and Kd in (1) and (2) have

been examined by several authors, and typical values are 6 and

0.1, respectively (Malmstrom et al. 1997). Simultaneously,

along the radial direction, r, the axial velocity exhibits a

Gaussian behavior (Malmstrom et al. 1997)

Uxðx; rÞ ¼ UxðxÞe�g2 ð3Þ

where g = Kur/(x - xp) is the radial rescaled coordinate.

The self-similar analysis can be further extended to tur-

bulent Reynolds stresses along axial and radial directions

(Kuang et al. 2001). It is rather established that (1), (2),

(3) are almost independent on IC, BC and Reynolds

number, providing the conditions of far field (x/D [ 15)

and Re [ 50,000 to hold. It is worth pointing out that

these conditions correspond to those required for estab-

lishing local isotropy of the turbulent flow field. However,

in many engineering applications, the interest is focused

onto the jet near field and to regimes with Re \ 50,000,

so that previous issues regarding asymptotic behavior rise

up again. For example, there were robust indications on a

linear dependence of Ku on Reynolds number, for

Re \ 50,000 (Malmstrom et al. 1997), which could reflect

the simultaneous reduced jet spread as a function of

Reynolds number as shown in Hussein et al. (1994). The

LES investigations on the circular pipe jet made by Kim

and Choi (2009) pointed out that the behavior of mean

and rms axial velocity along the streamwise direction is

strongly dependent on the combined effects of Reynolds

number and IC (namely the momentum thickness at the

jet outlet). This has been derived also by Bogey and

Bailly (2009) and is in agreement with early observations

by Zaman and Hussain (1981) and Crow and Champagne

(1971). Such a variation was not observed by Fellouah

and Pollard (2009) on a contraction jet at Reynolds

numbers between 6,000 and 100,000. There is also a

certain degree of variation due to the BC, specifically if

the jet originates from a pipe, a contraction or an orifice

(Xu and Antonia 2002; Quinn 2006, 2007; Mi et al. 2007;

Deo et al. 2007a, b; Romano 2002). It is thus desirable to

separate the contribution of the previous effects to

establish specifically if there is a Reynolds number

dependence. In particular, the dependence on Reynolds

number should be considered within the entire picture of

jet flow behavior along the streamwise and orthogonal

directions, being the phenomena under observation fully

three-dimensional. Indeed, this point is connected to the

subtle argument underlying the self-similarity hypothesis,

that is, that the flow was described by a single length (and

velocity) scale (Burattini et al. 2005). However, if IC, BC

and Reynolds number influenced self-similarity, it should

be expected that this will not be the case and the number

of relevant scales would increase. Thus, it is rather

important to establish the effect of IC, BC and Re on the

relation between longitudinal (axial) and transverse

(radial) phenomena.

2 Relations between axial and radial flows

In the case of constant density jets, it is useful to start from

the definitions of axial and radial volumetric flow rate,

respectively Qa and Qr, and relating them to the entrain-

ment rate as in Wygnanski and Fiedler (1969), Crow and

Champagne (1971) and Liepmann and Gharib (1992). The

mass balance on the differential control volume shown in

Fig. 1 can be written as

oQa

ox
dx ¼ �dQrðx;RÞ; ð4Þ

thus, it is possible to write

Qaðxþ dx;RÞ � Qaðx;RÞ ¼ �dQrðx;RÞ ð5Þ
Therefore, using the axial and radial volumetric flow

rates expressions

Qaðx;RÞ ¼
Z2p

0

ZR

0

Uxðx; r; hÞrdrdh ð6Þ

dQrðx;RÞ ¼
Z2p

0

Urðx;R; hÞRdh

0
@

1
Adx ð7Þ

the following descends from relation (5).

d

dx

Z2p

0

ZR

0

Uxðx; r; hÞrdrdh ¼ �R

Z2p

0

Urðx;R; hÞdh ð8Þ

where R is a generic radius over which integration is

performed which could be also a function of the axial

distance x, Ur is the radial velocity component and h is the

azimuthal angle. This equation establishes a relationship

between axial and radial velocities, at each downstream

Fig. 1 Schematic of volumetric flow rate balance
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distance, as also a means to derive the entrainment rate

(which is just the left-hand side of the equation) from radial

velocity distribution along a circle centered on the jet axis.

For large R (in comparison with local jet radius defined in

2), the integral will reach an asymptotic value (Liepmann

and Gharib 1992), whereas for small R, the dependence on

the radial coordinate will be outlined. In the following, the

dependence on the azimuthal angle h will be relaxed on

the basis of the results presented in this paper, to focus the

attention on axial and radial behaviors. Thus, we can insert

in (8) the expression for the axial velocity component

derived from combining (1) and (3), that is, we are

considering the self-similar region, to obtain

U0D

2Ku

d

dx
½ðx� xpÞð1� e�H2Þ� ¼ �RUrðx;RÞ ð9Þ

where H = KuR/(x - xp). Therefore,

Urðx;RÞ
U0

¼ � 1

2Hðx� xpÞ=D

d

dx
½ðx� xpÞð1� e�H2Þ� ð10Þ

where the dependence of H(x) should be specified (through

R(x)). If we assume that along the axial distance, the

generic radius R scales as in (2), the quantity H is a

constant along x and it is derived from (10) that

Urðx;RÞ
U0

¼ � 1

2ðx� xpÞ=D

ð1� e�H2Þ
H

; ð11Þ

whereas without such an assumption the outcome is the

following

Urðx;RÞ
U0

¼ � 1

2ðx� xpÞ=D

ð1� e�H2ð1þ 2H2ÞÞ
H

ð12Þ

This is a well-defined behavior with negative values,

that is, positive entrainment, along the axial distance

(decreasing as 1/x) in both model equations. Considering

relation (8), in the potential core, that is, with Ux & U0 and

R(x) equal to a constant (D/2), it descends that Ur(x,R) = 0

(no entrainment). Along the radial direction, the hypothesis

on H to be independent of x or its relaxation leads to

different behaviors up to H = 2.5. In particular, for

H \ 1.2, a positive radial velocity is predicted by Eq.

(12) as opposed to (11) as shown in Fig. 2 which displays

(11) and (12) versus H. Similarly, the behavior of axial and

radial flow rates in the self-similar region can be derived

from (5) and (6)

Qaðx;RÞ
Q0

¼ 4

Ku

ðx� xpÞ
D

ð1� e�H2Þ ð13Þ

dQrðx;RÞ
Q0

¼ � 4

Ku
ð1� e�H2Þ dx

D
ð14Þ

the latter taking the following form in case no assumption

is made about R scaling

dQrðx;RÞ
Q0

¼ � 4

Ku
ð1� e�H2ð1þ 2H2ÞÞ dx

D
ð15Þ

where Q0 = p D2 U0/4 is the flow rate at the jet nozzle.

Along the streamwise direction x, from (13), the well-

known linear increase in the axial flow rate can be derived.

On the other hand, the radial flow rate from being zero at

the nozzle attains a negative constant value for increasing

axial distance. In the potential core, from (6), (7) and (8),

the initial values of the flow rates are Qa = Q0 and Qr = 0.

The behavior along the radial direction is much more

interesting, and it is shown in arbitrary units in Fig. 2 as a

function of H (which depends on both the radial and axial

coordinates) for model Eqs. (11), (14) (hereafter equations

A) and (12), (15) (hereafter equations B). In this figure, the

parameters Ku and xp are taken, respectively, equal to 6 and

0 as in Malmstrom et al. (1997) for similar IC and a

Reynolds number equal to 42,000. The entrainment rate

(dQr(x, R)/dx) starts from zero for H = 0 and attains an

asymptotic negative value for both models A and B (in

arbitrary units equal to -1). For intermediate values of H, a

region of negative entrainment is present in model B, as for

the radial velocity, ending at nearly H = 1.2. This behavior

is the same for the axial flow rate with opposite sign.

Starting from these models, the objective of the present

paper is to highlight the connections between phenomena

on longitudinal and transverse planes and their effects on

mixing in the near field of a circular turbulent jet by

focusing the attention on their dependence on Reynolds

number. To this end, high-speed particle image velocime-

try (PIV) measurements on longitudinal and transverse

planes are performed. The relevant quantities for this

analysis are axial, radial and azimuthal velocities and their

spatial behaviors, the axial and radial flow rates,
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Fig. 2 Radial velocity and entrainment rate model equations versus

H = KuR/(x - xp) given in arbitrary units
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entrainment rate calculations and velocity fluctuations. In

Sect. 4, the results obtained in longitudinal planes are

carefully verified and compared to existing results to

investigate whether the Reynolds number dependence

could be connected to the mixing transition in jet flows,

reported by Dimotakis (2000), Hill (1972) and Liepmann

and Gharib (1992). For Reynolds numbers below 10,000,

the cited authors report a rather strong dependence on

Reynolds number which almost disappears for

Re [ 10,000. In Sect. 5, the results on cross-planes are

examined to establish if the simplified models descending

from far field behavior here presented are able to capture

the essentials of the highly three-dimensional phenomena

involved in turbulent jets near field. The possibility of

acquiring data on both longitudinal and transverse planes is

used in Sect. 6 to verify the correctness of the hypothesis of

perfect balance between axial and radial flow rates which is

the basis for the derived simplified models.

3 Experimental set-up, data acquisition and analysis

The water jet apparatus is detailed in Fig. 3; the facility

consists of a long pipe with a round section of diameter

D = 2.2 cm ending nearly 7 cm inside the observation

tank. Being the pipe nozzle not flush with the tank’s wall,

the flow is characterized by a free-slip condition (Romano

2002). The pipe is about 100D long, which is enough to

observe fully developed turbulent flow conditions. The

observation tank is approximately 40D high and wide,

approximately 60D long and is made of glass for full

optical access. Due to the limited size of the tank, the jet is

considered as confined rather than free. It should be pointed

out that this work focuses on the near field region of the jet

where the cross-sectional area of the jet flow estimated as

three times the jet half-width R1
2

is below 2D and then small

compared to the observation tank width whose effect on the

flow is thus negligible (Cater and Soria 2002). The flow is

driven by constant head provided by an elevated tank

which is constantly supplied by a pump. At the bottom of

the observation tank, opposite the pipe outlet, a discharge

hole is located which was kept closed during measurements

in order not to introduce disturbances in the flow.

A high-speed PIV system is set up by means of a high-

speed 8-bit BW, Photron APX CMOS camera with

1, 024 9 1, 024 pixels resolution at 1 KHz frame rate. The

camera objective used for all the acquisitions was a Nikon

F 50 mm focal length with maximum aperture of 1.2.

Lighting is provided by a continuous Spectra Physics Ar-

ion laser, 488–514 nm in wavelength, with a maximum

power equal to 7 W, and flow seeding was attained with

neutrally buoyant 10lm diameter hollow glass spheres

(Dantec HGS-10).

Two types of image acquisition were carried out, based on

the position of the camera. The first set of acquisitions,

hereafter streamwise acquisitions, was performed by placing

the camera laterally with respect to the main flow (denoted as

Position 1 in Fig. 3), whereas the second image set, hereafter

crosswise acquisitions, was obtained by setting the camera

facing on transversal planes (labelled as Position 2 in Fig. 3).

Streamwise measurements covered an area equal to

6D from the nozzle exit, resulting in a pixel resolution of

0.12 mm corresponding to 0.006D. In order to collect data

from the jet’s far field, complementary streamwise acquisi-

tions were performed by composing a series of close-up

measurements covering each approximately 3D and reaching

18D in the far field.

Transverse, crosswise acquisitions covered a squared

area with side equal to 3D with a pixel spatial resolution of

0.12 mm. Measurements were carried out on planes lying

within a range from 0.75 to 4.5D from nozzle exit.

In the experimental campaign, the jet Reynolds number

based on the jet bulk velocity U0 ranged from 3,200 to

32,000 for both acquisition types. For each Reynolds

number, typically 5,000 image pairs were collected.

Streamwise measurements acquisition rate was 0.5 or

1 KHz corresponding to a dt between image pairs of,

respectively, 0.002 and 0.001 s. Shutter time was set

according to the flow speed in order to keep the maximum

distance traveled by the seeding particles in a time frame

well below 0.4 mm, corresponding to 3 pixels. In Table 1,

acquisition parameters for streamwise measurements are

reported. Crosswise measurements were carried out with an

acquisition rate of 1 KHz. Laser sheet thickness was

approximately 1 mm. A sample image for the streamwise

acquisitions, obtained at Re = 10,000, is given in Fig. 4.

A commercial PIV software, that is DaVis by LaVision

Gmbh, has been employed for instantaneous vector field

computation. The advanced image deformation multi-passFig. 3 Experimental set-up
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PIV cross-correlation algorithm with window offset,

adaptive window deformation and Gaussian sub-pixel

approximation is thoroughly described in Stanislas et al.

(2008), together with features and overall performances.

Minimum window size adopted was 32 9 32 and 16 9 16

pixels for streamwise and crosswise measurements,

respectively. In both cases, overlap was set to 75 %, thus

the spacing between velocity vectors was 8 and 4 pixel

corresponding to a spatial velocity resolution of approxi-

mately 0.045D for all acquired data.

As described in detail in Falchi and Romano (2009),

data collected via high-speed PIV systems have a high

degree of correlation in time. Thus, the high temporal

resolution of the present measurements (0.001 and 0.002 s,

respectively; 0.04 and 0.08 integral time scales) allows to

derive correlation functions. Integral time scale was

derived by the integral length scales measured from cor-

relation functions in the far field, that is, L = 10 mm,

divided by the local mean velocity, about 0.4 m/s. At the

same time, the typical acquisition time window for the

streamwise case was 10 or 20 s, depending on the Rey-

nolds number, and covered as much as 400 integral time

scales so that reported data are also almost statistically

independent to attain statistical convergence (Falchi and

Romano 2009). An example of that is given in Fig. 5 where

the relative difference to the final value for the mean and

rms of streamwise velocity is given versus number of

samples N. Data are taken at a point within the shear layer

in the jet far field (x/D = 5) at a Reynolds number of 3,200

and 22,000 and show a good overall behavior in both cases,

with both mean and rms within 15 % relative difference

already for N [ 1,000 and within 2 % for N = 4,000.

4 Results on streamwise decay and validation

In Fig. 6, the horizontal decay of average axial velocity is

reported and compared to that provided by Amielh et al.

(1996) obtained by means of laser Doppler anenometry at a

Reynolds number of 22,000 and to low Reynolds number

data from O’Neill et al. (2004). The present data covered a

range of Reynolds number from 3,200 to 28,000 reaching

up to x/D = 9. For the largest Reynolds number, data were

collected by composing three slightly overlapping close-up

runs, each of nearly 3D length, thus reaching as far as

9D and adding a further series in the jet’s far field up to

approximately 18D. Data have been trimmed at the border

of each imaged region to account for the intrinsic loss of

accuracy of PIV algorithm at the boundaries. Capital and

lowercase letters are used respectively for mean and fluc-

tuating quantities and a 0 represents rms values.

For increasing Reynolds numbers, the decay of nor-

malized streamwise velocity along the jet’s axis given in

Fig. 6 approaches the one of LDA data and shows a

Table 1 Streamwise measurements acquisition parameters

Re Fa (KHz) Fs (KHz) Twin (s) Dmax (pixels)

3,200 0.5 1 20 4

6,000 0.5 1 20 7

10,000 1 2 10 6

14,500 1 2 10 8

22,000 1 3 10 12

28,000 1 4 10 15

Fa and Fs, acquisition and shutter rate; Twin, measurement time; Dmax

average maximum displacement

Fig. 4 Sample streamwise PIV image at Re = 10,000. Pipe outlet is

visible at the far left of the picture
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satisfactory continuity between near and far field mea-

surements. Such decay exhibits also the expected (x/D)-1

behavior described in Liepmann and Gharib (1992). Mea-

surements up to 6D for different Reynolds numbers show a

similar decay profile which moves downstream as the

Reynolds number increases, as displayed in figure inset.

Comparison to the results reported in O’Neill et al. (2004),

obtained at a Reynolds number of 1,030, confirms the

reported trend of axial velocity decay even at low Reynolds

numbers.

Normalized profiles of axial and vertical velocity rms

versus downstream position are depicted, respectively, in

Figs. 7 and 8, where a quite good agreement with LDA

data is noticeable at high Reynolds numbers for the axial

velocity. The decay of the profile is slightly above LDA

data at 5–6D, where the shear layers begin to merge. At

lower Reynolds numbers, this merging is attained farther

from the nozzle, and an increase in rms is observed. In

Fig. 9, normalized axial and vertical velocity rms values

taken at x/D = 5 are shown as a function of Reynolds

number. This position is approximately that of maximum

rms as shown in Figs. 7 and 8. The observed decrease is in

agreement with a -1/4th power of the Reynolds number,

thus suggesting that the rms fluctuations scale as Re3/4.

Present data are also validated with respect to radial

velocity profile very close to the nozzle (x/D = 0.2).

Comparison to LDA data and to empirical fully developed

pipe flow power law 1� 2r=Dð Þ1=n
with n = 6.5 described

in Mi et al. (2001) is shown in Fig. 10 with collected data

matching fairly well the reference profiles. The smooth

ends at the jet’s boundaries (r/D = 0.5) are also a conse-

quence of the free-slip condition due to the nozzle not

flushing with the tank wall, as described in Romano (2002).

These findings confirm the hypothesis of completely

developed turbulent pipe flow at the nozzle exit.

5 Crosswise instantaneous and mean velocity fields

The fluid mechanics phenomena taking place on longitudinal

planes considered in previous section are closely related to

those on crosswise planes leading to fully three-dimensional

vortical structures (Klaasen and Peltier 1988; Liepmann and

Gharib 1992; Sbrizzai et al. 2004). In axisymmetric jets, the

ejection of secondary transverse fluid related to Kelvin-

Helmholtz shear layer primary instabilities allows the for-

mation of secondary double counter-rotating structures,
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resembling a mushroom shape in the plane perpendicular to

the main flow (Liepmann and Gharib 1992; Romano 2002;

Sbrizzai et al. 2004). Secondary instabilities are here

investigated by measuring the velocity field on cross-planes

from x/D = 0.75 up to x/D = 4.5, approximately where the

potential core vanishes.

The high-speed acquisition method allowed the visual-

ization of the transient secondary structures evolution, as

shown in the series of pictures given in Fig. 11. The

snapshots represent a close-up on the upper-left area of the

cross-plane where the formation of a mushroom-like

structure takes place, that is at x/D = 2.5, for two different

Reynolds numbers, namely 3,200 and 14,500. For the sake

of clarity, only one image every 0.008 s, nearly 0.3 integral

time scales, was displayed in the picture for Re = 3,200,

whereas one image each 0.15 integral scales was used for

Re = 14,500 data. The formation and evolution of the two

counter-rotating vortices can be appreciated; in particular,

the life time of such structures is approximately equal to 1

integral time scale. The picture is similar for the data at

Re = 14,500. The vector field averaged over 5,000 images

(about 10 s, i.e. more than 100 integral time scales) at

x/D = 1.5 and Re = 4,800 is presented at the top of

Fig. 12. The empty central area is the effect of a compu-

tation mask which was set prior to PIV processing to avoid

the large velocities at the jet centerline which give almost
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(four pictures at the bottom). Ts represents the integral time scale.

Displayed data have been downsampled respectively to 0.125 and

0.250 KHz, roughly 0.3Ts (0.15Ts), in order to allow a clearer

visualization. U0 for Re = 3,200 case has been used as a reference for

both figures
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uncorrelated image pairs. The actual pipe outlet shape is

depicted as the gray circle. The circular area close to the

pipe outlet characterized by low velocities values is due to

the travelling vortex rings. As the vortex passes by in fact,

fluid is ejected; this process is compensated by the sub-

sequent ring’s roll up during which a strong fluid entrain-

ment takes place, thus leading to the observed average

velocity field. For large radial distances (around 1D), on

the other hand, there is a negative radial velocity, that is a

positive entrainment stemming from secondary instabili-

ties, as shown in instantaneous plots and predicted by the

model presented in Sect. 2 (Fig. 2). It is also interesting to

note that the velocity field under investigation is not

affected by major swirling.

For increasing Reynolds numbers, a similar field is

noticeable as shown at the bottom of Fig. 12, for

Re = 19,300, where fluid entrainment is again visible up to

the border of the imaged area. As expected, the average

velocity field magnitude is considerably larger than the

Re = 48,00 case and the region around the pipe outlet

where the velocity field is attenuated is less evident. The

resulting radial and azimuthal mean velocities are pre-

sented in Fig. 13 for Re = 14,500 with positive Ur pointing

outward. The mean Ur field, displayed on the left side of

Fig. 13, normalized by the flow velocity U0, reveals a

strong dependence on the downstream distance: up to

x/D = 1, the field shape is still unaffected by secondary

structures, and vortex rings action is predominant. From

x/D = 1.5 up to 2.5, instabilities of the potential core begin

to be visible, and consequently, the velocity field shows an

increasing dependence of the radial velocity on the azi-

muthal angle. In the last downstream position, x/D = 4.5,

the presence of secondary vortex structures is substantial

and modifies the velocity field’s shape up to r/D = 2. The

absolute value of the radial component Ur increases con-

siderably with x/D, both outward up to -0.25U0 and

inward up to 0.25U0. On the other hand, the mean Uh

(azimuthal velocity) distribution is quite independent from

x/D as may be seen in the right side of Fig. 13. In partic-

ular, for high x/D, the field retains its shape and no far field

modification is evident. This behavior may be related to the

counter-rotating features of vortical structures that cancels

0 1−1

0

1

−1

z/D

y/
D

0.1 U
0

0 1−1

0

1

−1

z/D

y/
D

0.4 U
0

Fig. 12 Mean velocity field for x/D = 1.5 at Re = 4,800 (top) and

Re = 19,300 (bottom). U0 for Re = 4,800 case has been used as a

reference for both figures. Blue circle represents pipe outlet’s rim
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out the Uh component on average. It is important to point

out that the azimuthal velocity attains average values which

are as small as ±0.001U0 at all downstream distances. The

behavior of average velocity components as a function of

Reynolds number is summarized in Fig. 14 at four down-

stream positions. Those values have been obtained by

sorting positive (fluid ejection) and negative (fluid

entrainment) motions and by averaging the data over the

entire region under investigation. All velocity components

at the different distances decrease with respect to Reynolds

number not far from the -1/4 slope (depicted as reference

in Fig. 14). This is the same behavior derived for the rms

velocities on a longitudinal plane (Fig. 9), thus indicating

that on the average, the secondary instabilities on cross-

planes are driven by the same mechanism (at least with

respect to Reynolds number effects) which gives rise to

primary instabilities on longitudinal planes. On a statistical

basis, this mechanism can predict the ones from the others

and viceversa.

The behavior of velocity fluctuations provides further

insight into the phenomenon. In Fig. 15, radial profiles of

rms values for radial and azimuthal velocities are presented

for Re = 14,500. Radial rms were obtained by averaging

four data sets lying on two mutually perpendicular axes

passing by the pipe outlet’s geometric center. The values of

turbulent fluctuations, while decreasing with the radial

distance, are almost constant with x/D up to x/D = 3.5,

where an increase is observed, matching the onset of fully

three-dimensional instability as reported by Liepmann and

Gharib (1992). In comparison with ur fluctuations, those in

uh appear to attain lower values (less than 1/20) and

consequently seem to be weakly related to jet’s mixing.

The u
0

r and u
0

h rms curves at fixed x/D for different Rey-

nolds numbers are depicted in Fig. 16. Radial velocity data

are characterized by the following pattern: the rms level

decreases up to Re = 9,600 and then increases for higher

Reynolds numbers, in particular for r/D \ 0.5, that is close

to the pipe outlet’s rim. A similar behavior was pointed out

in Liepmann and Gharib (1992), for a Reynolds number of

approximately 10,000; it was related to jet’s initial

boundary layer transition to turbulence. Azimuthal velocity

10
4

10
−4

10
−3

10
−2

10
−1

10
0

U
r
/U

0
,U

/U
0

Uθ > 0 Uθ < 0 U
r
 > 0 U

r
 < 0

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Reynolds number

U
r
/U

0
,U

/U
0

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Reynolds number

−1/4 slope

x/D=1 x/D=2.5

x/D=4.5x/D=3.5

Fig. 14 Radial (Ur) and

azimuthal (Uh) average velocity

versus Reynolds number at

different downstream positions.

Positive values refer to velocity

pointing outward (fluid

ejection). Triangle and diamond
symbols represent, respectively,

positive and negative Ur, circle
and square positive and

negative Uh
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Fig. 15 Rms of radial velocity ur (top) and azimuthal velocity uh

(bottom) versus radial distance in cross-planes at Re = 14,500 for

various downstream distances x/D
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rms profile shows a similar behavior, although with much

smaller values.

5.1 Mean entrainment rates

The observations made in the previous sections confirm the

average relationships between longitudinal and transverse

vortical structures. Thus, the entrainment rate introduced in

Sect. 2 can be evaluated by combining Eqs. (5), (6) and (7)

dðQrðx;RÞ=Q0Þ
dðx=DÞ ¼ D

Q0

Z2p

0

RUrðx;RÞdh ð16Þ

with the already mentioned normalization. The above for-

mulation states that the mean entrainment rate at a specific

downstream distance x/D will be derived by integrating the

radial velocity Ur along a circular path centered on

the pipe’s outlet. It is of interest to assess how for R \ 2 D,

the entrainment rate is affected by the radial coordinate as

it can provide a good insight into the role of different

vortical structures in such process. The entrainment rate

derived by the average radial velocity field Ur is displayed

in Fig. 17 at downstream position x/D = 0.75 for different

Reynolds numbers. For r/D \ 0.5, the curves feature a

slightly negative rate, whereas for larger radial distances,

the entrainment rate level becomes positive and increases

up to an almost asymptotic value. The features of the

reported profiles can be explained, considering that the

effect of primary instability structures is predominant at

this downstream position and vortex rings affect noticeably

the entrainment. As shown in Fig. 12, for radial distances

shorter than 0.5D, there is still an ejection of flow which is

responsible for the negative peak. On the other hand, the

increase achieved for r/D in the range 0.6–0.8 stems from

the primary vortex rings roll up, whose effect is most rel-

evant in a limited flow region and vanishes in the cross-

plane far field (r/D [ 1). For large r/D, the entrainment

rate is expected to be a constant independent from radial

distance, and this is confirmed by the results shown in

Fig. 17. Figure 17 provides also information on Reynolds

number effect on entrainment, in particular on the negative

entrainment r/D \ 0.5 region and the asymptotic behavior

of normalized entrainment rate. About the latter effect, it is

worth pointing out that the effect of secondary instabilities

is less evident at higher Reynolds number regimes, as

suggested also by Fig. 13.

These observations, combined with the results from

Fig. 13, confirm that for cross-planes farther away from the

nozzle, secondary vortical structures become more efficient

at entraining fluid and, when the potential core ends, they

take full control of the entraining process.

The initial negative entrainment region visible in Fig. 17,

which was also reported by Hassan and Meslem (2010) at

r/D = 0.8 for x/D = 4, shows a strong dependence on Rey-

nolds number almost vanishing for Re [ 14,500.

In Sect. 2, the balance between axial and radial volu-

metric flow allowed to derive model equations for the

average radial velocity as well as for the entrainment rate

in the form of model equations A and B depicted in Fig. 2.

Comparison of the proposed models against experimental

data is shown in Fig. 18 where average radial data and

entrainment rate at x/D = 4.5 and at different Reynolds

numbers were plotted against H = KuR/(x - xp). Such a

downstream position was chosen to verify as much as

possible the assumption of self-similarity even in such a

region close to the jet outlet. The parameters Ku and xp are
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Fig. 16 Rms of radial velocity ur (top) and azimuthal velocity uh

(bottom) versus Reynolds number at x/D = 1.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.05

0

0.05

0.1

0.15

0.2

3200
4800
9600
14500
19300
24100
29100
32200

Fig. 17 Normalized entrainment rate at downstream position x/D =

0.75 for different Reynolds numbers. Data were obtained by mean

radial velocity Ur
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taken respectively equal to 6 and 0 as in Malmstrom et al.

(1997).

Experimental data show that for the radial velocity, the

agreement is rather poor, especially for Re B 14,500 and

H [ 1. However, the simple models seem to account for

the main features of measured data and relative error bars

for Re [ 14,500 and H \ 1. Specifically, model A seems

to be more suited for data around Re & 20,000, while

model B is better describing the other data. Results for the

entrainment rate show that model B prediction of an initial

negative entrainment region followed by a positive nega-

tive entrainment region is confirmed by experimental data

for Re \ 10,000. For Re [ 10,000, model B does not

recover the sign of entrainment rate for H \ 1.3, predicted

by model A, while following satisfactorily the experi-

mental data for H [ 1.3.

Clearly, the choice of the parameters in the model (Ku

and xp) could be one of the reasons for the observed dif-

ferences in comparison with data.

5.2 Velocity correlation

The analysis of transverse structures can explain some of

the features observed in previous sections in relation to the

effect of Reynolds number as also investigated by Liep-

mann and Gharib (1992). These authors found that the

number of secondary structures grows up to Re = 10,000

(while dropping for larger values), whereas their size

appears to be inversely proportional to Reynolds number

up to Re = 10,000 (and nearly constant for larger values).

In the present work, a preliminary visual investigation of

the flow features did not show an evident increase in the

number of counter-rotating vortical structures in cross-

planes with Reynolds number. The reason lies in the dif-

ferent inlet conditions of the present work, that is a long

pipe as opposed to a smooth contraction in Liepmann and

Gharib (1992). The average size of cross-planes vortical

structures was assessed by means of radial and azimuthal

velocity correlation functions defined respectively as

Rrrðx0; rÞ ¼ urðx0Þurðx0 þ rÞh i ð17Þ
Rhhðx0; rÞ ¼ uhðx0Þuhðx0 þ rÞh i ð18Þ

where the reference position x0 was set right inside the

pipe’s outlet rim (at r/D & 0.45), and r direction represents

the radial position with respect to pipe’s outlet center.

Correlation functions were then normalized to their initial

value, Rrr(x0,0) and Rhh(x0,0), and were subsequently spa-

tially averaged from four data sets lying on two mutually

perpendicular axis passing by the pipe’s center, as for rms

calculations presented in Figs. 15 and 16. Figure 19 shows

such correlation functions calculated at x/D = 3.5 for dif-

ferent Reynolds numbers. The radial correlation profiles

show a dependence on Reynolds number with decreasing

levels of correlation as Reynolds number increases. For

Re B 4, 800, Rrr retains 50 % of its starting value up to

r/D & 0.65, whereas at the same radial distance for the

Re = 32,200 case, it is as low as 25 %. Furthermore, Rrr is

above 10 % of its initial value up to r/D& 1 for lower

Reynolds numbers, whereas such relative value is reached

already at r/D & 0.7 at Re = 32,200. These findings

confirm that the average spatial extension in the radial

direction of counter-rotating, secondary vortical structures

decreases with growing Reynolds number for Re \ 10,000

followed by an asymptotic behavior.

Similarly, at the bottom of Fig. 19, the profile of Rhh for

different Reynolds numbers is provided. Differently from the

radial correlation, the azimuthal correlation shows negative

values due to the vortical structures which roll up inward and

is related to the spatial extension of such structures in the

azimuthal direction. For increasing Reynolds number, the

radial position at which the anti-correlation peak is attained

decreases confirming again the shrinking of vortices. Rhh is

less subject to this effect than Rrr, arguably because of the

double counter-rotating nature of the structures under

investigation, which dampens the azimuthal component of

velocity in the spatial-averaging process.
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Fig. 18 Average radial velocity (top) and entrainment rate (bottom)

versus H = KuR/(x - xp) at x/D = 4.5. Error bars obtained as

standard deviation of the mean. Model Eqs. (11, 14) (blue lines,

Model A) and (12, 15) (red lines, model B) show predicted profiles
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A further insight into the dependence of velocity correla-

tion functions on Reynolds number is given by Fig. 20, where

normalized integral scales obtained by previous functions

have been plotted as a function of Reynolds number. Radial

and azimuthal integral scales show both the same profile,

confirming the decrease of the average spatial extension of

secondary vortical structures for increasing Reynolds num-

bers with similar results found at other downstream positions.

Therefore, a Reynolds number, in which length scales on

cross-planes and rms fluctuating velocities are considered, is

derived to be a function close to the Reynolds number based

on the jet diameter and jet outlet velocity at the power 1/2. The

given results bear an important resemblance to entrainment

rate findings presented in the previous paragraph as to the

Reynolds number dependency. The entrainment rate appears

in fact to be affected by the velocity spatial correlation

induced in cross-planes by the secondary structures. The

efficiency at entraining fluid relatively to a reference velocity

decreases with Reynolds number and attains an asymptotic

state for Re [ 10,000 as also reported in Figs. 17 and 18.

6 Axial and radial flow rate

To establish if the main hypothesis of the proposed sim-

plified models of a perfect balance between axial and radial

flow rates holds as presented in Sect. 2, data derived from

measurements on both longitudinal and transverse planes

are considered. In order to match the volume flux,

entrainment calculations carried out in the previous para-

graph from transverse planes (Figs. 17, 18) are compared

to those regarding axial flow rate on longitudinal planes.

The radial volume flux, Qr, is obtained by the entrainment

rate results by averaging over radii larger than that corre-

sponding to the maximum entrainment. In this way, the

effect of an onset of asymptotic radial value is considered.

On the other hand, the average longitudinal volume flux,

Qa, is derived from the streamwise velocity profile at the

corresponding crosswise x/D locations. The results are

given in Fig. 21, where the ratio Qr = Qa is displayed

versus x/D for different Reynolds numbers. The ratio,

which in case of perfect balance should be equal to one, as

from Eq. (5), shows large oscillations with some indication

that for x/D \ 2.5 it is Qa [ Qr, whereas for x/D [ 2.5 is

Qr [ Qa. Even if error bars are very large, this trend seems

to increase with increasing Reynolds number. This means
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that the average balance between axial and radial flow rates

shows a defect of radial rate for x/D \ 2.5 and an over-

estimate for x/D [ 2.5, which is in agreement with obser-

vations from Figs. 17 and 18. Close to the jet outlet, there

is a positive radial flow rate (toward the external part of the

jet) balanced by a slight reduction in the axial flow rate. On

the other hand, far from the jet, there is a negative radial

flow (inward, corresponding to a positive entrainment)

balanced by an increase in the axial flow. While the second

of these results is well known, the first clearly build on the

simple result for the potential core in which the radial flow

rate is simply zero with a constant axial rate. In any case,

the results displayed in Fig. 21 confirm that the main

hypothesis used to derive the models presented in Sect. 2 is

quite closely satisfied from the present data.

7 Conclusions

The present work focuses on the effect of Reynolds number

on the relation between primary and secondary structures

developing in a fully developed turbulent pipe jet and in

particular on the effects on entrainment rate.

The results on the axial plane confirm those obtained by

other authors, showing that potential core extension

increases with Reynolds number, whereas rms of velocity

components decreases according to a Reynolds number

power law of -0.25.

Simple analytical models for radial velocity and

entrainment rate, derived in Sect. 2, are compared to

experimental data in Fig. 18.

Models agreement to data is rather poor for radial

velocity, whereas entrainment rate curve is better pre-

dicted, in particular by Model B for Re [ 14,500 and

H [ 1. This considered, it is important to stress that model

B predictions of positive radial velocity and negative

entrainment rate for H \ 1 and Re \ 10,000 and model A

predictions of positive entrainment rate for H \ 1 for

Re [ 10,000 are correctly recovered by data.

Velocity correlation results suggest a link between the

size of transverse secondary vortical structures and their

mixing efficiency.

The previous indications confirm that the dependence on

Reynolds number of the near field axisymmetric jet sta-

tistics descending from both longitudinal and transverse

phenomena is high for values lower than 10,000, suggest-

ing an asymptotic behavior for larger Reynolds numbers.
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