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Abstract We demonstrate a three-step method for esti-

mating time-resolved velocity fields using time-resolved

point measurements and non-time-resolved particle image

velocimetry data. A variant of linear stochastic estimation

is used to obtain an initial set of time-resolved estimates of

the flow field. These estimates are then used to identify a

linear model of the flow dynamics. The model is incor-

porated into a Kalman smoother, which provides an

improved set of estimates. We verify this method with an

experimental study of the wake behind an elliptical-lead-

ing-edge flat plate at a thickness Reynolds number of

3,600. We find that, for this particular flow, the Kalman

smoother estimates are more accurate and more robust to

noise than the initial, stochastic estimates. Consequently,

dynamic mode decomposition more accurately identifies

coherent structures in the flow when applied to the Kalman

smoother estimates. Causal implementations of the esti-

mators, which are necessary for flow control, are also

investigated. Similar outcomes are observed, with model-

based estimation outperforming stochastic estimation,

though the advantages are less pronounced.

1 Introduction

Knowledge of the full velocity field can be of great use in

identifying and visualizing spatial structures in a flow. For

instance, proper orthogonal decomposition (POD) can be

used to identify structures with high-energy content

(Lumley 1967). However, the data must be time-resolved

in order to elucidate the full dynamics of the flow. Cer-

tainly, if the data do not resolve the time scales of interest,

then the corresponding behaviors will not be captured. If

time-resolved velocity fields are available, structures of

dynamical importance can be identified using methods

such as balanced proper orthogonal decomposition (BPOD)

and dynamic mode decomposition (DMD) (Rowley 2005;

Rowley et al. 2009; Schmid 2010). Time-resolved, full-

field information is also helpful in forming reduced-order

models for closed-loop flow control, or for simply visual-

izing a flow. Unfortunately, time-resolved velocity fields

are difficult to obtain.

Particle image velocimetry (PIV) is the standard tech-

nique for measuring velocity fields (‘‘snapshots’’ of a flow),

but time-resolved PIV (TRPIV) systems are costly and thus

uncommon. In addition, such systems are often restricted to

low-speed flows due to the larger time interval needed

between snapshots when using a high-speed laser. The

required sampling rates can also limit the spatial extent of

the data that can be captured (Tinney et al. 2006). As such,

typical PIV systems are not time-resolved and as a result

are often incapable of resolving the characteristic fre-

quencies of a flow.
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On the other hand, many instruments exist for capturing

time-resolved ‘‘point’’ measurements, including hot-wire

probes and unsteady pressure sensors. Arrays of such

instruments can be used to take measurements that span

large spatial regions, but these data may not resolve all the

spatial scales of interest. The dense arrays necessary to

capture small-scale structures are often too intrusive, and

any measurement is limited by spatial averaging on the

scale of the sensor’s size. Furthermore, point measurements

can be sensitive to the placement of the instrument, which

is generally predetermined.

In this work, we demonstrate a three-step method that

integrates time-resolved point measurements of velocity,

non-time-resolved PIV snapshots, and a dynamic model to

estimate the time evolution of a velocity field. As we only

wish to resolve the dominant coherent structures, we use

POD to obtain a low-order description of the flow. First, a

variant of linear stochastic estimation (LSE) is used to

compute an initial set of time-resolved estimates of the

velocity field. We then form a model of the flow physics by

combining an analytic characterization of the flow with a

stochastic one identified from the initial estimates. The

resulting model is used as the basis for a dynamic estimator

called a Kalman smoother, with which a second set of

estimates is computed.

Whereas the initial LSE estimates are determined by the

point measurements alone, the Kalman smoother also

incorporates the non-time-resolved PIV snapshots. These

two sets of measurements are used to correct an internal,

model-based prediction of the estimate. The dynamics of

the model prevent the Kalman smoother estimates from

evolving on time scales that are fast with respect to the flow

physics, filtering out measurement noise. Thus, we can

leverage knowledge of the flow physics and a non-time-

resolved description of the velocity field to obtain a more

accurate and robust set of estimates.

In many ways, this work builds on that of Murray and

Ukeiley (2007b), Taylor and Glauser (2004), and Tinney

et al. (2008) (among others), who all used LSE-based

methods to estimate the time evolution of a flow field. The

key difference between our approach and those based

solely on LSE is our use of a dynamic model. LSE is a

conditional technique for capturing those features of the

flow that are correlated with a measurement signal, and

does not rely on, nor provide, a model of the flow physics.

Our approach also differs from the recent work by Legrand

et al. (2011a, b), in which a phase-averaged description of

a velocity field is obtained directly from a large ensemble

of PIV data. Theirs is a post-processing technique that does

not make use of any other measurement signal.

As a proof of concept, we apply this method in a bluff-

body wake experiment. A finite-thickness flat plate with an

elliptical leading edge and blunt trailing edge is placed in a

uniform flow, resulting in oscillatory wake dynamics. We

collect TRPIV snapshots, from which we extract the

velocity at a single point in the wake, simulating a probe

signal. POD modes are computed from the TRPIV data,

and a set of basis modes is chosen for approximating the

flow field. The TRPIV snapshots are then downsampled (in

time), and these non-time-resolved data are fed to the

dynamic estimator along with the time-resolved probe

signal. This generates an estimated, time-resolved trajec-

tory for each POD mode coefficient.

The estimation error is quantified using the original

TRPIV data, with the following analysis applied to both

the initial LSE estimates and the Kalman smoother esti-

mates. For each TRPIV snapshot, we compute the differ-

ence between the estimated POD representation of the

velocity field and its projection onto the POD basis. The

kinetic energy contained in this difference is then calcu-

lated. We collect the values and find the mean value of the

error energy and its distribution. This procedure is then

repeated with various levels of artificial noise injected into

the probe signal, in order to test each method’s sensitivity

to noise. Finally, the estimated flow fields are used to

compute DMD modes, testing whether or not the estimates

are accurate enough to identify the oscillatory structures in

the flow.

This demonstrates the value of our method in post-

processing analysis, as DMD would not be possible without

time-resolved estimates of the velocity field. Previous work

has shown that dynamic estimators and reduced-order

models can also be useful in flow control applications.

Gerhard et al. (2003) reduced wake oscillations in simu-

lations of the flow over a circular cylinder using a dynamic

estimator and a low-dimensional Galerkin model. Li and

Aubry (2003) and Protas (2004) achieved similar results

using low-order vortex models. Pastoor et al. (2008) used a

vortex model to describe the wake behind a D-shaped body

(similar to the one analyzed in this work), successfully

stabilizing it in experiment using both open- and closed-

loop control. In that work, a Kalman filter was applied to

dynamically estimate the base pressure fluctuations for

vortex shedding synchronization. While the focus of our

work is reduced-order estimation and not feedback control,

we note that our method can easily be modified for flow

control purposes.

The rest of this paper is structured as follows: Sect. 2

provides a brief introduction to the theory of stochastic and

dynamic estimation. These estimation techniques are

implemented using the numerical methods detailed in Sect.

3 and demonstrated using the experiment described in Sect.

4 The results of this experiment are discussed in Sect. 5,

and conclusions drawn therefrom are presented in Sect. 6.
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2 Background

2.1 Stochastic estimation

In many instances, we may wish to estimate the value of an

event based on the value of another one. Suppose we would

like to use the velocity measurement at one point in a flow,

uðxÞ; to estimate the velocity at another point, uðx0Þ: The

conditional average

ûðx0Þ ¼ huðx0ÞjuðxÞi ð1Þ

provides the expected value of uðx0Þ given the measure-

ment uðxÞ; which is the least-mean-square estimate of uðx0Þ
(Papoulis 1984).

We can estimate the conditional average by measuring

uðx0Þ repeatedly and averaging over those values that occur

whenever uðxÞ is near a nominal value u�ðxÞ (Guezennec

1989). Adrian (1977) introduced stochastic estimation to

the turbulence community, approximating the conditional

average with the power series

huiðx0ÞjuiðxÞi � Aijðx0ÞujðxÞ þ Bijkðx0ÞujðxÞukðxÞ þ . . . ;

ð2Þ

where summation over repeated indices is implied. In the

case of LSE, only the linear coefficients Aij are retained.

These can be computed from the two-point, second-order

correlation tensor Rij(x
0) (Adrian 1994).

Similar procedures exist for higher-order estimates,

making use of higher-order two-point correlations. While

Tung and Adrian (1980) found that higher-order estimation

procedures did not provide much additional accuracy, later

studies showed that this is not always the case. For

instance, quadratic estimation can be more effective when

the estimation of a given quantity (e.g., velocity) is based

on the measurement of another (e.g., pressure) (Naguib

et al. 2001; Murray and Ukeiley 2003).

Other studies achieved improved performance by

accounting for time delays between the conditional and

unconditional variables (Guezennec 1989). Ewing and

Citriniti (1999) developed a multi-time LSE technique in

the frequency domain that was a significant improvement

over single-time LSE. This multi-time formulation also

incorporated global analysis tools, namely POD, that

yielded low-dimensional representations of the turbulent

jets being studied. The multi-time approach was later

translated into the time domain and used to predict future

pressure values from past measurements (Ukeiley et al.

2008). Durgesh and Naughton (2010) demonstrated the

existence of an optimal range of delays when they esti-

mated the POD mode coefficients of a bluff-body wake in a

non-causal, post-processing fashion.

We note that the stochastic estimation of POD coeffi-

cients from measurements is typically referred to as

modified LSE (mLSE), or more recently, modified linear

stochastic measurement. The latter name is used to

distinguish this as a measurement estimation as opposed to

a plant estimation, which would be typical from a controls

perspective (Glauser et al. 2004). In this work, we use the

term ‘‘LSE’’ as it is more prevalent in the literature.

It is important to note that stochastic estimation does

not involve any modeling of a system’s dynamics. Rather,

it simply provides a statistical estimate of a random var-

iable given the knowledge of other random variables

(Adrian 1994). We can think of stochastic estimation as a

static mapping, computed using a pre-existing dataset,

that yields the most statistically likely value of some

unknown (conditional) variable, given some other mea-

sured (unconditional) data. For a fluid flow, such a

method can produce visual representations of the flow

field, but cannot suggest, without further analysis, what

events should be observed or how they might be related to

the underlying flow physics (Cole et al. 1992). Further-

more, in LSE, the estimated values will lie in a subspace

whose dimension is limited to the number of conditions.

This is especially important when using a small number of

measurements to predict a high-dimensional variable, such

as a velocity field. Depending on the application, it can

be either a limitation or an advantage, unnecessarily

restricting the estimates or capturing only the features of

interest. The use of a static map can also lead to

uniqueness issues, as a particular measurement value will

always yield the same estimate. For instance, a pressure

sensor may measure the same value at two points in time,

leading to identical estimates, even though the corre-

sponding velocity fields are different. Increasing the

number of sensors can decrease the likelihood of this

happening but is not always feasible.

2.2 Dynamic estimation

Dynamic estimators are a foundational topic in control

theory. They estimate a system’s state using a model of its

dynamics along with real-time measurement updates. The

measurement updates are used to correct the trajectory of

the model, which will drift from the true trajectory due to

parameter uncertainty, unmodeled dynamics, and external

disturbances (process noise). This is in contrast to static

estimation techniques, including stochastic estimation,

which use a fixed relationship to estimate the system state

from a set of measurements. Such an approach does not

take advantage of the fact that the equations governing a

system’s evolution are often known.

In this work, we focus on the Kalman filter and

smoother, both standard subjects in the study of estimation.

(For a more in-depth discussion, see any standard text on

estimation, for instance the book by Simon 2006.) Suppose
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we are interested in the evolution of a system described by

a linear model

n
k
¼ Fn

k�1
þ dk�1 n 2 R

Ns

g
k
¼ Hknk

þ nk g 2 R
No ;

ð3Þ

where n is a vector of Ns state variables, g is a vector of No

measurements of the state, d represents process noise, and

n represents sensor noise. At any given iteration k, we

assume that we can observe the measurement g
k
: From this,

we would like to estimate the value of n
k
; which is

otherwise unknown.

The dimension of g may be smaller than that of n;

meaning that even without sensor noise, the matrix H

relating the two may not be invertible. However, if the

system is observable, we can use a knowledge of the sys-

tem dynamics F and the time history of g to produce an

estimate n̂ that converges, in the case of no noise, to the

true value n: In the presence of noise, the Kalman filter will

minimize the expected value of the error

n
k
� n̂

k

� �T

n
k
� n̂

k

� �
:

The Kalman filter is a causal filter, meaning that only

measurements made up to and including iteration k are

available in forming the estimate n̂
k
: In some situations, we

may also have access to measurements occurring after

iteration k, for instance in a post-processing application.

We can use that information to improve our estimate of n
k
:

This yields a non-causal filter, generally referred to as a

smoother. In this work, we use a variant of the Kalman

smoother developed by Rauch, Tung, and Striebel, known

as the RTS smoother (cf., Simon 2006). The RTS smoother

is a fixed-interval smoother, meaning that all measurements

taken over a fixed time interval are used to estimate the state

evolution within that interval. Algorithmically, it consists of

a forward pass with a Kalman filter followed by a backward,

smoothing pass. The specifics of the Kalman filter and RTS

smoother algorithms are described in Sect. 3.3

3 Numerical methods

In this section, we detail the various numerical methods

used in our estimation procedure. These methods include

modal decomposition techniques (used for approximating

the flow field and investigating flow physics), stochastic

estimation techniques, and dynamic estimation techniques.

We also provide a summary of our three-step dynamic

estimation procedure, laying out how the numerical

methods listed above are used to form a dynamic estimator

for experimental applications.

3.1 Modal analysis

3.1.1 Proper orthogonal decomposition (POD)

POD, also known as principal component analysis or

Karhunen-Loeve analysis, is a data analysis method that

identifies the dominant structures in a dataset (Lumley

1967; Sirovich 1987a; Holmes et al. 1996). More precisely,

suppose we wish to project the dataset fn
k
gm

k¼0 onto an

r-dimensional subspace. Let Pr be the corresponding pro-

jection operator. Then the first r POD modes form the

orthogonal basis that minimizes the sum-squared error

Xm

k¼0

n
k
� Prnk

�� ��2
:

As such, POD modes are naturally ordered, with a smaller

mode index indicating a larger contribution to the accuracy

of the projection.

When analyzing an incompressible fluid flow, we gen-

erally take the data elements to be mean-subtracted

velocity fields at given instants in time. That is, we let

n
k
¼ u0k ¼ u0ðtkÞ: These elements are commonly referred to

as ‘‘snapshots.’’ In this work, the snapshots are collected

experimentally using PIV.

POD modes can be computed efficiently using the

‘‘method of snapshots’’ (Sirovich 1987a). Each velocity

field is discretized and reshaped into a one-dimensional

vector, and then stacked in a data matrix

X ¼ u00 u01 � � � u0m

2
4

3
5: ð4Þ

The diagonalization of the correlation matrix XTMX is

then computed, satisfying

XT MX ¼ WRWT ; ð5Þ

where M is a matrix of inner product weights. (This

matrix typically contains grid weights, for instance the

scaled identity matrix I dx dy.) The inclusion of M allows

us to interpret the vector norm as the integrated kinetic

energy:

u0k
�� ��2¼ ðu0kÞ

T
Mu0k ¼

ZZ �
u0ðx; y; tkÞ2 þ v0ðx; y; tkÞ2

�
dxdy:

(We note that in this work, we measure only two compo-

nents of velocity.)

The POD mode /
j

is then given by the j ? 1th column

of the matrix

U ¼ XWR�1=2: ð6Þ

(In this work, we start our indexing from zero, and as such,

the ‘‘first’’ mode corresponds to j = 0, the ‘‘second’’ to
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j = 1, and so on.) The modes form an orthonormal set,

satisfying the identity

/T

j
M/

i
¼ dij; ð7Þ

where dij is the Kronecker delta function. As such, the

projection of a snapshot u0k onto the first r POD modes is

given by

Pru
0
k ¼ Urak; ð8Þ

where Ur contains only the first r columns of U; and

ak ¼ UT
r Mu0k: ð9Þ

We refer to ak as the vector of POD coefficients

corresponding to the snapshot u0k: For a spatially discretized

velocity field, the dimension of a POD mode /
j
is twice the

number of grid points (again assuming we only consider

two components of velocity). In contrast, ak has only

dimension r.

We observe that due to the orthogonality of the POD

modes (Eq. 7), the energy in any POD approximation of a

velocity field is simply given by

Pru
0
k

�� ��2¼ aT
k UT

r MUrak ¼ aT
k ak ¼ kakk

2
2: ð10Þ

The kinetic energy captured by the projection itself can be

computed as

Xm

k¼0

kPrnk
k2 ¼

Xr�1

j¼0

rj; ð11Þ

where the values rj are the singular values lying on the

diagonal of R: If all of the singular values in R are included

in the right-hand sum, then the above equation yields the

maximum possible energy that can be captured by a POD

projection.

We emphasize that the first r POD modes form the

orthonormal basis that best captures the kinetic energy in a

set of velocity fields. For estimation purposes, we would

like to approximate the true velocity field as accurately as

possible, so POD modes are a natural choice of basis

vectors. However, we note that for flow control applica-

tions, other bases may be more suitable, as high-energy

modes may not always capture the input-output behavior of

a system well (Ilak and Rowley 2008). In these cases,

control-oriented methods such as balanced POD (Rowley

2005) or the eigensystem realization algorithm (ERA) (Ma

et al. 2011) may be advantageous.

3.1.2 Dynamic mode decomposition (DMD)

DMD is a snapshot-based method that identifies oscillatory

structures in a flow based on their frequency content

(Schmid 2010). This is in contrast to POD, which identifies

modes based on their energy content. When a temporal (as

opposed to spatial) analysis is performed, these structures

can be interpreted in terms of Koopman operator theory

(Rowley et al. 2009). For a wake flow that exhibits clear

oscillatory behavior, it is natural to apply DMD when

trying to identify coherent structures. This is commonly

done in numerical studies, but can be difficult in experi-

ments because DMD requires snapshots to be collected at a

rate that satisfies the Nyquist sampling criterion. In this

work, we use DMD as a benchmark for the accuracy of our

method, comparing estimate-based DMD computations

with those done using TRPIV data.

To compute the DMD modes from a set of velocity fields

fukg
m
k¼0; where again uk ¼ uðtkÞ; we form the data matrices

K ¼ u0 � � � um�1

2
4

3
5; K 0 ¼ u1 � � � um

2
4

3
5: ð12Þ

(Note that for DMD, in general the mean is not subtracted

from the dataset.)

We then compute the singular value decomposition

(SVD) K ¼ URWT using the method of snapshots, taking

advantage of the equivalence of left singular vectors (col-

umns of U) and POD modes:

KT MK ¼ WR2WT

U ¼ KWR�1;
ð13Þ

where M is again a matrix of inner product weights (see the

discussion of POD above). These matrices are used to solve

the eigenvalue problem

ðUT MK 0WR�1ÞV ¼ VK; ð14Þ

where the columns of V and diagonal elements of K
are the eigenvectors and eigenvalues, respectively, of

UT MK 0WR�1:

The DMD mode w
j

is then given by the j ? 1th column

of the matrix

W ¼ UV ; ð15Þ

scaled such that

Xm�1

j¼0

w
j
¼ u0:

With this scaling, the DMD modes are related to the

original snapshots by the equations

uk ¼
Xm�1

j¼0

kk
j wj

k ¼ 0; . . .;m� 1 ð16Þ

um ¼
Xm�1

j¼0

km
j w

j
þ � � ? spanfw

j
gm�1

j¼0 ; ð17Þ
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where the values kj are the eigenvalues lying on the diag-

onal of K: Each of these eigenvalues is associated with a

particular DMD mode w
j
; giving each mode an associated

growth rate kkjk and oscillation frequency argðkjÞ:

3.2 Modified stochastic estimation

Stochastic estimation is a means of approximating a con-

ditional average using a knowledge of unconditional sta-

tistics. Adrian and Moin (1988) proposed a stochastic

estimate of the conditional average by means of a Taylor

series expansion

âiðtÞ ¼ haiðtÞjpjðtÞi � AijpjðtÞ þ BijkpjðtÞpkðtÞ þ . . .; ð18Þ

where ai is the ith POD coefficient, pj is the jth probe

measurement, h�i is the expected value, and âi is the

estimate of the conditional average. The stochastic

estimation coefficients Aij, Bijk, and so on are determined

by minimizing the mean square error of the estimate

hðâiðtÞ � aiðtÞÞ2i;

which requires solving a set of linear equations (Guezennec

1989). (We note that in some situations, for instance in the

case of periodic flows, additional assumptions may be nec-

essary to uniquely determine the estimation coefficients.)

The particular form of stochastic estimation given in Eq.

(18), in which the time-varying POD coefficient is the

conditional variable, is referred to as modified stochastic

estimation. This approach can be more favorable than

estimating a full PIV velocity field, typically consisting of

thousands of data points, because the dominant behavior of

many flows can be captured by a handful of POD modes.

The estimated POD coefficients, paired with the corre-

sponding modes, yield low-dimensional estimates of

velocity fields.

Modified stochastic estimation has been applied by

Bonnet et al. (1994) and Taylor and Glauser (2004) for

linear estimates, Naguib et al. (2001) and Murray and

Ukeiley (2007a) for quadratic stochastic estimation, and

Durgesh and Naughton (2010) for linear estimates using

time delays. In this work, we take the same low-dimen-

sional approach to stochastic estimation, first using it to

obtain initial estimates of time-resolved POD coefficients

from non-time-resolved PIV measurements and time-

resolved point measurements. Based on these initial esti-

mates, it is then used again to estimate model parameters

that are later used as part of a dynamic estimator.

3.2.1 Single-time-delay modified linear stochastic

estimation

In mLSE, only the linear term in Eq. (18) is retained. Then

given the value of the probe measurements, the estimate is

âiðtÞ ¼ Aijpjðt � sÞ; ð19Þ

where a constant time delay s is introduced to account for a

potential lead or lag between the conditional and

unconditional variables. This increases the correlations

between aðtÞ and pðtÞ for some systems (Guezennec 1989;

Cole et al. 1992; Schlegel et al. 2012). To calculate the

coefficients Aij, the mean-square error of the estimates

must be minimized, which requires solving the equation

AT ¼ PP½ ��1
aP½ �; ð20Þ

where

AT ¼

A1;i

A2;i

..

.

ANp;i

2
66664

3
77775
; PP½ � ¼

p1p1 p1p2 � � � p1pNp

p2p1 p2p2 � � � p2pNp

..

. ..
. . .

. ..
.

pNp
p1 pNp

p2 � � � pNp
pNp

2
666664

3
777775
;and

aP½ � ¼

aip1

aip2

..

.

aipNp

2
66664

3
77775
:

(Np is the number of probe measurements; time depen-

dence in the above equations is neglected for brevity.)

3.2.2 Multi-time-delay modified linear stochastic

estimation (MTD-mLSE)

Equation (19) is the ‘‘single time’’ form of mLSE. How-

ever, a single delay may increase the correlation between

certain pairings of the unconditional and conditional vari-

ables but not others. In general, we can account for mul-

tiple time delays, summing the correlations over several

values of s (Ukeiley et al. 2008; Durgesh and Naughton

2010):

âiðtÞ ¼ Aijkpjðt � skÞ: ð21Þ

The use of multiple time delays, rather than a single one, is

advantageous if the exact time delay is not optimal for all

pairings, unknown, or not resolved well enough in time.

Multi-time-delay mLSE (MTD-mLSE) has been developed

for purely negative time delays, requiring only past data

(Ukeiley et al. 2008), as well as for two-sided delays that

also use future data (Durgesh and Naughton 2010).

The latter method is applied in this work to estimate the

time-dependent POD coefficients aðtÞ and is hereafter

referred to as MTD-mLSE, unless distinguished as the

purely negative delay version. While using both past and

future data may strengthen correlations, it comes at the cost

of yielding a non-causal process. As such, two-sided MTD-

mLSE cannot be used in real-time estimation or flow
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control applications. For a derivation of the MTD-mLSE

algorithm, we refer the reader to Durgesh and Naughton

(2010).

We note that Eqs. (19) and (21) provide static maps

from the measurement pðtÞ to the estimate âðtÞ: When

computing the coefficients Aij and Aijk, we make sure to

average over large datasets, mitigating the effects of sensor

noise. However, in using those coefficients to compute an

estimate, the static map will respond directly to the probe

measurements (without averaging), making the estimates

sensitive to noise. The use of a multi-time-delay formula-

tion may increase robustness to sensor noise, but cannot

completely overcome this inherent limitation of static

estimators.

3.3 Dynamic estimation

3.3.1 Model identification

Our goal is to use a dynamic estimator to estimate the state

of a bluff-body wake experiment. We assume that a time-

resolved velocity probe signal is available, as well as PIV

velocity fields captured at a slower, non-time-resolved

sampling frequency. To implement a dynamic estimator,

we need a model for the time evolution of the system. A

high-fidelity numerical discretization of the Navier-Stokes

equation is far too computationally intensive for this pur-

pose, and would in any case be difficult to match to the

experiment. As such, we develop an empirically derived,

low-order model. We focus on POD-based models, as the

first r POD modes optimally capture the kinetic energy

contained in a set of snapshots, for any model order r.

From a large, statistically independent ensemble of PIV

snapshots, we can compute a single set of well-converged

POD modes. For the model identification procedure, we

assume only non-time-resolved data are available. (See

Sect. 4.3 for a detailed description of the particular dataset

used for this computation.) We fix a desired model order r

based on the energy content of the modes, which can be

determined from the POD eigenvalues. These r modes

form a basis for our low-order model.

Due to noise and low spatial resolution, methods such as

Galerkin projection can be difficult to apply when using

experimentally acquired velocity fields. As such we take a

stochastic approach in identifying a dynamic model. First,

we collect a set of non-time-resolved PIV snapshots syn-

chronously with a time-resolved probe signal. The PIV data

are projected onto the POD basis to get a non-time-resolved

set of POD coefficients faNpsk
g; where Nps is the ratio of the

probe and PIV sampling rates. (We note that here, the

notation ak denotes a vector of POD coefficients corre-

sponding to a time tk, not to be confused with the previous

use of ai to denote the ith element of a:) These coefficients

are used along with synchronous probe measurements as

‘‘training data’’ to calculate the linear coefficients for

MTD-mLSE, as described above in Sect. 3.2 The MTD-

mLSE coefficients are then applied to the full, time-

resolved probe signal, providing a set of time-resolved

estimates of the POD coefficients, fâkg:
We then apply LSE to these vectors, recalling that LSE

estimates the expected value of a conditional variable as a

linear function of an unconditional variable. If we take âk

to be the conditional variable and âk�1 to be the uncondi-

tional variable, then we can use LSE to identify a linear,

discrete-time dynamical map:

âk � hâkjâk�1i � FLSEâk�1: ð22Þ

So long as the MTD-mLSE estimates of the POD coeffi-

cients are accurate enough, then the resulting model will

capture enough of the true dynamics to be used as the basis

for a Kalman filter.

Finally, we note that it can be shown that the solution to

the above LSE problem is the same as the least-squares,

least-norm solution to the problem

B ¼ FLSEA;

where the columns of B are the vectors fâkg
m
k¼1 and the

columns of A are the vectors fâkg
m�1
k¼0 ; collected over all

runs. (The proof is simple and omitted here.) As such, FLSE

can be computed by simply taking the Moore-Penrose

pseudoinverse of A: However, the analogy to LSE pro-

vides an additional interpretation to the dynamics it

defines, as it provides a linear estimate of the most statis-

tically likely value of âk given a value of âk�1; according to

the ensemble defined by A and B: Based on this inter-

pretation, this modeling procedure can naturally be exten-

ded using quadratic stochastic estimation (QSE), or even

higher-order methods, for which there are no analogs to the

pseudoinverse.

The bluff-body wake studied in this work is dominated

by a Kármán vortex street. A computational study of a very

similar flow shows that this behavior is captured well by

the first two POD modes alone, which by virtue of their

similarity to the dominant DMD modes, have purely

oscillatory dynamics (Tu et al. 2011). To take advantage of

this knowledge in developing a model, we decouple the

dynamics into two parts: an analytic, oscillatory component

describing the Kármán vortex shedding, and a stochastic

component describing the dynamics of all the other POD

modes. This yields a system with dynamics

âk ¼
Fosc 0

0 FLSE

� �
âk�1; ð23Þ

where Fosc is a 2 9 2 matrix
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Fosc ¼ kre �kim

kim kre

� �
: ð24Þ

We choose k = kre ? ikim such that arg(k) is equal to the

shedding frequency (identified using an autospectrum of

the probe signal), and kkk is close to one, indicating nearly

perfectly oscillatory dynamics. (In practice we choose

kkk ¼ 0:999 to ensure stable dynamics.) The stochastic

dynamics FLSE are identified using the method discussed

above.

We note that in practice, the oscillatory dynamics can be

captured directly by the stochastic modeling procedure.

This negates the need for an a priori knowledge of the

dynamics. For more complex systems, this approach may

not suffice, though one could attempt to use more sophis-

ticated system identification tools, for instance the eigen-

system realization algorithm (ERA) (Juang and Pappa

1985), the auto-regressive Markov (ARMARKOV) algo-

rithm (Akers and Bernstein 1997; Hyland 1991), or

observer Kalman identification (OKID) (Juang et al. 1991;

Phan et al. 1993). However, we emphasize that the point of

dynamic estimation is to leverage knowledge of a system’s

dynamics to estimate its state. As such, the need for a

model should not be seen as a hindrance. If a model is not

available, this simply indicates that dynamic estimation

may not be an appropriate method for the task at hand.

3.3.2 Kalman filter

We use the procedure detailed in the preceding section to

model the bluff-body wake as a dynamical system

ak ¼ Fak�1 þ dk

g
k
¼ Hkak þ nk;

ð25Þ

where a is a vector of POD coefficients, g is some mea-

sured quantity, d is process noise, and n is sensor noise.

The matrix F is simply the block diagonal matrix given in

Eq. (23). The measurement matrix Hk can be varied

according to the timestep. At times when a non-time-

resolved PIV snapshot is available, we choose

Hk = I, allowing the system access to the POD coefficients

of that snapshot. Otherwise, we let Hk be a row vector

containing the vertical velocity of each POD mode at the

probe location. This makes g
k

a POD approximation of the

probe signal.

We assume that d and n are white, zero-mean, and

uncorrelated, with covariances Q and R: This yields the

equations

E½did
T
j � ¼ Qidij

E½nin
T
j � ¼ Ridij

E½din
T
j � ¼ 0:

Q and R are user-defined matrices, which we can consider

to be design parameters. Their relative magnitudes weigh

the relative accuracy of the model versus the sensor and

can be used to account for the effects of noise on the

system. If we have a very noisy sensor, we want to rely

more heavily on the model and make R large to penalize

the sensor noise. On the other hand, if we have an

inaccurate model, then we would do better by simply

following the sensor, and we increase Q to penalize process

noise. For this particular experiment, we let the covariances

Q and R vary in time according to which measurement is

available. A higher penalty is given to the noisy probe

signal, whereas the PIV data (when available) are assumed

to be very accurate.

We initialize the Kalman filter with the values

âþf ;0 ¼ E½a0�
Pþf ;0 ¼ E½ða0 � âþ0 Þða0 � âþ0 Þ

T �;

where P is the covariance of the estimation error. The filter

is then updated using the following equations, for k ¼
1; 2; . . . (Simon 2006):

P�f ;k ¼ FPþf ;k�1FT þ Qk�1 ð26Þ

Kf ;k ¼ Pþf ;kHT
kR�1

k ð27Þ

â�f ;k ¼ Fâþf ;k�1 ð28Þ

âþf ;k ¼ â�f ;k þKf ;k g
k
� Hkâ�f ;k

� �
ð29Þ

Pþf ;k ¼ I �Kf ;kHk

� �
P�f ;k: ð30Þ

3.3.3 Kalman smoother

The Kalman filter is a causal estimation technique, using

only past and current data in forming a state estimate. In a

pure post-processing application, we can make use of data

at future timesteps to further improve the estimate. Such

non-causal filters are referred to as smoothers. We focus

here on fixed-interval smoothing, in which data are avail-

able over a fixed interval (here, the duration of the exper-

iment). Specifically, we use a variant of the Kalman

smoother called the Rauch–Tung–Striebel (RTS) smoother.

RTS smoothing consists of a forward pass over the data

using a standard Kalman filter (as described above), fol-

lowed by a backward pass with the RTS smoother.

We assume that the data are available from timesteps 0

to Nt. After performing a forward pass with a Kalman filter,

the smoother is initialized with the values

âs;Nt
¼ âþf ;Nt

Ps;Nt
¼ Pþf ;Nt

:

We then interate over k ¼ Nt � 1; . . .; 1; 0 (Simon 2006):
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I�f ;kþ1 ¼ P�f ;kþ1

� ��1

ð31Þ

Ks;k ¼ Pþf ;kFTI�f ;kþ1 ð32Þ

Ps;k ¼ Pþf ;k �Ks;k P�f ;kþ1 �Ps;kþ1

� �
KT

s;k ð33Þ

âs;k ¼ âþf ;k þKs;k âs;kþ1 � â�f ;kþ1

� �
: ð34Þ

3.4 Dynamic estimator implementation

As depicted by the flow chart in Fig. 1, the goal in this work

is to leverage the spatial coverage of PIV data with the

temporal resolution of point measurements to improve the

accuracy of reduced-order flow field estimates. The esti-

mation procedure can be broken into three general tasks:

1. Compute an initial set of stochastic estimates.

(a) Collect PIV data synchronously with time-resolved

probe measurements. The PIV data need not be

time-resolved. From the PIV data, compute the

dominant POD modes, for instance using Eq. (11)

to select modes based on their energy content. This

yields a set of r basis vectors f/
j
gr�1

j¼0 ; to be used in

approximating the flow field.

(b) Project the PIV vector fields onto the selected

POD modes, yielding a non-time-resolved history

of the POD coefficients aðtNpskÞ; where Nps is the

ratio of probe and PIV sampling rates. Pair each

set of POD coefficients with its corresponding set

of probe measurements. Using the POD coeffi-

cients as the conditional data and a downsampled

subset of the probe measurements as the uncon-

ditional data, compute the coefficients in the

matrix A for MTD-mLSE.

(c) Apply the MTD-mLSE coefficients to the full set

of time-resolved probe data. This yields a time-

resolved estimate of the time history of the POD

coefficients, âðtkÞ:

2. Identify a model using the initial estimates.

Combine physical intuition with the initial, stochastic

estimates to form a dynamic model for the evolution of

the POD coefficients. For instance, the procedure

described in Sect. 3.3 can be used for suitable, well-

behaved, oscillatory wakes.

3. Compute an improved set of estimates using a model-

based dynamic estimator.

Use the dynamic model constructed above to imple-

ment a Kalman smoother. Apply the Kalman

smoother, using the time-resolved probe data and

non-time-resolved PIV velocity fields (when available)

as measurement updates. The time history of the

Kalman smoother’s state provides a time-resolved,

low-order estimate of the velocity field.

4 Experimental setup

4.1 Facility and instrumentation

We use TRPIV to measure the velocity in the near wake

behind a flat plate model with an elliptical leading edge and

Fig. 1 Flow chart of dynamic estimator implementation
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blunt trailing edge. The experiments are conducted in an

Aerolab wind tunnel at the University of Florida

Research and Engineering Education Facility. This open-

return, low-speed wind tunnel has a test section that mea-

sures 15.3 cm 9 15.3 cm 9 30.5 cm in height, width, and

length, respectively. The test section is preceded by an

aluminum honeycomb, an anti-turbulence mesh screen, and

a 9:1 area-contraction section. An upstream centrifugal fan,

driven by a variable frequency motor, controls the airspeed.

The test section velocity is set by referencing the static and

stagnation pressures from a Pitot-static tube placed at the

inlet of the test section. The pressure differential is read by

a Heise ST-2H pressure indicator with a 0–2 in-H2O dif-

ferential pressure transducer. For the experimental results

that follow, the leading edge of the model is placed a few

millimeters downstream of the test section entrance, as

seen in Fig. 2.

The two-dimensional flat plate model has a 4:1 (major

axis-to-minor axis) elliptical leading edge, transitioning to

a flat portion at the minor axis of the ellipse, and termi-

nating abruptly with a flat trailing edge. Unlike other two-

dimensional bluff bodies with similar wake dynamics (e.g.,

a cylinder), the lack of surface curvature at the trailing edge

simplifies the measurement of the near wake region. This

geometry allows the PIV laser sheet to illuminate the entire

region behind the trailing edge without mirrors or complex

laser alignment. The thickness-to-chord ratio is 7.1 %, with

a chord of 17.9 cm and a span of 15.2 cm. For this anal-

ysis, the freestream velocity U1 is set to 4.2 m/s, which

corresponds to a Reynolds number of 3,600 based on the

plate thickness h.

A Lee Laser 800-PIV/40G Nd:YAG system capable of

up to 40 W at 10 kHz is paired with appropriate optics to

generate a laser sheet for PIV measurements. As shown in

Fig. 2, the light sheet enters the test section through a clear

floor. The vertically oriented light sheet is aligned with the

midspan of the model and angled such that the rays of light

run parallel to the trailing edge without grazing the surface.

This alignment prevents unwanted, high-intensity surface

reflections and is necessary for well-illuminated flow near

the trailing edge, where particle densities can be low.

We image the seeded flow with an IDT MotionPro X3

camera and a 60 mm Nikon lens. The camera has a max-

imum resolution of 1,280 9 1,024 and a sampling rate of

500 Hz for integration of all pixels. A sampling frequency

of 800 Hz is achieved by reducing the number of pixels

captured for each image, such that the effective image

resolution is 600 9 1,024. The laser and cameras are

synchronized by a Dantec Dynamics PIV system running

Dantec Flow Manager software. The seeding for the free-

stream flow is produced by an ATI TDA-4B aerosol gen-

erator placed upstream of the tunnel inlet. The seed

material is olive oil, and the typical particle size is 1 lm.

LaVision DaVis 7.2 software is used to process the PIV

data, using the following procedure: first, local minimum-

intensity background frames are subtracted from the raw

image pairs. This step increases the contrast between the

bright particles and the illuminated background by reduc-

ing the influence of static background intensities and noise

bands. Then, surface regions and areas with poor particle

density are masked (ignored) before computing multigrid

cross-correlations. The processing consists of three passes

with 64 9 64 pixel2 interrogation windows and 75 %

overlap, followed by two refining passes with 32 9 32

pixel2 interrogation windows and 50 % overlap. In between

passes, outliers are reduced by applying a recursive spatial

outlier detection test (Westerweel 1994). The final vectors

are tested for outliers via the universal outlier spatial filter

Fig. 2 Schematic of experimental setup. A laser light sheet for PIV measurements illuminates the region behind the blunt trailing edge of a flat

plate model. A probe measurement of v0 is extracted from the TRPIV wake measurements at x/h = 2.24 and y/h = 0.48
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(Westerweel and Scarano 2005) and the multivariate out-

lier detection test (Griffin et al. 2010), an ensemble-based

technique. Holes or gaps left by vector post-processing,

which comprise less than 6 % of the total vectors over all

ensembles, are filled via gappy POD (Everson and Sirovich

1995; Murray and Ukeiley 2007a). The final spatial reso-

lution of the PIV measurements is approximately 8 % of

the trailing edge thickness.

4.2 Data acquisition

We acquire ten records of TRPIV images at a rate of

800 Hz. Each record is comprised of nearly 1,400

sequential image pairs. To obtain a coarsely sampled (in

time) set of velocity fields, we simply take a downsampled

subset of the original TRPIV data. This is intended to

mimic the capture rate of a standard PIV system, which for

many flows is not able to resolve all of the characteristic

time scales. Typical sampling rates for such commercially

available systems are on the order of 15 Hz. For the esti-

mation results that follow, one out of every 25 sequential

velocity fields is used for estimation, which corresponds to

a sampling rate of 32 Hz. The Nyquist frequency based on

this reduced sampling rate is 16 Hz and well below the

shedding frequency of about 90 Hz.

We also acquire a time-resolved probe signal by

extracting the vertical velocity v from a single point in the

TRPIV velocity fields. Because this probe originates from

within the velocity field, the probe data are acquired syn-

chronously with the coarsely sampled velocity fields, and

span the time intervals between them (Fig. 3). This simu-

lates the type of signal that would be measured by an in-

flow sensor like a hot-wire probe. However, in-flow probes

are intrusive and may interfere with attempts to take

simultaneous PIV measurements, in addition to potentially

disturbing the natural flow. Furthermore, such probes are

not feasible in real-world applications. To emulate a more

realistic flow control setup, other experiments similar to

this one have used non-intrusive, surface-mounted pressure

sensors to perform stochastic estimation (Durgesh and

Naughton 2010; Murray and Ukeiley 2007b), as well as

Kalman filter-based dynamic estimation (Pastoor et al.

2006, 2008). Based on their success, the methods devel-

oped here can likely be extended to work with surface-

mounted sensors as well.

The dynamic estimators in this work rely, at least par-

tially, on the correlation between point measurements and

the time-varying POD coefficients. As such, the time-

resolved probe measurements must correlate to structures

within the flow field in order for the estimation to work

properly. Consequently, the outcome of the estimation can

be sensitive to the placement of the sensors (Cole et al.

1992). Motivated by the work of Cohen et al. (2006), we

place our sensor at the node of a POD mode (see Fig. 2 for

the sensor location). In particular, we choose the point of

maximum v-velocity in the third POD mode (Fig. 6d), as a

heuristic analysis determined that the dynamics of this

mode were the most difficult to estimate.

4.3 Data partitioning

Here, we describe the division of the TRPIV data into two

partitions: one for implementation and the other for vali-

dation. The first partition consists of five TRPIV records

that we use to implement the estimation procedure

described in Sect. 3.4 We refer to these records as ‘‘training

sets.’’ The remaining five records are reserved for error

analysis and validation of the resulting dynamic estimator.

There are only two times when we make use of the full

TRPIV records. The first is in the POD computation, where

the time-resolved aspect of the records is actually not uti-

lized. The key assumption here is that the POD modes

computed from the time-resolved velocity fields are the

same as those generated from randomly sampled velocity

fields. This is valid in the limit of a large, statistically

independent snapshot ensemble. For the remainder of the

estimator implementation, we consider only the down-

sampled subset of the training sets. The second place that

we use time-resolved velocity fields is in our error analysis.

Here, we make use of the 800 Hz TRPIV data as a basis of

comparison for our estimates of the time-resolved velocity

field.

PIV snapshots

Probe signal

Time

Fig. 3 Cartoon of data acquisition method. Probe data is collected

synchronously with TRPIV snapshots. The TRPIV are downsampled

to get a non-time-resolved dataset (red). This subset of the TRPIV

data is used to develop static and dynamic estimators. Cartoon does

not depict actual sampling rates
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5 Results and discussion

The results of the experiment described in Sect. 4 are

discussed below. This discussion is broken into two main

parts. First, we analyze the dynamics of the wake flow,

using POD, DMD, and standard spectral analysis methods.

An effort is made to identify key characteristics of the

wake, including the dominant frequencies and any coherent

structures. In doing so, we allow ourselves access to the

TRPIV velocity fields, taken at 800 Hz.

Then the PIV data are downsampled, leaving snapshots

taken at only 32 Hz. These velocity fields are combined

with time-resolved point measurements of velocity (again

at 800 Hz) for use in estimating the time-resolved flow

field. We compare the results of MTD-mLSE on the POD

coefficients to those of dynamic estimation using a Kalman

smoother. As a proof of concept, we also investigate causal

implementations of the estimators, which are necessary for

flow control applications.

5.1 Wake characteristics

5.1.1 Global/modal analysis

At a thickness Reynolds number of Reh = 3,600, the wake

behind the flat plate displays a clear Kármán vortex street,

as seen in Fig. 4. POD analysis (of the first four training set

records, out of five total) shows that 79.6 % of the energy

in the flow is captured by the first two modes (Fig. 5). Each

subsequent mode contributes only a fraction more energy,

with the first seven modes containing 85.0 % in total. As

such, for the remainder of this analysis, we take these seven

modes as our POD basis. (Though seven modes are

required to accurately describe the state, wake stabilization

may be possible using fewer (Gerhard et al. 2003; King

et al. 2008).)

The structure of the dominant modes, illustrated in

Fig. 6b, c, demonstrates that they capture the dominant

vortex shedding behavior. The lower-energy modes also

contain coherent structures, though without further analy-

sis, their physical significance is unclear. All but the third

mode (Fig. 6d) resemble modes computed by Tu et al.

(2011) for a simulation of a similar flow. However, the

modes computed here are not all perfectly symmetric or
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Fig. 4 Instantaneous spanwise vorticity field computed from PIV

data (scaled by the ratio of the freestream velocity U1 to the plate

thickness h). A clear Kármán vortex street is observed
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Fig. 6 Spanwise vorticity of POD modes computed from TRPIV

fields. The modes are arranged in order of decreasing energy content.

Most resemble modes computed by Tu et al. (2011) in a computa-

tional study of a similar flow. a Mean flow; b, c dominant shedding

modes; d unfamiliar structure, with v-velocity probe location marked

by a ( ); e, g antisymmetric modes; f, h spatial harmonics of dominant

shedding modes
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antisymmetric, as might be expected (Deane et al. 1991;

Noack et al. 2003). While it is possible to enforce sym-

metry by expanding the snapshot ensemble (Sirovich

1987b), we choose not to do so, taking the lack of sym-

metry in the modes to indicate a possible lack of symmetry

in the experiment.

DMD analysis of the time-resolved velocity fields (from

the first training set record) reveals that the flow is in fact

dominated by a single frequency. The spectrum shown in

Fig. 7 has a clear peak at a Strouhal number Sth = 0.27

(based on U1 and h), with secondary peaks at the near-

superharmonic frequencies of 0.52 and 0.79. The dominant

frequency is in good agreement with that measured by

Durgesh and Naughton (2010). The corresponding DMD

modes (Fig. 8) show structures that resemble the POD

modes discussed above. Because DMD analysis provides a

frequency for every spatial structure, we can clearly iden-

tify the harmonic nature of the modes, with the modes in

Fig. 8a corresponding to the fundamental frequency, those

in Fig. 8b corresponding to its first superharmonic, and

those shown in Fig. 8c corresponding to its second

superharmonic.

Furthermore, because DMD identifies structures based

on their frequency content, rather than their energy content

(as POD does), these modes come in clean pairs. Both

DMD and POD identify similar structures for the dominant

shedding modes (Figs. 6b, c, 8a), but the superharmonic

pairs identified by DMD do not match as well with their

closest POD counterparts. For instance, the POD mode

shown in Fig. 6e closely resembles the DMD modes shown

in Fig. 8b, whereas the mode shown in Fig. 6g does not.

Similarly, Fig. 6h depicts a mode resembling those in

Fig. 8c, while Fig. 6f does not.

Interestingly, the third POD mode (Fig. 6d) is not

observed as a dominant DMD mode. This suggests that the

structures it contains are not purely oscillatory, or in other

words, that it has mixed frequency content. As such, its

dynamics are unknown a priori. This is in contrast to the

other modes, whose dynamics should be dominated by

oscillations at harmonics of the wake frequency, based on

their similarity to the DMD modes. This motivates our

placement of a velocity probe at the point of maximum

v-velocity in the third POD mode (Cohen et al. 2006), in an

effort to better capture its dynamics. This location is shown

in Figs. 2 and 6d.

5.1.2 Point measurements

Figure 9 shows a time trace of the probe signal collected in

the flat plate wake. We recall that there is no physical

velocity probe in the wake. Rather, we simulate a probe of

v-velocity by extracting its value from the TRPIV snap-

shots (see Figs. 2 or 6d for the probe location). Because

Fig. 7 DMD spectrum. Clear harmonic structure is observed, with a

dominant peak at Sth = 0.27, followed by superharmonic peaks at

0.52 and 0.79

(a) (b) (c)

Fig. 8 Spanwise vorticity of DMD modes computed from TRPIV

velocity fields. The real and imaginary components are shown in the

top and bottom rows, respectively. Note the similarity of these modes

to the POD modes depicted in Fig. 6. a Dominant shedding modes; b
temporally superharmonic modes, spatially antisymmetric; c further

superharmonic modes, spatial harmonics of dominant shedding modes
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PIV image correlations are both a spatial average across the

cross-correlation windows and a temporal average over the

time interval between image laser shots, PIV probe mea-

surements typically do not resolve the fine scale structures

of turbulence. To simulate a more realistic probe, Gaussian

white noise is artificially injected into this signal, at various

levels. We define the noise level c as the squared ratio of

the root-mean-square (RMS) value of the noise to the RMS

value of the fluctuating probe signal:

c ¼ n0RMS

v0RMS

	 
2

; ð35Þ

where the prime notation indicates a mean-subtracted

value. This noise level is the reciprocal of the traditional

signal-to-noise ratio. Note that the noise level only reflects

the amount of artificially added noise and does not take into

account any noise inherent in the velocity probe signal. We

consider six noise levels, ranging from 0.01 to 0.36, in

addition to the original signal (c = 0), focusing on the

extreme noise levels in the following discussion. Figure 9

shows a comparison of the original signal to artificially

noisy signals. We see that though the addition of noise

produces random fluctuations, the dominant oscillatory

behavior is always preserved.

A spectral analysis of the probe data, seen in Fig. 10,

confirms that the shedding frequency is still detected in the

presence of the artificially added noise. This is to be

expected, as the addition of white noise only adds to the

broadband spectrum. The dominant peaks in the auto-

spectra lie at Sth = 0.27, in agreement with the dominant

DMD frequency. This confirms our previous characteriza-

tion of the dominant DMD (and POD) modes as structures

capturing the dominant vortex shedding in the wake.

The autospectra also show clear harmonic structure,

again confirming the behavior seen in the DMD spectrum.

However, as the broadband noise levels increase, the third

and fourth harmonics of the wake frequency become less

prominent relative to the noise floor. This loss of harmonic

structure carries certain implications for estimation. Most

notable is that the fluctuations associated with these higher

harmonics do not correlate as strongly with the time-

varying POD coefficients. Consequently, the flow field

estimates based on the noisy probe signals may not capture

the corresponding harmonic structures as well. The inclu-

sion of noise is designed to be a test of estimator robust-

ness. Future work will apply the same general static and

dynamic estimators presented here, but with pressure and

shear stress sensors, which are inherently noisy (perhaps in

a non-Gaussian way).

5.2 Low-dimensional flow-field estimation

5.2.1 Optimal delay interval for MTD-mLSE

We find that with s� = 0, MTD-mLSE estimation of the

first two POD coefficients is poor, unless multiple probes

are used. Here, s� is the non-dimensional time delay,

defined as

s� ¼ sU1=h: ð36Þ

This follows the results of Durgesh and Naughton (2010),

who conducted a very similar bluff-body wake experiment.

The cause lies in the fact that there is often a phase dif-

ference between the probe signal and the time history of

one or more of the POD coefficients, decreasing the mag-

nitude of the LSE cross-correlations.

Durgesh and Naughton (2010) were able to significantly

improve their estimates by using MTD-mLSE, which

accounts for possible phase mismatches. For that reason,

we use the same method in this work. In this variant of

MTD-mLSE, to estimate the flow field at a given moment

0 5 10 15 20

−2

0

2

0 00
0 09
0 36

Fig. 9 Measurement of v0 taken in the wake at x/h = 2.24 and

y/h = 0.48, the point of maximum v in the third POD mode (Fig. 6d).

The values are extracted from the TRPIV snapshots. Noise is

artificially injected to simulate a physical velocity sensor, with the

noise level c defined in Eq. (35). In all cases, clear oscillatory

behavior is observed

Fig. 10 Autospectra of probe signals shown in Fig. 9. Clear

harmonic structure is observed, with a dominant peak at

Sth = 0.27, which agrees well with the dominant DMD frequency.

Superharmonic structure is also seen, again confirming behavior

observed using DMD analysis
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in time, we make use of probe data collected prior to that

moment, as well as after. That is, to estimate the flow field

at time t, we use probe data collected at times t ± sj, for a

range of delays sj satisfying

s�j � smaxU1=h: ð37Þ

Durgesh and Naughton (2010) demonstrated that an

optimum bound s�max exists for estimating the unknown POD

coefficients. In order to determine the optimal value, an

estimation error must be computed and evaluated. For the

present study, the flow field is approximated using the first

seven POD modes. The corresponding vector aðtkÞ of POD

coefficients encodes a low-dimensional representation of the

velocity field at time tk, with a corresponding kinetic energy

kaðtkÞk2
2 (Eq. 10). We wish to quantify the error between the

true coefficients ak and the estimated POD coefficients âðtkÞ:
One way to do so is to simply compute the kinetic energy

contained in the difference of the two corresponding

velocity fields. If we normalize by the mean kinetic energy

of the snapshot set, this gives us an error metric

eðtkÞ ¼
kâðtkÞ � aðtkÞk2

2

\kaðtkÞk2
2 [

¼
Pr

i¼1

h
âiðtkÞ � aiðtkÞ

i2

Pr
i¼1 \aiðtkÞ2 [

:

ð38Þ

This can be interpreted as the fraction of the mean kinetic

energy contained in the estimation error.

In finding the optimal delay interval for MTD-mLSE,

we use only downsampled PIV data (from the first four

training set records) to compute the MTD-mLSE coeffi-

cients. The estimation error is then evaluated by taking

another PIV record (the fifth training set record) and esti-

mating its POD coefficients fâkg: These other PIV velocity

fields are also projected onto the POD modes to get their

true coefficients fakg; which we then compare to the

estimated coefficients. The mean energy in the error e is

calculated from these coefficients for values of s� ranging

from 0 to 12. The results are plotted in Fig. 11.

The minimum value of e occurs for a delay interval with

s�max ¼ 2:48: However, we note that due to the shallow

valley around the minimum seen in Fig. 11, similar esti-

mator performance is expected for delays ranging between

1.7 and 3.0 (roughly). Note that the case of s�max = 0

empirically demonstrates that mLSE without any time

delay yields poor estimates in this experiment (as sug-

gested by theory).

5.2.2 Kalman smoother design

The model for the Kalman smoother is identified using the

method described in Sect. 3.3 We recall that this model

consists of two decoupled submodels. The first describes

the dynamics of the two dominant POD modes, which are

assumed to be oscillatory. Figure 10 shows autospectra

computed from the time-resolved probe data, which we use

to determine the oscillation frequency. The second sub-

model describes the dynamics of the remaining five modes

and is identified using the initial set of MTD-mLSE

estimates.

Once the model has been obtained, the Kalman

smoother is initialized with the values

âþf ;0 ¼ a0

Pþf ;0 ¼ 5I;

where I is the identity matrix. We assume that the initial set

of POD coefficients a0 is known, as this is a post-

processing application where the PIV data are available

at certain (non-time-resolved) instances. The noise

covariances are taken to be

Qk ¼

1 0

1

0:004

0:5

0 . .
.

2
66664

3
77775

and

Rk ¼ 2� 104 when only probe data are available

1� 10�10I when PIV data are available.

�

We heavily penalize the time-resolved velocity signal to

mitigate the effects of noise (large Rk), while the PIV data

are assumed to be very accurate relative to the model

(small Rk). In addition, the diagonal matrix Qk is designed

to account for the observation that the lower-energy POD

modes are more sensitive to noise in the probe signal, with

the third mode more sensitive than the rest.

5.2.3 Error analysis

We now compare the performance of two estimators: a

static MTD-mLSE estimator with an optimal time delay

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

Fig. 11 Mean energy in the MTD-mLSE estimation error, for various

symmetric time delay intervals. An optimal value of s�max is observed
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interval and a dynamic Kalman smoother, both described

above. We apply each estimator to five PIV records des-

ignated for estimator validation. (These records were not

used in any way in the development of the estimators.) The

estimates of the POD coefficients are evaluated using the

error metric e defined in Eq. (18).

The aggregate results are shown in Fig. 12. By defini-

tion, e is non-negative, giving it a positively skewed dis-

tribution. As such, the spread of these values is not

correctly described by a standard deviation, which applies

best to symmetric distributions. To account for this, the

error bars in Fig. 12 are adjusted for the skewness in the

distribution of e (Hubert and Vandervieren 2008). We

observe that for all noise levels, the mean error achieved

with a Kalman smoother is smaller than that of the MTD-

mLSE estimate. Furthermore, the rate of increase in the

mean error is slower for the Kalman smoother than for the

MTD-mLSE estimate, and the spread is smaller too. As

such, we conclude that not only does the Kalman smoother

produce more accurate estimates (in the mean), but it is

also more robust to noise.

This robustness comes in two forms. The first is that for

a given amount of noise in the signal, the expected value of

the estimation error has a wider distribution for MTD-

mLSE than for a Kalman smoother. Secondly, as the noise

level is increased, the MTD-mLSE estimation error

increases more rapidly, indicating a higher sensitivity to

the noise level. This is expected, as MTD-mLSE is a static

estimation method (as discussed in Sect. 3.2)

The time evolution of the estimates elucidates another

advantage of the dynamic estimator. Figure 13a compares

the true history of the second POD coefficient to the cor-

responding MTD-mLSE and Kalman smoother estimates,

for the worst-case noise level c = 0.36. We see that for

this particular mode, the Kalman smoother estimates are

generally more accurate, deviating less from the true

coefficient values. In particular, there is very little error

during the instances surrounding a PIV update. This is even

more obvious when we consider the evolution of e, which

incorporates the errors in all seven mode coefficients

(Fig. 13b). Here, we see that for the Kalman smoother

alone, local minima in the error line up with the availability

of PIV data, indicated by the dashed, vertical lines. (While

decreases in the stochastic estimation error sometimes line

up with PIV updates, this trend is not observed in general.)

This is not unexpected, as the stochastic estimates are

computed using only the probe signal. In contrast, the

Kalman smoother also assimilates PIV velocity fields when

they are available, driving the error to nearly zero at each

assimilation step. The effects of this improvement are felt

for many timesteps following and prior to the PIV update.

As such, it is clear that a driving factor in the improved

performance of the Kalman smoother is its ability to take

advantage of information that MTD-mLSE cannot, in the

form of infrequently available PIV velocity fields.

These results are further illustrated by comparing the

estimated vorticity fields, for both c = 0 and c = 0.36.

Figure 14 shows an instantaneous vorticity field and its

projection onto the first seven POD modes. (This particular

instance in time is denoted by square markers in Fig. 13.)

This projection is the optimal representation of the original

0 0.1 0.2 0.3
0

0.5

1

Non−causal MTD−mLSE
Kalman smoother

γ

e

Non−causal MTD−mLSE
Kalman smoother

Fig. 12 Mean and distribution of the energy in the estimation error,

for various levels of sensor noise (as defined in Eq. (38)). The error

energy is normalized with respect to the average energy contained in

the (mean-subtracted) velocity field. The Kalman smoother estimates

are both more accurate and less sensitive to noise

(a)

(b)

Fig. 13 a Time history of the second POD coefficient (j = 1), along

with the corresponding Kalman smoother and MTD-mLSE estimates;

b time history of the energy in the estimation error. The vertical,

dashed lines mark times when PIV data are available. The square

symbols mark the time instance depicted in Figs. 15 and 16. We

observe that the Kalman smoother estimates are more accurate

overall. Specifically, local minima in the error occur at instances of

PIV data assimilation. The MTD-mLSE estimates do not make use of

these data, and thus do not show the same general behavior

Page 16 of 20 Exp Fluids (2013) 54:1429

123



vorticity field using these POD modes. We observe that the

high-energy structures near the trailing edge are captured

well, while the far wake structures tend to be more

smoothed out. With no noise, the MTD-mLSE estimate of

the vorticity field (Fig. 15a) matches the projected snapshot

quite well. The spacing and shape of the high-energy

convecting structures in the Kármán vortex street are cor-

rectly identified. However, when the probe signal is con-

taminated by noise with c = 0.36, the estimated vorticity

field shown in Fig. 15b bears little resemblance to the

projection. In fact, the only structures that match are fea-

tures of the mean flow (Fig. 6a). Not only are the down-

stream structures captured poorly, but spurious structures

are also introduced. On the other hand, the Kalman

smoother estimates match the projected snapshot for both

clean and noisy probe data (Fig. 15c, d).

5.2.4 Estimation-based global/modal analysis

As a further investigation into the relative merits of MTD-

mLSE and Kalman smoother estimation, we use the esti-

mated velocity fields to perform DMD analysis. We recall

that DMD analysis requires that the Nyquist sampling

criterion is met, for which the sampling rate must be at

least double the highest frequency of interest. The DMD

modes from the true TRPIV data are shown in Figs. 7 and

8. The key results from the DMD analysis of the estimated

flow fields (for both the MTD-mLSE and Kalman smoother

estimates) are shown in Fig. 16. Only the minimum and

maximum noise levels are considered in this modal

analysis.

The fundamental frequency Sth = 0.27 is captured well

by estimation-based DMD for both estimators, for both

noise levels. The corresponding modes match as well, and

illustrations are therefore neglected. (Refer to Fig. 8a for

typical mode structures associated with Sth = 0.27.) For

the superharmonic frequencies, however, the estimation-

based DMD modes differ in structure, both among the

various estimation cases (across methods, for varying noise

levels) and in relation to the DMD modes computed

directly from TRPIV data (Fig. 8).

As seen in Fig. 16, both the MTD-mLSE and Kalman

smoother estimates capture the first superharmonic (Sth &
0.53) well when no noise is added to the probe signal.

However, the Kalman smoother–based mode more accu-

rately captures the expected antisymmetric distribution

seen in Fig. 8. When the noise level is increased to 0.36,

both of the estimate-based modes deviate from the corre-

sponding TRPIV-based mode, but less so for the Kalman

smoother. This is not unexpected, as the Kalman smoother

estimates are less sensitive to the addition of noise

(Fig. 12).

In contrast, both estimators perform poorly in capturing

the DMD mode corresponding to the second superhar-

monic (Sth & 0.79). Without any artificial noise, the MTD-

mLSE and Kalman smoother–based modes are similar to
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y
h

(a)

1 2 3 4
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1

x h

y
h

(b)Fig. 14 Comparison of

spanwise vorticity fields. a True

PIV snapshot; b projection onto

a seven-mode POD basis. The

first seven POD modes capture

the location and general extent

of the vortices in the wake, but

cannot resolve small-scale

features

(a) (b) (c) (d)

Fig. 15 Comparison of estimated spanwise vorticity fields. Without

noise, both the MTD-mLSE and Kalman smoother estimates match

the POD projection shown in Fig. 14b. The addition of noise to the

probe signal causes the MTD-mLSE estimate to change dramatically,

resulting in a large estimation error. In contrast, the Kalman smoother

estimate remains relatively unchanged. a MTD-mLSE with c = 0; b
MTD-mLSE with c = 0.36; c Kalman smoother with c = 0; d
Kalman smoother with c = 0.36

Exp Fluids (2013) 54:1429 Page 17 of 20

123



each other and bear some resemblance to the expected

mode shape. However, for c = 0.36, neither displays the

correct vorticity distribution nor captures the right fre-

quency. This decreased accuracy for higher harmonics is

not unexpected, as the corresponding fluctuations in the

probe signals correlate less and less with the POD coeffi-

cients as the noise floor increases.

We note that because our estimates are limited to a

subspace spanned by only seven POD modes, so are any

estimate-based DMD computations. That is, any behavior

not captured by the first seven POD modes will not be

captured by estimate-based DMD analysis either. Because

the dominant POD modes correspond to the highest-energy

structures, the estimate-based DMD analysis will also be

biased toward high-energy, and typically low-frequency,

fluctuations. In this work, we observe that the dominant

POD modes are quite similar to the dominant DMD modes.

As such, it is no surprise that estimate-based DMD com-

putations are successful in identifying the fundamental

shedding mode and its harmonics.

5.3 Causal implementation

The Kalman smoother and MTD-mLSE methods discussed

previously are non-causal, requiring future data to estimate

the state. This makes them unsuitable for applications that

require real-time estimates, such as estimation-based flow

control. However, both methods have clear causal coun-

terparts. We recall that the RTS Kalman smoother algo-

rithm consists of a forward, Kalman filter estimation

followed by a backward, smoothing correction. By simply

not performing the smoothing operation and limiting our-

selves to a Kalman filter, we can perform a causal, dynamic

estimation that integrates time-resolved point measure-

ments with non-time-resolved PIV snapshots. Similarly,

the MTD-mLSE coefficients can easily be computed using

one-sided delays only, eliminating the use of future data.

We note that in most applications, online processing of PIV

velocity fields is currently not feasible, due to computa-

tional limitations. However, such systems do exist, though

they are generally limited to acquisition rates on the order

of 10 Hz (Arik and Carr 1997; Yu et al. 2006). This makes

an accurate estimation procedure, which estimates the state

of the system between the slow PIV updates, even more

critical.

Figure 17 shows that overall, the causal implementations

are more error-prone than the non-causal ones (compare to

Fig. 12). However, the same trends are observed in com-

paring the dynamic and stochastic estimates: dynamic

estimation yields a lower mean error, a narrower error

distribution, and a slower increase in the error with respect

to c. As before, this is not surprising, as the dynamic esti-

mator make uses of not only the point measurements, but

also full-field PIV data (when available).

When no online PIV system is available, then the best

we can do is to estimate the state using the time-resolved

point measurements alone. Figure 18 shows that when a

Kalman filter is implemented without access to any PIV

information, the mean estimation error is nearly the same

as that of the MTD-mLSE estimator. For any particular

noise level, the distribution is smaller, but only marginally

so. The increase in error with respect to noise level is

(a) (b) (c) (d)

(f)(e) (g) (h)

Fig. 16 Estimation-based DMD modes. Computations of the first and

second superharmonic wake modes are shown on the top and bottom

rows, respectively. In general, the Kalman smoother results more

closely resemble those shown in Fig. 8. For both estimation methods,

using a noisier probe signal leads to poorer results. This is especially

pronounced for the second superharmonic mode. a MTD-mLSE with

c = 0; b MTD-mLSE with c = 0.36; c Kalman smoother with c = 0;

d Kalman smoother with c = 0.36; e MTD-mLSE with c = 0; f
MTD-mLSE with c = 0.36; g Kalman smoother with c = 0; h
Kalman smoother with c = 0.36
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comparable for both methods. As such, we can see that the

assimilation of PIV measurements provides a significant

benefit, even though it only occurs on relatively slow time

scales.

6 Conclusions and future work

The three-step estimation procedure presented here proves

to be effective in estimating the time-resolved velocity field

in a bluff-body wake. Rather than estimate the flow field

directly using MTD-mLSE, we use MTD-mLSE to aid in

identifying a stochastic model for the lower-energy struc-

tures in the flow. This stochastic model is then combined

with an analytic model of the dominant vortex shedding in

the wake. The result is used to implement a Kalman

smoother, whose estimates of the flow field are shown to be

more accurate and robust to noise than the stochastic

estimates used in the modeling process. A DMD analysis of

the Kalman smoother estimates identifies the same coher-

ent structures observed in an analysis of TRPIV data,

showing that the estimates correctly capture the oscillatory

dynamics of the flow. Similar trends are observed for a

Kalman filter implementation, which would be suitable for

flow control, whereas the Kalman smoother is limited to

post-processing applications.

A natural next step in this work is to apply the same

procedure at a higher Reynolds number, where the

dynamics are more complex. This will make model iden-

tification more difficult and may require approaches dif-

ferent from the one used in this work. If nonlinear models

are used, then more advanced filtering techniques (e.g.,

sigma-point Kalman filters) can be implemented as well.

Another direction to pursue is the use of surface sensors,

for instance measuring pressure or shear stress, to observe

the flow. Because they are (ideally) non-intrusive, they are

more practical for use in a flow control experiment than

velocity probes placed within the wake.
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