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Abstract An experimental study has been conducted on a

transitional water jet at a Reynolds number of Re = 5,000.

Flow fields have been obtained by means of time-resolved

tomographic particle image velocimetry capturing all rel-

evant spatial and temporal scales. The measured three-

dimensional flow fields have then been postprocessed by

the dynamic mode decomposition which identifies coherent

structures that contribute significantly to the dynamics of

the jet. Both temporal and spatial analyses have been

performed. Where the jet exhibits a primary axisymmetric

instability followed by a pairing of the vortex rings,

dominant dynamic modes have been extracted together

with their amplitude distribution. These modes represent a

basis for the low-dimensional description of the dominant

flow features.

1 Introduction

The description of dominant and coherent flow features and

their extraction from experimental data is the goal of many

scientific studies of fluid flow. Dominant coherent struc-

tures are defined as organized fluid elements that capture

the overall dynamics of the flow and are responsible for the

bulk of mass, momentum and energy transfer (Hussain

1986). Despite this attempt to describe coherence in fluid

flow, no definitive consensus has been reached, and various

notions, mostly based on statistical means, are in common

use (Antonia 1981). Descriptions by probability density

functions (Pope 1994) as well as spatial covariances are

among the more popular and successful classifications of

fluid elements and the importance of their role in the

overall flow dynamics.

As varied as the definition of coherence is the range of

numerical algorithms to extract pertinent information from

the flow. In experimental settings, conditional averaging

(biasing statistics toward specific events in the flow) as

well as quadrant analysis (evaluating the occurrence and

frequency of specific sign configurations in the velocity

fields) was among the early techniques to explore recurring

or persistent features of the flow. A less subjective tech-

nique is based on the spatial correlation tensor of the flow

whose eigenvalues decompose the flow into mutually

decorrelated structures. This technique, known as the

proper orthogonal decomposition (POD), reorders the flow

into a hierarchy of energy-weighted structures that opti-

mally capture the total kinetic energy of the flow when

used as a Galerkin basis (Aubry 1991; Berkooz et al. 1993;

Lumley 1970; Sirovich 1987). It still enjoys great popu-

larity among experimental and computational fluid

dynamicists, which is due to its versatility, its ease of

implementation and its convergence properties based on an

energy norm.

Computational fluid dynamicists faced the same issues

of coherent feature extraction when analyzing the flow

fields computed by direct numerical simulations or other

techniques. The wealth of data generated by simulations

had to be postprocessed to delineate the important dynamic
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structures from the incoherent, featureless noise. In con-

trast to experimentalists, however, they could rely on a set

of model equations that built the foundation of their sim-

ulations, and efficient algorithms could be developed that

exploited this fact. Among these algorithms, the Arnoldi

method (Greenbaum 1997; Trefethen and Bau 1997) and

its variants dominate the quantitative analysis of fluid flow

(Edwards et al. 1994). The Arnoldi method, an iterative

Krylov subspace technique to compute eigenvalues of

large-scale matrices, has rapidly become a standard tool to

compute stability information of flows in complex geom-

etries. When coupled with numerical simulations, it pro-

duces global stability modes together with their frequency

and growth/decay rates. Various modifications have been

developed over the years to improve overall performance,

to direct convergence toward specific eigenvalues and to

add robustness (Lehoucq and Scott1997; Mack and Schmid

2010). Central to the algorithm is the construction of an

orthogonal set of vectors (flow fields) onto which the

dynamics is projected. This construction depends on the

availability of model information, as it requires the eval-

uation of the underlying equations using a given flow field.

While this algorithmic step is easily accomplished by

numericists, it constitutes an obstacle for a straightforward

application to experimentally generated flow field data. For

this very reason, many iterative techniques that are rou-

tinely applied within a computational framework are not

available to the experimentalists. It is thus fair to say that

the range of options for a quantitative analysis of experi-

mental fluid data considerably lags behind the possibilities

available to computational fluid dynamicists.

The past years have seen remarkable advances in

experimental data acquisition and image analysis, and flow

data from experiments rival data from large-scale numer-

ical simulations in spatial and temporal resolution as well

as in complexity (Hain et al. 2007; Violato et al. 2009a, b).

The analysis of unsteady three-dimensional flow fields is

no longer the domain of computational fluid dynamicist

owing to the development of time-resolved tomographic

PIV techniques (Elsinga et al. 2006). Algorithms for the

analysis of these data are now needed to allow the same

depth of exploration that is customary in a computational

setting. The dynamic mode decomposition (DMD) (Sch-

mid 2009, 2010; Schmid and Sesterhenn 2008) is such a

technique as it is solely based on data and does not depend

on access to an underlying set of equations. It is related to

the Arnoldi method mentioned above but replaces the

projection onto an orthogonal basis by a projection onto a

snapshot sequence. In this manner, spectral information

about the flow can be extracted from the measurements.

DMD represents an approximation of a time-resolved

sequence from a nonlinear process by a linear mapping

between the samples. Mathematically, it is related to a

Koopman analysis of a nonlinear dynamical system

(Lasota and Mackey 1994); an application of Koopman

analysis to fluid flows has recently been presented and

applied to a direct numerical simulation of a jet in cross-

flow (Rowley et al. 2009).

After describing the experimental setup and the princi-

ples of the dynamic mode decomposition, a set of time-

resolved tomographic PIV measurements of a water jet will

be processed and analyzed. The obtained results will be

presented in form of their spectral characteristics (fre-

quencies, growth/decay rates, wavenumbers and ampli-

tudes) and modal shapes. A discussion of the presented

material and an outlook of future applications will

conclude this article.

2 Experimental setup and data decomposition

2.1 Experimental setup

The experiments have been performed in the water jet

facility at the Aerodynamic Laboratories of the TU Delft

(Violato et al. 2009). The jet exits from a round nozzle of

diameter D = 10 mm into an octogonal water tank of

600 mm diameter and 800 mm height whose Plexiglass

sides allow full optical access to the illumination and

tomographic imaging. For a Reynolds number of

Re = 5,000 a jet exit velocity of U = 0.5 m/s has been

chosen. Neutrally buoyant polyamide particles (of 56 lm

diameter) together with a solid-state Nd/YAG laser provide

light-scatter images that are recorded by the tomographic

system consisting of four CMOS cameras. Image sequen-

ces are acquired by this system at a kilohertz rate over a

three-dimensional measurement domain of 50 mm 9

50 mm 9 32 mm. Three such domains (phase matched

across the overlap volumes) cover an extent of 130 mm

along the jet axis. Results from the domain closest to the jet

nozzle will be reported in this article. The volumetric light

intensity is reconstructed using a volume-self-calibration

procedure and a MART reconstruction algorithm. Three-

dimensional velocity fields are then computed based on a

spatial cross-correlation of two subsequent volumes, and

data postprocessing using a space-time regression with a

5 pt 9 5 pt 9 5 pt 9 5 pt kernel reduces velocity fluctu-

ations due to measurement or processing noise (Elsinga

et al. 2006). A representative snapshot from the experiment

is shown in Fig. 3a, visualized by velocity vectors in the

axial center-plane.

2.2 Principles of the dynamic mode decomposition

The dynamic mode decomposition (DMD) is a data-based

decomposition technique that identifies the dominant
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coherent motion in a flow field by constructing and sub-

sequently analyzing an approximate linear mapping

between time-resolved measurements (Schmid 2009, 2010;

Schmid and Sesterhenn 2008). Given a sequence of mea-

sured flow fields, denoted by vj and separated by a constant

time-interval Dt; that is,

VN
1 ¼ fv1; v2; . . .; vNg ð1Þ

with N as the total number of flow fields. In what follows

we use the short notation V1
N with the subscript 1 denoting

that the first snapshot of the sequence is v1 and the

superscript N denoting that the last snapshot of the

sequence is vN. We assume a linear mapping ADt

between each of the snapshots (assumed to be constant

over the snapshot sequence); we thus have vjþ1 ¼ ADtvj:

Applying the mapping ADt to the entire sequence V1
N

results in

ADtV
N
1 ¼ VNþ1

2 : ð2Þ

For a sufficiently long sequence of snapshots from an

experiment, it appears reasonable to assume that the flow

fields become linearly dependent. When this limit is

reached, it is possible to express any further snapshots by

a linear combination of the previous ones; mathematically,

this amounts to

ADtV
N
1 ¼ VNþ1

2 � VN
1 SDt ð3Þ

where SDt contains the coefficients of the above-mentioned

linear combination (Ruhe 1984). In this last equation, the

action of ADt on the snapshot sequence V1
N has been

approximated by a combination (expressed by SDt) of the

members of V1
N. Spectral information about the high-

dimensional matrix ADt is thus contained in the matrix SDt

that can be thought of as a projection of ADt onto the

snapshot basis V1
N. This projection is reminiscent of the

Arnoldi method where the original large-scale matrix is

replaced by a lower-dimensional Hessenberg matrix whose

eigenvalues approximate some of the eigenvalues of the

original matrix. The orthogonalization step of the Arnoldi

method, however, is absent.

The matrix SDt can be computed from the above equa-

tion by a least-squares approximation based on the two data

sets V1
N and V2

N?1. We obtain

SDt ¼ R�1QHVNþ1
2 ð4Þ

where Q and R stand for the QR-decomposition of the data

set V1
N, that is, QR = V1

N. The above procedure holds for a

full-rank data matrix V1
N; for rank-deficiencies or near

rank-deficiencies in the data, see Schmid (2010). The

eigenvalues of SDt approximate some of the eigenvalues of

ADt; and the corresponding eigenvectors of ADt are deter-

mined by V1
N w where w is an eigenvector of SDt: We will

refer to the quantities V1
N w as the dynamic modes of the

snapshot series. Due to the nature of the data sequence, the

eigenvalues k of SDt describe the inter-snapshot dynamics.

For a sufficiently long data sequence sampled from a

nonlinear process (experiment), they approach the unit disk

and represent a neutrally stable, oscillatory process

(Rowley et al. 2009). We often map the eigenvalues k of

SDt via the transform x ¼ logðkÞ=Dt; unstable eigenvalues

x appear then in the right half-plane.

The reliance on data allows a great deal of flexibility for

the dynamic mode decomposition. The inclusion of only

parts of the measured flow field in the data sequence V1
N

enables the exploration of subdomains where localized

instabilities or flow phenomena are expected or observed.

In addition, images from high-speed cameras can be as

straightforwardly processed as data from time-resolved

PIV measurements; the data may even be of a composite

nature, combining, for example, PIV velocity measure-

ments with time-synchronous acoustic pressure signals

from a microphone array in typical aero-acoustic applica-

tions. Even more significantly, the alignment of the snap-

shots in time represents only one of many options. For

example, the data fields vj could represent measurements at

spatial positions xj separated by Dx: By forming and pro-

cessing this spatially aligned data sequence, the resulting

matrix SDx will contain spectral information about the

spatial evolution of the flow. For a more detailed

description of DMD, the reader is referred to (Schmid

2010).

The critical parameters of the dynamic mode decom-

position are the length N of the snapshot sequence and the

(temporal or spatial) separation Dt;Dx between consecutive

snapshots. The former parameter can be determined by

observing the residual of the least-squares step above. The

latter parameter has to be chosen to approximately match

the characteristic time/space scale of the fluid flow under

investigation, while simultaneously complying with the

Nyquist frequency criterion.

3 Results

A sequence of snapshots has been recorded at a sampling

frequency of 1 kHz. Each flow field consists of

107 9 62 9 62 three-dimensional velocity vectors. With

N ? 1 = 201 snapshots in time, the full data array contains

more than 82 9 106 entries for each of the three fluid

velocity components. In the following temporal and spatial

dynamic mode decomposition (DMD) analysis, the full

array of data, containing all velocity vectors and all three

velocity components, has been used to extract structures of

dynamic relevance. The mean flow has not been subtracted

from the data.
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3.1 Temporal DMD analysis

In a first step, a temporal analysis will be attempted. For

this case, the flow fields at each time-step will be reshaped

into the columns of a data matrix V1
201. A mapping between

the snapshots (expressed in the snapshot basis) will then be

computed following the procedure described above.

A SDt-matrix of dimension 200 9 200 results whose

eigenvalues k are shown in Fig. 1a. An eigenvalue near

(1,0) signifying the mean flow (i.e. the temporally averaged

flow field of the data sequence) has been omitted in the

figure. We like to remind the reader, however, that the

averaged flow field has not been removed from the pro-

cessed data. The size and color (from red to blue) of the

eigenvalues indicate the amplitude of the respective

structure in the data sequence (see below). A magnified

view of the relevant section of the unit disk is given in

Fig. 1b. We observe stable eigenvalues (inside the unit

disk). The clustering of the eigenvalues on the unit disk

indicates the convergence toward a linear representation of

a saturated nonlinear process. For an even longer data

sequence, the eigenvalues are expected to continuously

tend toward the unit disk. Due to real input data, the spectra

are symmetric with respect to the real axis. A dominant

mode (in red) is clearly visible whose Strouhal number,

based on the jet diameter and the jet velocity, can be

determined as St = 0.325. A second significant eigenvalue

corresponds to a Strouhal number of St = 0.646. The

amplitude distribution shown in Fig. 2 has been computed

by projecting the data sequence onto the identified dynamic

modes. The coefficients of this projection indicate the

presence of specific dynamic modes in the original data

sequence and thus determine their significance; again, the

mean flow at xr = 0 has been omitted. A pronounced peak

at two frequencies/Strouhal numbers can be observed.

Higher-frequency modes contribute less and less to the data

sequence, reflected in the decay of their respective

amplitudes.

Figure 3b–d shows the dynamic modes corresponding,

respectively, to the mean flow and the two dominant fre-

quencies/Strouhal numbers. All modes are visualized by

velocity vectors in the axial center-plane. For the mean

flow mode (St = 0), a smooth and homogeneous velocity

profile has been detected. The next most dominant dynamic

mode is displayed in Fig. 3c. It shows strong vortical

structures near the edge of the jet about four diameters

downstream from the nozzle, corresponding to vortex

rings. The tendency toward an axisymmetric nature of the

instability is clearly detectable and confirmed by a radial

cut (not shown). The next most dominant dynamic mode is

depicted in Fig. 3d. It again features nearly axisymmetric,

strong vortex rings, however, concentrated closer to the

nozzle, with a reduced axial spacing and correspondingly

higher Strouhal number (St = 0.646). A superposition of

the three displayed dynamic modes, each weighted by their

temporal exponential dynamics expðixtÞ and initialized by

a representative flow field, would capture the bulk of the jet

dynamics and reproduce the principal features of the ori-

ginal data sequence (see also below). In this sense, the

dynamic mode decomposition can be viewed as a model

reduction technique, capturing the dynamically most rele-

vant features of the flow.

Iso-surfaces of the k2-criterion, a common technique to

identify flow regions of high vorticity (Jeong and Hussain

1995), are displayed in Fig. 4 for the two most dominant

dynamic modes, after the mean flow. Nearly axisymmetric

vortex rings can be observed that monotonically grow in

width and diameter for DM1, but are concentrated closer to
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Fig. 1 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000 from

time-resolved tomographic PIV

measurements: a eigenvalues of

the matrix SDt representing the

inter-snapshot dynamics;

b magnified view of the

spectrum near the point (1,0)
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the nozzle exit for DM2. These features confirm previous

observations, but give a more complete picture of the three-

dimensional characteristics of the flow and its coherent

structures.

The temporal dynamic mode decomposition has identi-

fied two distinct Strouhal numbers in the data sequence; the

corresponding structures are characterized by nearly axi-

symmetric vortical structures superimposed on the cylin-

drical mean vortex sheet of the jet.

It is apparent that DM2 describes the primary instability

of the jet exiting the nozzle, with a correspondingly high

Strouhal number. The first mode (DM1), on the other hand,

captures the vortex pairing of the primary ring vortices. It

has a consequently lower Strouhal number and consists of

larger vortical structures.

3.2 Temporal POD analysis

Alternative to the dynamic mode decomposition, the proper

orthogonal decomposition (POD) can be applied to the data

sequence. This approach has been taken in many investi-

gations of fluid flows—ranging from laminar flows that

exhibit instabilities to fully developed turbulence—to

determine energetic and coherent structures. The technique

is based on computing a data correlation matrix that is

subsequently diagonalized, thus yielding structures that are

physically decorrelated or mathematically orthogonal.

POD provides a hierarchical basis that is aligned in the

direction of largest data variance and therefore captures a

maximal amount of energy in each identified structure

while simultaneously maintaining a zero correlation

between each structure. This description makes clear that

this basis cannot capture the dynamics of the flow, but

rather provides a ranking of structures in which the per-

turbation energy of the flow is captured optimally. To

recapture the dynamics of these structures, a projection of a

full data sequence onto a finite POD basis, known as a

Galerkin projection, is necessary. This step is often taken in

investigations that are interested in the low-dimensional

description of fluid phenomena; additionally, POD-based

reduced models are commonly used in flow control

applications.

Applying the proper orthogonal decomposition to our

data sequence is equivalent to taking the singular value

decomposition (SVD) of the data matrix V1
N according to

VN
1 ¼ URVH ð5Þ

where the columns of U contain the POD structures, while

the entries of the diagonal R comprise the energy levels

of the various associated structures. The singular values

r ¼ diagðRÞ are plotted in Fig. 5; for the most dominant

singular values, they show a characteristic doubling where

two consecutive singular values have nearly the same

magnitude. This feature can be attributed to the time-

periodic nature of the flow: two mutually orthogonal

structure have been identified that carry nearly identical

energy levels. In reality, the two associated POD modes

correspond to similar but phase-shifted fluid structures.

This is depicted in Fig. 6a, b where the first two POD

modes (with nearly identical singular values) are shown.

The structures of POD2 appears displaced to the structures

of POD1. Both components are equally important in terms

of their contribution to the overall energetic budget. A

projection of the data sequence into these two modes

reveals two oscillatory signals with a near 90� phase shift.

Combined with the respective POD modes, the superposi-

tion of these two signal presents a convective and recurring

pattern that captures the essence of the observed flow field:

vortex rings being convected downstream. Similar con-

clusions can be drawn for the third and fourth singular

values and their associated POD modes (see Fig. 6c, d).

Higher singular values do not display any significant

doubling, thus suggesting that only two dominant fre-

quencies are present in the flow.
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Fig. 2 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000 from

time-resolved tomographic PIV

measurements: amplitude

distribution of the dynamic

modes versus the Strouhal

number St
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Comparing the POD spectrum and POD modes with the

DMD spectrum and DMD modes, one comes to the same

conclusions as to the dynamic features of the processed

data sequence. However, this finding is not only an issue of

representation, where one decomposition needs two modes

to capture the same dynamic that can be represented by one

mode of another decomposition. In the proper orthogonal

decomposition, the dynamics contained in the data

sequence is not captured directly, but has to be recovered

by a reprojection of the data onto the extracted basis. In

contrast, the dynamic mode decomposition provides both a

basis and the temporal dynamics in this basis. Neverthe-

less, for flow configurations that are dominated by periodic

and convective phenomena (which are commonly referred

to as oscillator flows), both decompositions yield very

similar structures (compare Figs. 4 with 7) and there

appears to be a close resemblance of the composite mode

POD1 ? iPOD2 and the mode POD1; the same can be

concluded for POD3 ? iPOD4 and DMD2.

For non-periodic or transient flows, this coincidence

between POD and DMD no longer holds, and the two

decompositions produce different results. In addition, for

the spatial analysis, the DMD analysis is the preferred tool

(see below).

As mentioned above, POD analysis represents a static

(or averaged) decomposition of a temporal process, since

the temporal coordinate direction has been used to perform

the averages for the spatial correlation matrix. In this way,

the time information in the data has been removed from

the decomposition. This fact can be made clearer by

(b)(a)

(c) (d)

Fig. 3 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000.

a Representative snapshot from

the time-resolved tomographic

PIV measurements. b–d Three

most dominant dynamic modes

(DM): mean flow (b) and two

dynamic modes with a

significant contribution in the

original data sequence. a Exp.

snapshot, b DM0 (St = 0),

c DM1 (St = 0.325), d DM2

(St = 0.646)

(a) (b)Fig. 4 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000. Iso-

surfaces of the k2-criterion of

the two most dominant dynamic

modes (besides the mean flow):

a DM1 with St = 0.325, and

b DM2 with St = 0.646. A

quarter of the circumferential

dependence has been eliminated

for an improved visualization
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establishing a mathematical connection between the matrix

SDt and the POD decomposition, expressed as a singular

value decomposition. A few algebraic steps using Eqs. 3

and 5 yield

UHADtU ¼ RVH SDt VR�1� SDt ð6Þ

where * has been used to indicate equality up to a simi-

larity transformation (in our case, given by RVH). The

above expression establishes a link between the central

DMD matrix SDt and the POD modes U: the matrix SDt is

given as the correlation matrix between the POD modes U

and the POD modes ADtU that have been advanced over

one time-step by the matrix ADt: It seems possible to

recapture the temporal information in the data from this

one-step temporal correlation matrix. In numerical simu-

lations, this matrix can be formed by advancing the com-

puted POD modes over one time-step; in physical

experiments, this is of course not possible. Nonetheless, the

above mathematical expression emphasizes the fact that

POD analysis is a statistical technique based on temporal

averages, while DMD analysis achieves a decomposition

into coherent structures and their temporal dynamics.

100 101 102

10−1

100

σ

n

σ1 1.0000
σ2 0.9738
σ3 0.6490
σ4 0.6380
σ5 0.3076

Fig. 5 Singular values of the

data matrix V1
N representing the

energy content (normalized by

the largest singular value) of the

associated proper orthogonal

(POD) modes

(a) (b)

(c) (d)

Fig. 6 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000

using a proper orthogonal

decomposition. First four POD

modes displayed in the axial-

radial plane through the

centerline of the jet. a POD1,

b POD2, c POD3, d POD4
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3.3 Low-dimensional representation and modeling

Any reduced-order representation of our data sequence can

be used to model the flow with a lower number of degrees

of freedom. In this section, we will explore and demon-

strate the use of DMD to capture the essence of the flow

dynamics with a small number of modes.

The procedure follows the standard technique of modal

expansions which, in our case, reads

uðx; y; z; tÞ ¼
XN

k¼1

Ak expðxktÞUkðx; y; zÞ ð7Þ

where xk are related to the eigenvalues kk of SDt via xk ¼
logðkkÞ=Dt; and Uk are given by the eigenvectors wk of SDt

according to Uk ¼ VN
1 wk: The amplitudes Ak are the same

as displayed in Fig. 2. The amplitude distribution, with its

pronounced peaks at two specific Strouhal numbers, can be

taken as a guide for a truncation of the series (7). In

this spirit, we only select the two dominant Strouhal

numbers and the corresponding spatial structures to give an

approximate representation of the principal flow dynamics

in the form

uðx; y; z; tÞ � A1 expðx1tÞU1ðx; y; zÞ
þ A2 expðx2tÞU2ðx; y; zÞ þ c.c. ð8Þ

This procedure can be thought of as a filtering approach

applied to the data, where the amplitude distribution pro-

vides the pass-bands of the filter in the frequency/Strouhal

number domain.

The following example shall demonstrate this filtering

approach. We extract two signals from the original data

sequence at locations in the axisymmetric shear layer of the

jet. The locations are indicated in Fig. 8a, superimposed on

a snapshot from the data sequence. The first signal (in

black) is taken near the nozzle exit where the shear layer

shows a primary instability with a well-defined frequency/

Strouhal number. The second location is further down-

stream in the shear layer; at this location, vortex pairing has

occurred and a lower Strouhal number prevails, even

though the original Strouhal number is still present. The

signals from these two locations are plotted (in black and

blue) in Fig. 8b, c. After completing the DMD analysis of

the entire data set, we compute a superposition of the two

dominant DMD modes, properly weighted by their ampli-

tudes. From this superposition, we extract two signals at

the same locations as shown in Fig. 8a. The two signals

from the low-dimensional DMD representation are shown

in red in Fig. 8b, c. We notice that our analysis has pro-

duced a filtered representation of the local flow dynamics.

For the first signal (closer to the nozzle), only one fre-

quency is detected. This is due to the fact that only the

second mode DM2 with an associated Strouhal number of

St = 0.646 has support in this region; the first mode DM1

has no or negligible support close to the nozzle (see Fig. 4

for a comparison). At the signal location further down-

stream (blue dot), however, two co-existing frequencies

can be observed which yield a modulated signal, with the

lower frequency dominating. Again, this can be related to

the spatial extent of the associated DMD modes; they are

both present in this region, and the mode with the lower

Strouhal number, however, has the larger amplitude (see

Fig. 2). Incoherent and high-frequency features in the ori-

ginal system have been filtered out, since they do not

contribute significantly to the flow dynamics.

The efficient description of dynamic processes by a low-

dimensional modal expansion, as shown above, can be used

in a variety of ways. Flow control applications often

require the application of reduced-order models (ROMs) to

compute control and estimation gains. In model-predictive

control, low-dimensional models are essential to the design

of efficient adaptive control strategies. Moreover, fluid

dynamical patterns, for example in dynamic meteorology,

are often expressed in low-dimensional form and extended

beyond the acquisition horizon to provide approximate

forecasts. Even our two-mode representation can be used to

extrapolate over a time-interval s according to

(a) (b)Fig. 7 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000

using a proper orthogonal

decomposition. Iso-surfaces of

the k2-criterion of the two most

dominant POD modes. A

quarter of the circumferential

dependence has been eliminated

for an improved visualization.

a POD1, b POD2
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upredðx; y; z; t þ sÞ � A1 expðx1ðt þ sÞÞU1ðx; y; zÞ
þ A2 expðx2ðt þ sÞÞU2ðx; y; zÞ þ c.c.

ð9Þ

Since the expansion (7) is continuous in time and only

discrete in the number of modes, it also becomes possible

to oversample the expression: by evaluating the expansion

in time-steps that are shorter than the sampling interval, we

can generate flow fields that have an increased resolution in

time. Of course, by following this procedure, new

information at frequencies beyond the Nyquist cutoff is

not contained in the generated flow fields.

In short, any flow field that comprises low-dimensional

dynamics or low-frequency patterns can benefit from a

truncated modal DMD expansion that can be used to

interpolate (oversample) or extrapolate (predict) coherent

features extracted from the data sequence.

3.4 Spatial analysis

The previous analysis, detecting a periodic fluid motion

with distinct frequencies, suggests to revisit the problem

within a spatial framework. As mentioned previously, since

the DMD does not depend on a particular model, a simple

re-organization of the data array suffices to perform a

spatial rather than a temporal analysis. To this end, we

align the data fields in our matrix V1
N in the axial direction,

that is, each column in V1
N consists of a time record of the

three-dimensional flow field in the cross-sectional plane at

a given axial location. The number of snapshots is

accordingly N ? 1 = 107, and the computed matrix SDx is

of size 106 9 106 and contains spatial spectral informa-

tion. The time coordinate becomes an independent variable

of the resulting dynamic modes; consequently, the extrac-

ted spatial dynamic modes will contain a temporal

dependency.

Processing the spatially aligned data matrix with the

DMD algorithm results in the spectra displayed in Fig. 9a,

b, again in the inter-snapshot format (Fig. 9a) and the more

familiar mapped format according to a ¼ logðkÞ=Dx: As in

the temporal case, we notice a clustering of the eigenvalues

near the unit disk and the neutral line, respectively. The

‘‘mean flow eigenvalue’’ has been excluded as before. The

spatial DMD detects a marked spatial wavenumber, indi-

cated by the red eigenvalues in either spectrum. The

importance and prevalence of this spatial structure is fur-

ther confirmed in the amplitude distribution (see Fig. 10),

which identifies a peak near the spatial wavenumber

ai & 9. On both sides of this peak, the amplitude of other

detected wavenumbers decreases notably. The dynamic

modes corresponding to the colored peaks in the amplitude

distribution depend on the coordinates of the cross-sec-

tional plane and on time (their streamwise dependence is

given by expðaxÞ with a as the respective eigenvalue) and

are thus difficult to visualize. For this reason, we will first

demonstrate the temporal dependence of the two dynamic

modes identified in color in the amplitude distribution,

evaluated in a one-dimensional cross-sectional cut through

the center of the jet. The two modes and their temporal

dependence are visualized by contours of one of the cross-

sectional velocity component. In addition, the mean flow,

visualized by the axial velocity component, is included for

completeness (Fig. 11a); it shows a steady velocity com-

ponent in the center of the interrogation domain. The two

displayed dynamic modes exhibit a clear temporal fre-

quency in both velocity components. This should not come
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t
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(a)
(b)

(c)

Fig. 8 a Two signal have been extracted from the original data

sequence: near the nozzle (black dot) and further downstream (blue
dot). b Original signal from the upstream (blue) location and

equivalent signal (in red) from a two-mode DMD representation of

the flow field. c Same for the signal from the downstream (blue)

location
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as a surprise as the temporal DMD analysis clearly

extracted a well-defined Strouhal number from the data.

In a different visualization (Fig. 12), we display a

temporal sequence of velocity vectors for the two dominant

DMD modes (after the mean flow mode). In both cases, we

observe a circular motion in the cross-sectional plane that

reverses direction over the course of the sampling period.

This is consistent with the characteristics of the spatial

dynamic modes depicted in Fig. 11b–e. The final plot (in

blue) represents the flow field associated with the most

dominant Fourier mode of the temporal sequence; in this

case, the temporal sequence, shown in gray in Fig. 12, has

been decomposed into respective frequencies, and the

mode corresponding to the peak in the Fourier spectrum

has been plotted. For a full appreciation of the three-

dimensional dynamics of the dynamic modes, each spatial

dynamic mode has to be augmented by an exponential/

oscillatory evolution in the streamwise direction according

λ -Spectrum α-Spectrum

λ
r

λ i
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Fig. 9 Spatial dynamic mode decomposition of a three-dimensional low-Mach number jet at Re = 5,000. a Spatial inter-snapshot spectrum, that

is, eigenvalues of SDx: b Spatial DMD spectrum, logarithmically mapped (see text)
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Fig. 10 Spatial dynamic mode

decomposition of a three-

dimensional low-Mach number

jet at Re = 5,000. Amplitude

distribution of the spatial

dynamic modes versus their

streamwise wavenumber ai

1576 Exp Fluids (2012) 52:1567–1579

123



to expðaxÞ: Nevertheless, the temporal sequences in Fig. 12

give a first indication of the complexity of the fluid motion

captured in the three-dimensional data sequence.

4 Summary, conclusions and outlook

Three-dimensional flow fields of a transitional water jet

have been extracted from experiments by means of time-

resolved tomographic particle image velocimetry

(TR-TOMO-PIV). The flow fields are characterized by a

wide range of spatial and temporal scales, but also by the

presence of clearly distinguishable frequencies and wave-

numbers. A sequence of 201 snapshots in time, each cap-

tured with a spatial resolution of 107 9 62 9 62 and three

velocity components, has been processed by the dynamic

mode decomposition (DMD)—an iterative data-based

algorithm for the extraction of dynamically relevant pro-

cesses from temporally or spatially aligned flow field

sequences. In both the temporal and the spatial cases, the

DMD method isolated coherent structures and their spec-

tral properties and has proven effective in providing a low-

dimensional representation of the coherent dynamics.

As experimental data grow larger in dimensionality and

complexity, it becomes more important to develop and

apply advanced algorithms that are capable of extracting

the essential features and dominant processes from the

measurements. In particular, the recent availability of

tomographic, three-dimensional and time-resolved data

necessitates these types of algorithms to reduce the
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Fig. 11 Spatial dynamic mode decomposition of a three-dimensional

low-Mach number jet at Re = 5,000. a Spatial dynamic mode

associated with the mean flow, visualized by the axial velocity. b and

c First spatial dynamic mode, visualized by the velocity components

in the cross-sectional plane. d and e Second spatial dynamic mode,

visualized by the velocity components in the cross-sectional plane.

a Mean flow U, b DM1 V, c DM1 W, d DM2 V, e DM2 w
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Fig. 12 Decomposition of a

three-dimensional low-Mach

number jet at Re = 5,000.

Temporal sequence (in gray) of

the first (left column) and

second (right column) spatial

dynamic mode, visualized by

velocity vectors in the cross-

sectional plane; (in blue) most

dominant Fourier mode of the

temporal sequence
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richness of three-dimensional flows to a few governing

mechanisms. By combining TR-TOMO-PIV data with

DMD analysis, the current article has attempted to inte-

grate state-of-the-art data acquisition techniques with

innovative algorithms for flow pattern extraction.

In a future effort, we will further explore the flow fea-

tures present in the water jet. This study will include

measurements further downstream from the jet nozzle and

different nozzle geometries. It is hoped that the synthesis of

three-dimensional time-resolved data and efficient, data-

based, iterative algorithms (such as DMD) will give new

and valuable insight into complex fluid flow, its principal

mechanisms and its inherent spatio-temporal scales.
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