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Abstract Time-resolved particle image velocimetry

(PIV) measurements performed in wall parallel planes at

three wall normal locations, y? = 34, 108, and 278, in a

zero pressure gradient turbulent boundary layer at

Res = 470 are used to illuminate the distribution of

streamwise velocity fluctuations in a three-dimensional

energy spectrum (2D in space and 1D in time) over

streamwise, spanwise, and temporal wavelengths. Two

high-speed cameras placed side by side in the streamwise

direction give a 10d 9 5d streamwise by spanwise field of

view with a vector spacing of Dxþ ¼ Dzþ � 37 and a time

step of Dtþ ¼ 0:5. Although 3D wavenumber–frequency

spectra have been calculated in acoustics studies, to the

authors’ knowledge this is the first time they has been

calculated and presented for a turbulent boundary layer.

The calculation and normalization of this spectrum, its

relation to 2D and 1D spectra, and the effects of the PIV

algorithm on its shape are carefully analyzed and outlined.

1 Introduction

The current understanding of the structural and statistical

nature of the turbulent boundary layer over a large range of

Reynolds number rests primarily upon spatial information

from direct numerical simulations (DNS) and particle

image velocimetry (PIV) experiments, and temporal

information from experimental measurements at a single

point, yet there is a lack of simultaneous temporal and

spatial measurements to describe the time evolution of the

structures and statistics of the flow. While temporal

information can be extracted from DNS data, not only is

the range of Reynolds numbers limited, but the computa-

tional resources required to analyze a time-resolved flow

over a sufficiently long time period would be enormous.

Similarly, in experiments, most commonly used instru-

ments, such as hot wire anemometers, only provide tem-

poral information at a single point, where the recovery of

spatial information requires the arduous task of taking

measurements at two or more points simultaneously over a

range of separations. Planar PIV measurements provide a

2D spatial representation of the flow and with a sufficiently

high frame rate, as shall be discussed, provide simulta-

neous spatial and temporal measurements allowing a sta-

tistical and structural analysis of the turbulent boundary

layer over two spatial dimensions and time.

Often, when either the spatial or temporal information is

not acquired, a conversion between the two is performed

using Taylor’s frozen turbulence hypothesis (Taylor 1938),

which states that the spatial field can be reconstructed from

the temporal field if the convection velocities of the indi-

vidual eddies or scales which compose the flow are known.

This conversion is performed assuming the eddies are

‘‘frozen’’, or in other words, that their shape does not

evolve significantly over the distance projected. While the
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convection velocity of all such eddies is usually assumed to

be equal to the local mean velocity, many studies have

shown that this is not always a valid assumption (Morrison

et al. 1971; Kim and Hussain 1993; Krogstad et al. 1998;

Chung and McKeon 2010; del Álamo and Jiménez 2009;

LeHew et al. 2010). A recent example of the importance of

knowing the correct conversion was demonstrated by

Monty and Chong (2009) who compare channel flow

computations and experiments under the same conditions

using the spatial spectrum from computations and the

converted temporal spectrum from experiments. The dis-

crepancies between the spatial and temporal spectra were

put into better agreement using a scale-dependent con-

vection velocity near the wall. In the PIV measurements

presented in this paper, information is recorded in both

time and space, so no conversion is necessary, and it is

possible to test the validity of Taylor’s hypothesis at all

measurement locations.

The use of time-resolved PIV to address the need for

both spatial and temporal measurements in the turbulent

boundary layer was first considered by Dennis and Nickels

(2008) at a wall normal location of y/d = 0.16, where d is

the boundary layer thickness. It was concluded that at this

particular wall normal location with a 6d streamwise field

of view, Taylor’s hypothesis holds, although deviation was

noted between the actual and projected velocity fields at

distances beyond 4d downstream. Based on the works cited

previously, a more notable deviation would likely appear

with measurements both very near and far from the wall,

which will be addressed in the current study over a larger

spatial field and considering the entire (kx, kz, x) domain.

Although the use of PIV for simultaneous spatial and

temporal measurements of a turbulent boundary layer is

promising, there are a number of issues to be addressed.

First, the resolution of the spatial fluctuations of the flow,

and thus the resolution of the spatial spectrum, is limited by

the interrogation window size, which attenuates small-scale

fluctuations on the order of the window size as noted by

Willert and Gharib (1991). A technique to determine the

optimal window size, considering both the attenuation from

the interrogation window and the noise introduced by the

PIV algorithm, was proposed by Foucaut et al. (2004). An

outline of all of the effects of PIV on the spatial spectrum

including methods for avoiding spectral leakage and ali-

asing in space is presented by Tomkins and Adrian (2005).

The study of the space–time correlation in hot and cold jet

flows by Wernet (2007) discusses the need for oversam-

pling and low-pass filtering in time to avoid temporal ali-

asing of PIV data. Finally, not only should the smallest

energetic scales in the flow be recovered, but also the

largest scales found to extend up to 14 times the pipe radius

in experiments by Kim and Adrian (1999). For boundary

layer measurements, both the large-scale motions (LSMs)

with an energetic peak at kx = 2 - 3d and the super-

structures, with an energetic peak at kx = 6d as discussed

by Hutchins and Marusic (2007), Monty et al. (2009), and

Guala et al. (2011), where kx is the streamwise wavelength,

must be resolved. As discussed by Balakumar and Adrian

(2007), streamwise scales longer than 3d at all wall normal

locations and Reynolds numbers considered contain at least

45% of the turbulent kinetic energy in the zero pressure

gradient boundary layer. In addition, Ganapathisubramani

et al. (2003) found that hairpin packets of comparable

streamwise extent contain a significant amount of Reynolds

stress, �uv, and thus these large scales must be resolved to

accurately represent the flow. As noted by Monty et al.

(2009), while the 6d superstructure peak becomes almost

undiscernable outside the log layer, near the wall this peak

is prominent and structures of this size and even larger

must be resolved to fully encompass the near wall energy

and dynamics.

The goal of the current work is to study the flow physics

in wall parallel planes throughout the boundary layer using

the 1D, 2D, and, for the first time, 3D (2D in space, 1D in

time) streamwise velocity spectra over all combinations of

frequency, and streamwise and spanwise wavenumbers.

For this purpose, time-resolved PIV measurements were

performed at yþ ¼ 34; 108; 278ðy=d ¼ 0:07; 0:23; 0:59Þ
to illuminate the differences between the near wall, outer

log layer, and wake regions of the boundary layer. The

quantity y? = y us/m is the inner-scaled, non-dimensional,

wall normal distance where us ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

is the friction

velocity, sw is the shear stress at the wall, q is the fluid

density, and m is the kinematic viscosity. In Sect. 2, the

experimental setup and choice of PIV processing parame-

ters are described. The mean statistics are then presented in

Sect. 3 and compared to the literature. The effect of the

PIV processing on both the velocity signal and spectral

calculations is carefully outlined following the work of

Tomkins and Adrian (2005), and steps for calculating the

3D spectrum and its relation to an ideally measured spec-

trum are presented in Sect. 4. This is followed by a pre-

sentation and discussion of the spectra in Sect. 5. Finally,

the results are summed up in Sect. 6.

2 Experimental setup

Measurements of a zero pressure gradient boundary layer

developing over a flat plate were performed on a 1.1 m

long by 0.45-m-wide Plexiglass plate with an elliptical

leading edge and an adjustable wedge-shaped trailing edge

flap situated in a 2m long by 1-m-wide test section of a free

surface water tunnel facility. The 13.9-mm-thick boundary

layer on the bottom of the plate was studied to avoid

interaction with surface waves. A shroud with a wedge-
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shaped leading edge was placed along the sides of the plate

to promote a two-dimensional flow. A thin strip of tape

(approximately 3 mm long, 0.25 mm thick, and spanning

the width of the plate) was placed immediately downstream

of the elliptical leading edge on the measurement side to

promote transition and favor the establishment of a turbu-

lent regime at the measurement location. The flow was

conditioned by passing it through a perforated plate, a

honey comb, three turbulence reducing screens, and finally

a 6:1 contraction. Measurements were made starting

0.63 m downstream of the leading edge. The free stream

velocity was 0.67 m/s, and the free stream turbulence level

was less than 0.1%. The free stream velocity, and thus

Reynolds number, for these experiments was set to provide

the best flow conditions possible and to allow a small

enough displacement per frame for accurate PIV mesure-

ments. It should be noted that this choice led to a relatively

low Reynolds number, Res = 470, which limits the scale

separation observable in these experiments. A diagram of

the tunnel and a photograph showing the test section and

coordinate system are presented in Fig. 1.

Time-resolved 2D PIV was used to measure the flow

field in the wall normal and wall parallel directions in two

separate experiments using a LaVision PIV system with 2

Photron Fastcam APX-RS high-speed cameras equipped

with Tamron SP AF 180 mm F/5.5 macro lenses. The

cameras acquired images at 2,000 frames per second with

1,024 9 1,024 pixel resolution for all experiments. The

flow was seeded with 10-lm hollow glass spheres with a

specific gravity of 1.1. The seeding density was similar in

both wall normal and wall parallel measurements, and the

average particle image diameter was 2.2 and 3.1 pixels,

respectively. The flow was illuminated by a Photonics

DM20-527 solid-state laser providing 20 mJ/pulse with a

sheet thickness of approximately 1 mm. The sheet was

thick enough to nearly eliminate out-of-plane loss with

jv̂jDt=y0\0:04, much less than the maximum allowable

value of 0.25 suggested by Keane and Adrian (1990),

where y0 is the laser sheet thickness, Dt is the time between

images, and v̂ is the out-of-plane velocity estimated from

the rms velocity fluctuations. The two-dimensionality of the

flow in wall parallel planes is verified in Fig. 2 showing

the velocity averaged over the streamwise direction and time

for y? = 34. For this plane, the local mean streamwise

velocity at a given spanwise location varied from the global

mean by no more than 1%. The spanwise variation of velocity

is similar at the other two wall normal locations.

2.1 Measurements

Wall normal measurements were taken first to characterize

the flow at the start of the measurement location using only

one camera. The field of view was 50.6 mm 9 50.6 mm

(Lx 9 Ly). Due to camera memory limitations, a maximum

of 2,048 images could be taken at a time. For collapse of

the mean profile, 5 experiments were performed.

For wall parallel measurements, two cameras were

placed side by side in the streamwise direction with a

Test Section

2m

(a) Tunnel diagram (Bobba,2004) (b) Test section

Fig. 1 a Water tunnel schematic showing the location of the test section. b Photograph of the test section where the red lines outline the

submerged portion of the shroud and its wedge-shaped leading edge. A top down view is provided in the inset to clarify the shroud orientation
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Fig. 2 The spanwise variation of the velocity averaged over the

streamwise direction and time at y? = 34
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10–20 pixel overlap producing a total field of view of

approximately 140 mm 9 70 mm (Lx 9 Lz) with some

slight deviation between the three planes investigated. A

laser sheet was guided into the test section parallel to the

flat plate and was centered at locations 1, 3.2, and 8.2 mm

from the wall in order to capture the near wall, outer log

layer, and wake regions of the turbulent boundary layer.

For each plane, 40 experiments were performed providing

over 80,000 instantaneous realizations allowing collapse of

the calculated power spectra.

2.2 Vector processing

The velocity field calculations for both the wall normal and

wall parallel planes were performed using LaVision’s

Davis software. In the case of the wall parallel planes, the

vector fields were stitched together after processing. To

assure an exact overlap of the processed fields, the original

images were cropped before processing to ensure overlap

of an integer number of interrogation windows after pro-

cessing. In addition, due to bubbles and particles occa-

sionally aggregating at the wall, for the plane nearest the

wall, an average over all images was taken and subtracted

from each raw image before vector calculation to reduce

the effects of stationary tracers on this calculation.

A 50% overlap of interrogation windows was used to

satisfy the Nyquist criterion, which, as will be discussed in

Sect. 4, is necessary to resolve the spectrum properly. The

correlation peak fitting was done using a Gaussian three-point

estimator in each coordinate direction independently; Whit-

taker reconstruction was used for image reconstruction, and

in-plane particle pair loss was minimized using a window

shift. For wall normal measurements, the window size was

reduced from 16 9 16 to 12 9 12 pixels over two passes. For

wall parallel measurements both passes were performed with

a 32 9 32 pixel window with each camera processed sepa-

rately. The non-dimensional vector spacing, field size, and

wall normal locations are summarized in Table 1.

After the initial vector calculation, spurious vectors were

removed and replaced via interpolation. In all images, less

than 3% of the vectors were removed so the effect of inter-

polation on the measurements was considered minimal.

While the wall normal data were smoothed with a 3 9 3

filter, no smoothing was performed in wall parallel planes as

to preserve the fluctuating velocity signal and spectral shape.

3 Flow properties and statistics

The mean velocity profile and boundary layer thickness were

calculated from the wall normal measurements averaged in

the nearly homogeneous streamwise direction over all frames

and over all experiments. The boundary layer thickness,

calculated using the UðyÞ ¼ 0:99U1 criterion, varied by 5%

over the 50-mm window. The mean profile is compared with

the experiments of DeGraaff and Eaton (2000) at a similar

Reynolds number (Reh ¼ hU1=m ¼ 1; 430) in Fig. 3a. h is

the momentum thickness, and U1 is the free stream velocity.

Since no direct measurements of the wall shear stress

were made in this experiment, the friction velocity was

calculated from a least squares fit to the predetermined log

layer marked with circles in Fig. 3a. All of the flow

parameters are summarized in Table 1.

In the wall parallel measurements, d changed by about

10% over the whole field of view. While the outer scale, y/d, is

not constant over the measurement plane, the inner-scaled

wall distance is nearly constant since us only decreases

weakly with streamwise extent. Thus, each plane of the wall

parallel data is representative of a particular inner-scaled

distance from the wall. Data will also be presented using an

averaged outer scale in some cases for convenience.

The rms streamwise velocity fluctuations for each wall

parallel plane are presented in Fig. 3b and match closely with

the data from DeGraaff and Eaton (2000) and Erm and Jou-

bert (1991). Any small deviation from the literature values

may be from the spatial averaging present in the PIV calcu-

lations as discussed in Sect. 4. The wall normal fluctuations

measured in the wall normal plane are also presented for

completeness and deviate from the data shown, particularly

near the wall. This deviation arises from limited resolution in

the wall normal plane and is also observed in the streamwise

velocity fluctuations in this plane. As already noted, this is not

an issue in the wall parallel planes, which will be the focus of

all discussions from here on.

Table 1 Experimental

parameters
Res Reh d h U1 us m/us Dyþ Dtþ

470 1,280 13.9 mm 1.72 mm 0.67 m/s 0.03 m/s 29.5 lm 10.0 0.5

Plane y? y/d U? U=U1 urms
? Dxþ; Dzþ Lx/d Lz/d

1 34 0.07 13.1 0.59 2.10 37.6 9.98 4.91

2 108 0.23 16.4 0.73 1.53 37.1 9.85 4.84

3 278 0.59 20.2 0.90 1.25 37.5 10.03 4.89
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4 Calculation of the power spectral density in wall

parallel planes

The power spectral density is defined as the Fourier

transform of the correlation function of the velocity fluc-

tuations, where the relevant non-normalized 3D correlation

function is defined in Eq. 1.

Ruiuj
ðqx; qz; sÞ ¼ huðx; z; tÞuðxþ qx; zþ qz; t þ sÞi ð1Þ

In the above equation, qx and qz are the separation

between points in the streamwise and spanwise directions,

respectively, s is a separation in time, the subscripts i and j

represent velocity components, and the triangle brackets

represent an ensemble average. The Fourier transform pair

relating the correlation function to the power spectrum H is

given in Eqs. 2 and 3.

Huiuj
ðkx; kz;xÞ

¼ 1

ð2pÞ3
ZZZ

1

�1

Ruiuj
ðqx; qz; sÞe�iðqxkxþqzkzþsxÞdqxdqzds

ð2Þ

Ruiuj
ðqx; qz; sÞ

¼
ZZZ

1

�1

Huiuj
ðkx; kz;xÞeiðqxkxþqzkzþsxÞdkxdkzdx

ð3Þ

kx and kz are the streamwise and spanwise

wavenumbers, respectively, and x is the angular

frequency. The Fourier transform pair is defined as above

to allow for proper normalization of the spectrum, where

the normalization is defined by combining Eqs. 1 and 3 at

zero shift in time and space as given in Eq. 4.

Ruiuj
ð0; 0; 0Þ ¼ huiuji ¼

ZZZ

1

�1

Huiuj
ðkx; kz;xÞdkxdkzdx ð4Þ

In practice, the auto-spectrum is calculated as the square

magnitude of the finite Fourier transform of the velocity

fluctuations and is normalized using Eq. 4.

2D spectra can be calculated by integration of the 3D

spectrum over one dimension as shown in Eq. 5 (where the

limits are finite in practice) or by calculating the finite

Fourier Transform of a 2D subset of the original 3D sample

records and taking an ensemble average over all subsets.

Uuiuj
ðk1; k2Þ ¼

Z

1

�1

Huiuj
ðk1; k2; k3Þdk3 ð5Þ

k1, k2, and k3 are any three wave vectors. Similarly, 1D

spectra can be calculated as the integral of a 2D spectrum

or by using a 1D subset of the original 3D dataset and

ensemble averaging over all subsets.

As discussed by Adrian (1988), the velocity measured

by the PIV algorithm, ~Uiðx; y; z; tÞ, is not the velocity at a

single point in the flow, Ui(x, y, z, t), but the velocity

signal averaged over the laser sheet thickness (*1 mm)

and convolved with a rectangular window, h(x, z), which

represents the averaging effect of an interrogation window.

The relation between the measured and the true velocity is

given in Eq. 6, and the measured fluctuating velocity is

defined in Eq. 7.

~Uiðx; y; z; tÞ ¼
Z

yþy0=2

y�y0=2

Uiðx; y0; z; tÞdy0

2

6

4

3

7

5

� hðx; zÞ ð6Þ

10
0

10
1

10
2

10
3

0

5

10

15

20

25

y+

U+

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

y+

u rm
s

+
, v

rm
s

+

(a) Mean profile (b) Streamwise rms fluctuations

Fig. 3 In a the mean velocity profile is presented where the symbols

are: solid line mean profile from wall normal measurements; square
mean velocity from wall parallel measurements; dashed line Spalding

fit (Spalding 1961); (?) data from DeGraaff and Eaton (2000) at

Reh = 1,430; circle points selected to represent the log layer. In b
black lines and symbols are for uþrms and blue lines and symbols are for

vþrms: The symbols are: square uþrms from wall parallel plane

measurements; line with circles vþrms from the wall normal plane

measurements; diamond data from DeGraaff and Eaton (2000) at

Reh = 1,430; triangle data from Erm and Joubert (1991) at

Reh = 1,003
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~uiðx; y; z; tÞ ¼ ~Uiðx; y; z; tÞ � ~UiðyÞ ð7Þ

U is the instantaneous velocity, u is the fluctuating

velocity, the star represents convolution, and the overbar

indicates an average over all space, time, and experiments

that closely approximates the true mean as discussed by

Tomkins and Adrian (2005).

The spatial averaging from the interrogation window, h,

greatly attenuates fluctuations smaller than two window

widths and will also attenuate scales near this limit to a lesser

extent. This, then, leads to an attenuation of the measured

mean square fluctuations and the velocity spectrum.

When considering the measured velocity signal, ~u, given

in Eq. 7, a different spectrum will result. The square magni-

tude of the Fourier transform of Eq. 7 is given in Eq. 8, where

the convolution theorem has been used to separate out the

effects of smoothing from the interrogation window.

~Huiuj
ðkx; kz;xÞ ¼ Huiuj

ðkx; kz;xÞCðkx; kzÞ

Cðkx; kzÞ ¼ sinc2 Wx

2
kx

� �

sinc2 Wz

2
kz

� � ð8Þ

~H is the 3D power spectrum of the measured velocity

signal, C is the square magnitude of the Fourier transform

of the rectangular window, h, and W is the PIV

interrogation window size in either x or z as denoted by

the subscript. The measured spectrum, ~H, should be

normalized by the measured mean square value of the

velocity fluctuations, which is the mean square value of the

fluctuations defined in Eq. 7.

The effect of C is to attenuate the spectrum, particularly

at high wavenumbers, where the amplitude of C goes to

zero at k = 2p/W. Since C is known, one could recover the

original spectrum, H simply by dividing by C, although, in

practice, this does not work where C approaches zero. As

noted by Foucaut et al. (2004), the attenuation becomes

significant (more than 50% attenuation) above a wave-

number kcut = 2.8/W. Following their criterion, all data

beyond this cutoff will be ignored.

Since the experimental data are not periodic and of finite

length, the data are windowed prior to calculating the

Fourier transform to prevent spectral leakage. A 3D Han-

ning window, an extension of the 2D Hanning window

used by Tomkins and Adrian (2005), is used here. With the

current data, the effect of leakage is most prevalent at the

low-frequency end of the spectrum. Multiplying the mea-

sured signal by the 3D Hanning window, denoted by g,

provides an estimate of the spectrum as presented in Eq. 9.

~̂Huiuj
ðkx; kz;xÞ ¼ ½ðUiHÞ � G� ½ðU�j H�Þ � G��

h i

ð9Þ

The hat indicates that this is an estimate of the spectrum

since the signal is windowed and of finite length, the

capital letters are the finite Fourier transform of the

corresponding lower case quantity where UU� ¼ H;
HH� ¼ C, and the asterisk represents the complex

conjugate. Estimates of the 2D and 1D spectra can be

calculated as before, and the mean square fluctuations are

the same as for the non-windowed data using a proper

weighting of the windowing function.

The division of this estimate of the spectrum by C to

correct the high wavenumber range gives a reasonable esti-

mate of the true spectrum since the convolution with G in

spectral space mainly affects the low-frequency/wavenumber

range. The same operations were performed by Tomkins and

Adrian (2005). In presenting the spectra, both the corrected

form (divided by C) and the uncorrected form will be shown

to illuminate the effects of this correction.

To avoid spatial aliasing, interrogation windows with 50%

overlap were used which attenuate aliased energy content

above the Nyquist frequency. To avoid temporal aliasing, the

data were oversampled during recording, low-pass filtered,

and then subsampled before calculating the spectrum as

discussed by Wernet (2007). The low-pass filter cutoff for the

time signal is set so that xcut ¼ UðyÞkcut.

To summarize, small-scale features of the flow are atten-

uated by the averaging over the PIV interrogation window,

and large-scale features are smoothed out by spectral leakage.

To account for these issues and prevent aliasing, the data are

recorded at a higher sampling rate than necessary and the

vector fields are calculated using 50% overlap of the inter-

rogation windows. Before any calculations are performed, the

data are low-pass filtered in time to get rid of unwanted noise.

Prior to calculation of the spectrum, the signal is split into

subsets (split twice in z and thrice in time with each region

overlapping by 50%) and windowed using a Hanning window

to help reduce spectral leakage. Finally, the finite Fourier

transform of each subset is calculated, all calculations are

averaged, and the data are divided by the smoothing function

C to get an estimate of the true spectrum H where data beyond

the cutoff in kx and kz are ignored. 1D and 2D spectra are

calculated by integration of the resulting 3D spectrum.

5 Spectral energy distributions

We begin this section with a discussion of the symmetries

present in the 1D, 2D, and 3D streamwise velocity spectra

and the proper normalization of each before moving on to

present the 1D, 2D, and 3D spectra calculated from the PIV

measurements. Due to a lower than desirable dynamic

range of the spanwise velocity fluctuations, neither the

spanwise velocity spectrum nor the streamwise–spanwise

velocity cross-spectrum will be presented here. For this

reason, in the remainder of this document, the uiuj subscript

for the spectra will be dropped since all spectra will be

streamwise velocity spectra.
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The 3D auto-spectrum is even and real, which provides

symmetry about any coordinate plane if the spectrum is

rotated by 180� about the origin, and thus only 4 inde-

pendent octants exist. Similarly, all 2D spectra are even

and real with rotational symmetry about the origin and

thus, have only 2 independent quadrants each. Therefore,

any 2D spectra can be represented by any half plane and

the 3D spectrum by any 4 connected octants. In this half

space representation, the magnitude of the spectra is dou-

bled to conserve energy. The 2 non-redundant quadrants of

each 2D spectrum are shown in Fig. 4a–c, and the four

non-redundant octants (choosing x[ 0) of the 3D spec-

trum are shown in Fig. 5 for one wall normal location.

From Fig. 4b, c, only a very slight asymmetry is noted

in kz which arises from poorer resolution in this direction as

well as slight tilting of the PIV cameras, although some

corrections have been made for the latter. For all practical

purposes, these spectra are symmetric in kz. For Uðkz;xÞ
this symmetry arises since there is no mean spanwise flow

and thus no spanwise directional preference. For Uðkx; kzÞ
there should physically be no distinction between the

positive and negative wavenumber pairs. Thus, both of

these spectra can be represented in one quadrant with the

magnitude doubled to conserve energy.

For Uðkx;xÞ the two quadrants are not equivalent,

where quadrant I is interpreted as downstream traveling

waves and quadrant II as upstream traveling waves. The

amount of energy in quadrant II is not negligible (at

y? = 108 quadrant II represents about 12% of the total

area under the spectrum) as originally suggested by Mor-

rison and Kronauer (1969), and it is necessary to use both

planes when integrating Uðkx;xÞ to recover UðkxÞ;/ðxÞ,
or any other integral quantities; otherwise, a low wavenu-

mer spectral distortion will result.

For the 3D spectrum shown in Fig. 5, the same sym-

metry exists in kz and the same asymmetry exists in kx as

might be expected from the 2D spectral plots. Thus, the

spectrum can be represented by the two octants covering all

kx and positive kz and x with the magnitude doubled to

preserve the normalization as given in Eq. 5.

u2 ¼
ZZZ

1

�1

Hðkx; kz;xÞdkxdkzdx

¼ 4

ZZZ

1

0

Hðkx; kz;xÞ þHð�kx; kz;xÞ½ �dkxdkzdx

¼ 4

ZZZ

1

�1

kxkzx Hðkx; kz;xÞ þHð�kx; kz;xÞ½ �

� d ln kx d ln kz d ln x ð10Þ
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Fig. 4 The panels show the half space representation of each 2D

spectrum at y? = 108. The spectra at other wall normal locations are

qualitatively similar. The levels shown are from 20 to 80% of the

maximum energy in 10% increments moving from light to dark
shades

Fig. 5 The half space representation of Hðkx; kz;xÞ at y? = 108 is

shown, where the spectra in other planes are qualitatively similar. The

levels are from 15 to 75% of the maximum energy in 20% increments

moving from light to dark shades. The intersection of the spectrum

with x = 0 is denoted by solid black lines to better illuminate the

shape of the spectrum
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While the energy in the upstream traveling waves is

non-negligible and must be included for proper

normalization of Hðkx; kz;xÞ, it is customary in the

literature to only plot data for positive streamwise

wavenumber, kx, when these spectra are presented in

premultiplied form. While this may seem wrong at first,

when premultiplied and presented in log coordinates, the

energy in the first decade, which encompasses the upstream

traveling waves, is spread out while the remaining 80% of

the energy in the second decade is concentrated and, when

considering absolute energy levels, appears much more

energetic. Therefore, for the energy levels shown in the

following figures, the upstream traveling waves do not

appear so plots are presented over positive kx only.

5.1 1D spectra

Figure 6a, c and e show the 1D premultiplied streamwise

velocity spectrum over streamwise wavenumber, spanwise

wavenumber, and frequency, respectively, for the
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Fig. 6 1D premultiplied

streamwise velocity spectra

over a, b streamwise

wavenumber, c, d spanwise

wavenumbers, and e, f
frequency. The solid line is for

y? = 34, the (?) is for

y? = 108, and the circle is for

y? = 278. The uncorrected data

are shown in the left column
and the corrected data are in the

right column. For the

uncorrected data, the dashed
lines indicate data beyond the

imposed cutoff, kcut, beyond

which the data begins to be

attenuated
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uncorrected data. The corrected data are shown in Fig. 6b,

d and f for comparison. The peak in the spectrum over

spanwise wavenumber moves to lower kz (larger spanwise

scales) when moving away from the wall indicating that the

signature of the dominant scales is growing in spanwise

extent in this direction. This has also been shown in the

channel flow computations of Jiménez et al. (2004) and

boundary layer experiments of Tomkins and Adrian

(2005), among others. In the present data, as the peak

moves to higher kz closer to the wall, a larger energetic

portion of the spectrum is cut off by spatial averaging. In

fact, at y? = 34, a better resolution would be required to

resolve the peak in the spectrum over spanwise wave-

numbers. Therefore, any integral quantities in the z direc-

tion, including the rms velocity fluctuations and spectra,

will be more in error as the wall is approached. This is

likely the reason for the slight underestimation of urms at

y? = 34 shown in Fig. 3b.

In Fig. 7, the 1D spectra over frequency and over

streamwise wavenumber are compared to one another
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Fig. 7 The streamwise

wavenumber and frequency

spectra are compared where the

colors are black: kx/(kx), gray:

Taylor conversion of x/(x).

The uncorrected data are shown

in the left column and the

corrected data are in the right
column. For the uncorrected

data, the dashed lines indicate

data beyond the imposed cutoff,

kcut beyond which the data

begins to be attenuated. Data

from Erm and Joubert (1991) at

Reh = 1,020 is represented by

symbols where the wall normal

locations are a, b y/d = 0.04

(?), 0.1 (circle), c, d y/d = 0.2

(?), 0.35 (circle), and

e, f y/d = 0.55 (?)
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using Taylor’s hypothesis and to the hotwire measurements

of Erm and Joubert (1991) at a similar Reynolds number

and comparable wall normal locations. The 1D spectra are

in fair agreement with the data of Erm and Joubert (1991),

and this agreement is improved when the data are corrected

as shown in the plots in the right column of Fig. 7. This

improved agreement with the corrected 1D spectra should

also be indicative of a proper correction for the 2D and 3D

spectra as the correction is applied to the 3D spectrum, and

all other spectra are calculated via integration of this

spectrum. The only major deviation between the temporal

and spatial spectra is at y? = 34. This deviation may be

indicative of the variation of the convection velocity of

scales from the local mean, although noise may also be

contributing to this variation, particularly at the high kx

end, as shown in the 2D spectra in Sect. 2. Some error may

be expected at this wall normal location since there is a

slight deviation of the mean velocity profile from the

measurements of DeGraaff and Eaton (2000) as shown in

Fig. 3a, and thus, other statistics may be adversely affected.

For the other two planes, there is almost no deviation

between the spatial and Taylor converted temporal spectra,

indicating that the frozen flow assumption should hold at

these locations.

5.2 2D spectra

The 2D premultiplied Uðkx;xÞ streamwise velocity spec-

tra, i.e. kxxUðkx;xÞ, are shown for each plane in Fig. 8

with the uncorrected data in the left column and the cor-

rected data in the right column. Note that in the 1D spectra

of Fig. 6, the maximum energy of each spectrum decreases

as measurements are taken further from the wall, as

expected. In the 2D plots here and 3D plots to follow,

contour levels represent a fraction of the maximum energy

of each individual spectrum so this variation will not be

present. Also, note that the total energy of a spectrum is

different before and after correction, so the levels shown

for the uncorrected spectra do not represent the same levels

shown for the corrected spectra.

One notable difference between the corrected and

uncorrected kxxUðkx;xÞ is the apparent noise that appears

in the corrected spectrum in the range of 7 \ kxd\ 20 and

1\xd=U1\9. In this same high wavenumber range,

there is a discrepancy between the spatial and temporal 1D

spectrum as shown in Fig. 7a and more prevalently in the

corrected spectrum in Fig. 7b where the amplitude of the

spatial spectrum exceeds the temporal spectrum. Since the

1D temporal and streamwise wavenumber spectra should

agree for the nearly homogeneous small scales, the dis-

crepancy beyond kxd = 7 likely comes from noise. It is

hypothesized that this noise in the near wall plane is from

the measurement of nearly stationary particles or bubbles

that clustered near the surface and were illuminated by the

laser sheet during PIV acquisition.

From Uðkx;xÞ, a convection velocity can be calculated

for each streamwise scale as shown in Fig. 9. The method

of finding the ridge line, the line of maxima along the

spectrum as outlined by Goldschmidt et al. (1981), is used

here where the convection velocity is then defined as x / kx

along the ridge line (the solid line in the Fig. 9). For the

plane shown at y? = 34, it is apparent that most scales

travel faster than the local mean velocity. This is in fair

agreement with Krogstad et al. (1998), whose data from

hotwire measurements are presented for comparison. The

discrepancy beyond kxd = 7 may again be affected by the

noise in this region as described previously, and for this

reason, data beyond this point in Fig. 9 have been denoted

by a dashed line. In addition, the slow convection velocities

for low wavenumbers reflect the lack of scale separation at

this low Reynolds number, namely the dominance of the

near-wall structures over the superstructures which are

centered at locations further from the wall but inhabit a

similar wavenumber range.

Premultiplied Uðkz;xÞ and Uðkx; kzÞ are shown for each

plane in Figs. 10 and 11, respectively. The uncorrected

data are shown in the left column and the corrected data are

shown in the right column. In addition, data from the

channel flow computations presented by del Álamo and

Jiménez (2001) at y? = 90 and Res = 550 are included for

comparison to the current data at y? = 108 to validate the

correction applied (some differences are expected due to

the difference in geometry between these two flows as well

as the slight difference in Reynolds number and wall nor-

mal location). The correction appears to push the spectral

peak in the right direction and aligns the current data to the

data from del Álamo and Jiménez (2001). The dotted

contours for the uncorrected data show the region that is

beyond the wavenumber cutoff and again show that the

resolution in z is not sufficient to resolve the peak in the

spanwise direction at y? = 34. Again, the correction

pushes the peak in the spectra to higher kz and increases the

energy in the spectra in general near this cutoff. Upon

integration in kz, the resulting corrected 1D spectra will

have a higher level throughout than the uncorrected spec-

tra, as evidenced in the /(kx) and /(x) plots in Fig. 7.

Uðkx; kzÞ shows some variability between the three

planes, becoming less elongated in streamwise wavenum-

ber further from the wall as shown in Fig. 11a,c and e. The

range of energetic streamwise scales narrows while the

range of spanwise scales remains fairly constant moving

further from the wall leading to a more homogeneous

distribution of the energy in the wake region.

Note that all 2D spectra show that the range of

streamwise scales becomes smaller and the larger stream-

wise scales become less dominant beyond the log layer.
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Recall, that these conclusions are drawn upon low Re data

so the scale separation is not large, yet this conclusion

about the change in scale size from the inner layer to the

wake region should apply to higher Reynolds number data.

This illustrates the difficulty in performing PIV in planes

near the wall as the range of energetic scales is broader,
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Fig. 8 kxxUðkx;xÞ is

presented for all three planes.

The uncorrected data are

presented in the left column and

the corrected data are in the

right column. For each plot, the

contours represent 20–80% of

the maximum energy of the

spectrum moving from lighter
to darker shades in 10%
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and large scales play a more dominant role. Thus, both a

very large field of view and a very fine resolution are

needed, which was difficult to achieve in the current

experiment. The best solution is to analyze both a large

field to obtain the large-scale features and a small, well-

resolved field from which a composite spectrum can be

produced covering the whole wavenumber range, which is

the focus of future experiments.

5.3 3D spectra

Finally, two views of the 3D premultiplied streamwise

velocity spectra, kxkzxHðkx; kz;xÞ, are presented in each

wall parallel plane in Fig. 12a–f for the corrected data. The

uncorrected data have been omitted since differences

between the two are already clearly outlined by the 2D

spectra in Sect. 2. The cutoff of each spectrum is clearly

shown here, and the effect of this cutoff on all of the spectra

presented so far can easily be understood by considering an

integration in one or more coordinate directions.

These three-dimensional spectra show not only the

energy distribution over all scales, but over all scales

traveling at all velocities, where the convection velocity of

a scale is defined as uc,x = x/kx. In this framework, if the

flow is decomposed into traveling waves as in the model of

McKeon and Sharma (2010), then the spectra are the

footprints of these waves at particular wall normal loca-

tions. For flow control applications, measurements taken at

several wall normal locations would provide a well-char-

acterized response of the boundary layer to a periodic

excitation (as studied in Jacobi et al. (2010) and Jacobi and

McKeon (2011) using hotwires), and alterations of the

spectra could be used to see how a particular input

restructures the flow. Such information could be used for

optimal control design.

To gain insight into the convection velocity of different

scales in the flow, a single convection velocity can be

calculated for each streamwise and spanwise scale pair

from the three-dimensional spectra using Eq. 11 from del

Álamo and Jiménez (2009) and used in earlier works by

Jiménez et al. (2004) and Flores and Jiménez (2006).

ucðkx; kz; yÞ ¼
1

kx

R1
�1 xHðkx; kz;x; yÞdx
R1
�1Hðkx; kz;x; yÞdx

ð11Þ

This convection velocity definition uses a value of x that

is weighted by the 3D streamwise velocity spectrum. In this

way, it gives the dominant convection velocity for each

streamwise–spanwise scale pair. A map of the convection

velocity is presented in Fig. 13 where lines of constant

convection velocity are plotted on top of kxkzUðkx; kzÞ to

highlight the convection velocity of the most energetic

scales. From this chart, it is apparent that most scales at

y? = 34 travel slower than the local mean except for the

large scales in the range 2 \ kx/d\ 5. This differs from the

trend in Fig. 9 where almost all scales recovered traveled

faster than the local mean. This difference may be expected

as the method of calculating the convection velocity differs

between the two figures where one searches for a maximum

(method for Fig. 9) while the other looks for a ‘‘center of
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Fig. 9 a The convection velocity calculated by finding the line of

local maxima along kxxUðkx;xÞ at y? = 34 is indicated by the solid
black line (dashed black line beyond the point where noise influences

the calculation) and displayed on top of the spectrum where the

contours represent 20–80% of the maximum energy of the spectrum

moving from light to dark shades in 10% increments. The dash-dot

line indicates where x ¼ Ukx signifying a convection velocity equal

to the local mean. The four open circles are data from Krogstad et al.

(1998) at the same y? and similar Reynolds number. These data were

converted from their original form, convection velocity plotted

against streamwise probe separation, by converting the separation to a

wavenumber and using the convection velocity for each wavenumber

to define an associated frequency. (b) The convection velocity is

plotted as a function of wavenumber where the lines and symbols are

the same as in a
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mass’’ (method for Fig. 13). Also, the noise that exists over

a range of x as well as the cutoff imposed in x will manifest

itself differently when using an integral method such as Eq.

11. An investigation of such convection velocity maps, as

well as the definition of convection velocities in general, is a

subject of future work.
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Fig. 10 kzxUðkz;xÞ is

presented for all three planes

where the contours represent

20–80% of the maximum

energy of the spectrum moving

from light to dark shades in

10% increments. The

uncorrected data are presented

in the left column and the

corrected data are in the right
column. For the uncorrected

data, the unshaded contours are

regions of the spectrum beyond

the streamwise and spanwise

cutoff, kcut, that may be

irregularly shaped due to

spectral attenuation, but are

included for visualization
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6 Conclusions

We presented for the first time 3D streamwise velocity

power spectra (2D in space and 1D in time) in all regions of

the turbulent boundary layer and outlined the method for

calculating and normalizing these from PIV measurements.

The effect of the PIV interrogation window on the reso-

lution and attenuation of both the spectrum and the
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Fig. 11 kxkzUðkx; kzÞ is

presented for all three planes

where the contours represent

20–80% of the maximum

energy of the spectrum moving

from light to dark shades in

10% increments. The

uncorrected data are presented

in the left column and the

corrected data are in the right
column. For the uncorrected

data, the unshaded contours are

regions of the spectrum beyond

the streamwise and spanwise

cutoff, kcut, that may be

irregularly shaped due to

spectral attenuation, but are

included for visualization.

Linearly spaced spectral

contours from del Álamo and

Jiménez (2001) for a channel

flow computation at Res = 550

at y? = 90 are shown with

circles where cool colors
indicate less energetic portions

of the spectrum. This is

compared to the current data in

c and d to show the validity of

the correction
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measured velocity fluctuations was discussed. In addition,

the methods used for reducing aliasing and spectral leakage

were outlined. From the 3D spectra presented, the more

usual 1D and 2D spectra were also calculated and com-

pared with previous findings.

With the current dataset, it was found that the spanwise

resolution of the streamwise velocity fluctuations was

lacking, while the streamwise and temporal resolutions

were reasonable. Current experiments are underway to

improve the spanwise resolution and also to increase the

dynamic range to improve the resolution of spanwise fluc-

tuations so that the spanwise and streamwise–spanwise

cross-spectrum can be analyzed. Regardless of these issues,

it was still possible to consider the convection velocity of

(a) y+ = 34 (b) y+ = 34

(c) y+ = 108 (d) y+ = 108

(e) y+ = 278 (f) y+ = 278

Fig. 12 kxkzxHðkx; kz;xÞ is

presented at each wall normal

location. The surfaces represent

25, 50, and 75% of the total

energy in each spectrum moving

from light to dark shades. The

left and right columns offer two

different views. Data beyond the

kx and kz cutoffs are not shown
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streamwise scales over both streamwise and spanwise

wavenumbers using the calculated 3D spectrum. The

investigation and interpretation of these is an area of current

interest.
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del Álamo JC, Jiménez J (2009) Estimation of turbulent convection

velocities and corrections to Taylor’s approximation. J Fluid

Mech 640:5–26

Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s

hypothesis in constructing long structures in a turbulent bound-

ary layer. J Fluid Mech 614:197–206

Erm LP, Joubert PN (1991) Low-Reynolds-number turbulent bound-

ary layers. J Fluid Mech 230:1–44
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Fig. 13 The contour lines represent the convection velocity at

y? = 34 using the method outlined in Eq. 11 where solid contours
denote a convection velocity equal to the local mean and dotted
contours with symbols are convection velocities below the local mean

where the symbols are: circle U
þ � us; x:U

þ � 2us; diamond

U
þ � 3us. The shaded contours represent 20–80% of the maximum

energy of kxkzUðkx; kzÞ in 10% increments moving from light to the

dark shades
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