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Abstract Our contribution deals with fast computation of

dense two-component (2C) PIV vector fields using

Graphics Processing Units (GPUs). We show that iterative

gradient-based cross-correlation optimization is an accu-

rate and efficient alternative to multi-pass processing with

FFT-based cross-correlation. Density is meant here from

the sampling point of view (we obtain one vector per

pixel), since the presented algorithm, FOLKI, naturally per-

forms fast correlation optimization over interrogation

windows with maximal overlap. The processing of 5 image

pairs (1,376 9 1,040 each) is achieved in less than a sec-

ond on a NVIDIA Tesla C1060 GPU. Various tests on

synthetic and experimental images, including a dataset of

the 2nd PIV challenge, show that the accuracy of FOLKI is

found comparable to that of state-of-the-art FFT-based

commercial softwares, while being 50 times faster.

1 Introduction

Particle Image Velocimetry (PIV) has become an essential

tool for flow diagnosis and is therefore widely used in

industrial as well as academic situations. Its current limi-

tation is however, the time necessary to compute the vector

fields from the images, which often imposes specific

constraints in the schedule of test campaigns. In that

respect, the important development of high-speed PIV

systems over the last decade appears even more challeng-

ing. We propose a solution to shorten dramatically this

processing time, based on an algorithm that computes

dense 2C vector fields using Graphics Processing Units

(GPUs).

GPU has already been compared to other architectures

for PIV processing in previous works (Schiwietz and

Westermann 2004; Venugopal et al. 2009). These studies

concentrated on cross-correlation using FFT, but the speed-

up factor for FFT using GPU versus CPU architecture does

not exceed three. In this context, real-time computation

therefore requires large PC clusters with a GPU at each

node (Venugopal et al. 2009). Former real-time realiza-

tions also involve parallelization on Field-Programmable

Gate Arrays (FPGA) (Iriarte Munoz et al. 2009; Yu et al.

2006). Although efficient and convenient for embedded

systems, this solution is far more expensive than GPU to

implement, both in terms of hardware cost and software

development effort. Interestingly, these architectures get

rid of FFT in favor of direct correlation, which is better

suited to FPGA architectures. In contrast to these works,

the approach proposed hereafter relies on a technique for

cross-correlation maximization that departs from the clas-

sical FFT method or from direct correlation. Its structure is

ideally matched to massively parallel architectures and

therefore allows a 50 times speed-up using a single GPU.

The algorithm FOLKI (French acronym for Iterative

Lucas–Kanade Optical Flow, Le Besnerais and Champag-

nat 2005) was originally designed in the context of com-

puter vision for motion estimation in video sequences. But

FOLKI proved also very robust and adaptive to many other

kinds of images such as those obtained in photomechanics

and PIV. It is based on the classical interrogation window
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paradigm, but belongs to the family of Lucas–Kanade (LK)

algorithms (see Baker and Matthews 2004, for a review).

The basic LK method is already known in the PIV com-

munity but it is most often associated with Particle

Tracking Velocimetry (Miozzi 2004; Stanislas et al. 2008),

i.e., low-seeding densities and sparse estimation of dis-

placements. In contrast, the improvement from the basic

LK approach implemented in FOLKI naturally relies on the

computation of dense fields, i.e., a displacement vector for

each image pixel. This leads to a highly regular and parallel

algorithm which is much more efficient than previous

sparse LK techniques and furthermore specially suited to

GPU architectures. Of course, the fact that one vector per

pixel be obtained should not be confused with the spatial

resolution of the method, which is tightly linked with the

window size, as for any other window-based PIV

technique.

The principle of FOLKI is the following: around each

pixel, a fixed size interrogation window (IW) is defined,

and a cross-correlation measure is defined as a Sum of

Squared Differences (SSD) between the IW and a displaced

window in the consecutive image. In contrast to main-

stream PIV algorithms that perform extensive search over

discrete pixel grid with a FFT correlation, this SSD is

minimized using an iterative Gauss–Newton (GN) descent.

On a general point of view, when initialized not too far (say

3 pixels) from the true displacement, it is known that the

convergence of GN is fast, reaching a precision of the order

of a tenth of a pixel in typically less than 5 iterations. As

PIV images may often be characterized by larger dis-

placements, a multiresolution scheme is used to avoid local

minima. An image pyramid is built, starting from the

acquired images, which correspond to the ground level.

This is done by successively performing low-pass filtering

and decimation, leading to successively smaller images. As

each step also divides the displacements by two, this has to

be done until the top-level images have displacements

compatible with GN iterations initialized with a displace-

ment equal to zero. This leads to first rough estimates,

whose values are successively refined by descending the

pyramid levels (whereby the spatial resolution is also

refined). Such a coarse-to-fine multiresolution scheme has

proven very efficient in optical flow methods in computer

vision (Bergen et al. 1992) and is also used in PIV (see for

instance Ruhnau et al. 2005). As will be shown in Sect. 2,

an iterative image deformation technique (Lecordier and

Trinite 2003; Stanislas et al. 2008) is implicitly embedded

in the descent iteration.

Multiresolution, gradient descent and a dense velocity

output are more often encountered in so-called ‘‘optical

flow’’ methods (Corpetti et al. 2006; Ruhnau et al. 2005).

However, FOLKI is a window-based method, with no spatial

regularization such as a Horn & Schunk-like term (Corpetti

et al. 2006). It should be compared to classical FFT cor-

relators, which we will do in the assessment part of this

paper.

The paper is organized as follows: Sects. 2 and 3 are

devoted to a description of the basic FOLKI algorithm and to

the principle of its GPU implementation. They consist in a

more detailed version of the material presented in PIV’09

(Champagnat et al. 2009). Section 4 then describes specific

improvements which were added to address situations

typically encountered in PIV, the corresponding GPU

implementation is then referred to as FOLKI-PIV. A detailed

performance assessment follows, where FOLKI-PIV is char-

acterized and benchmarked against a state-of-the-art com-

mercial PIV software using FFT-based cross-correlation.

First, synthetic images are specifically generated in order to

determine its spatial resolution and its sensitivity to low-

seeding densities and to noise. This is done in Sect. 5.

Then, the comparative assessment is extended to experi-

mental images, in Sect. 6. The level of peak-locking bias

and sensitivity to actual measurement noise are explored by

considering case A of the second PIV challenge (Stanislas

et al. 2005), and results from a test campaign recorded at

ONERA are introduced to show the advantages of dense

sampling and illustrate how FOLKI-PIV deals with solid walls

thanks to the use of masks. Finally, conclusive remarks and

perspectives on future work are gathered in Sect. 7.

2 Basic FOLKI algorithm

2.1 Multiresolution setting and notations

The notations for the following derivations are illustrated

in Fig. 1: observed image intensity at discrete positions

k ¼ ½k; l�t 2 G ¼ f0; . . .;K � 1g � f0; . . .; L� 1g and time

indexes t 2 f0; dtg is denoted Iðk; tÞ. In the sequel, all

summations
P

k refer to summation on G. We will some-

times use the notation Ið�; tÞ for the function k 7! Iðk; tÞ.

Fig. 1 Notations for image intensities within image pyramid and

interrogation window
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We use a multiresolution framework (Bergen et al.

1992): image intensity Ijðx; tÞ at any real position

x ¼ ½x; y�t, and any resolution level j [ 0 is computed by

means of a Gaussian pyramid (Burt and Adelson 1983):

starting from a level j, the image of level j ? 1 is obtained

by applying a low-pass filter on the intensity Ij(., t) and

then retaining one pixel out of a square of 2 9 2 pixels.

Thus, image j ? 1 is four times smaller than image j, while

displacements are divided by two. For each level, the

spatial image gradient rIjðx; tÞ is computed by a first-order

centered difference scheme.

In this framework, displacements of the initially recorded

image (level j = 0) are thus divided by 2j at level j. This

allows to settle the question of the first estimate for the Gauss–

Newton iterations: indeed, initialization at the highest level

J - 1 (where J is the total number of levels) can be done with

zero displacement, as long as J is chosen so that displace-

ments to find at level J - 1 are sufficiently small in the whole

image. In practice, for standard PIV images with an 8 pixel

dynamic range, J = 3 is enough for this process to work

successfully, without being trapped in local minima.

2.2 A Lucas–Kanade algorithmic core

FOLKI relies on a Lucas–Kanade paradigm (Baker and

Matthews 2004), which has been extended in Le Besnerais

and Champagnat (2005) so as to provide a convergent

iterative estimation of the dense displacement field u.

In a majority of current PIV algorithms, the displace-

ment of a given IW is found by first calculating the cross-

correlation score of all possible displacements, then finding

the maximum correlation peak, and finally refining its

position by sub-pixel fit or interpolation. Usually, this

process is repeated iteratively with decreasing window

sizes, and at each step, the IWs are shifted using the pre-

vious estimation of displacement. The LK algorithm is also

a window matching technique, but differs on both the

objective criterion and on the way to obtain sub-pixel

displacements. Cross-correlation maximization is in fact

achieved by minimizing a Sum of Squared Differences

(SSD), in which the displacement to be found appears

directly as a real-valued (and not integer-valued) quantity.

This is achieved thanks to a Gauss–Newton iterative des-

cent. The SSD criterion around pixel k at level j writes
X

m

wðm� kÞ Ijðm; 0Þ � Ijðm� uðkÞ; dtÞ
� �2 ð1Þ

where w is a weight function whose support defines the

interrogation window WðkÞ:
WðkÞ ¼ fm 2 G j wðm� kÞ[ 0g: ð2Þ

The following derivations are valid for any kind of weight

function. Popular choices are rectangular and Gaussian

weights. All the experimental results presented in this

paper use a standard rectangular IW (wfðmÞ ¼ 1=ð2Rþ 1Þ2
for m 2 f�R; . . .;Rg � f�R; . . .;Rg). For convenience of

coding, we use only odd IW dimensions.

Now addressing the minimization process, let us

assume that an initial guess u0ðkÞ of the displacement is

available and is a good approximation of the sought

displacement uðkÞ, i.e., uðkÞ � u0ðkÞ � 0. The Gauss–

Newton iteration derives from the following first-order

expansion of Eq. 1 around u0ðkÞ, with uðkÞ � u0ðkÞ as a

small parameter:
X

m

wðm� kÞ Ijðm; 0Þ
�

� Ijðm� u0ðkÞ; dtÞ

þ rIjðm� u0ðkÞ; dtÞtðuðkÞ � u0ðkÞÞ
�2
: ð3Þ

Equation 3 is a linear least-squares criterion, which can

already be optimized to yield uðkÞ by solving a 2 9 2

linear system.

In Bouguet (2000), a faster scheme was proposed. It

relies on a slightly different form of Eq. 1:
X

n

wðm� kÞ Ijðmþ uðkÞ � u0ðkÞ; 0Þ
�

�Ijðm� u0ðkÞ; dtÞ
�2
: ð4Þ

In this criterion, instead of searching uðkÞ in the image at

time dt as in Eq. 1, image at time dt is shifted by the

estimate u0ðkÞ and the increment uðkÞ � u0ðkÞ is applied to

the image at time 0. A Taylor expansion of Ijð�; 0Þ around

m then yields
X

m

wðm� kÞ Ijðm; 0Þ
�

� Ijðm� u0ðkÞ; dtÞ

þ rIjðm; 0ÞtðuðkÞ � u0ðkÞÞ
�2
: ð5Þ

The advantage of this ‘‘inverse additive’’ approach (Baker

and Matthews 2004) is that the spatial intensity gradient

rIjðm; 0Þ is computed only once for each resolution level j,

while in Eq. 3 the spatial gradient, rIjðm� u0ðkÞ; dtÞ has

to be computed at each iteration.

2.3 Dense LK algorithm

As shown in Le Besnerais and Champagnat (2005), if one

wants to apply iterative techniques based on expansions (3)

or (5) at each pixel—which is the usual goal in computer

vision—the overall cost is prohibitive, because, for each

iteration, it requires (2R ? 1)2 interpolations per pixel due

to the Ijðm� u0ðkÞ; dtÞ term (and also because of the

gradient rIjðm� u0ðkÞ; dtÞ which appears in Eq. 3). Faster

schemes can in fact be obtained by using only one inter-

polated image per iteration. To do so, we introduce the

following notation:

Exp Fluids (2011) 50:1169–1182 1171

123



Iu0

j ðm; dtÞ,Ijðm� u0ðmÞ; dtÞ: ð6Þ

As this expression shows, image Iu0 is ‘‘warped’’ according

to the current displacement field estimate u0 evaluated at

each pixel m, as opposed to a warping with one value of u0

per IW. In order to obtain a convergent scheme based on

the unique warped image (6), FOLKI thus uses the

approximation proposed in Le Besnerais and Champagnat

(2005):

uðkÞ � u0ðmÞ � 0; 8m 2 WðkÞ ð7Þ

Using Eq. 7, one then derives a first-order expansion of

Eq. 1:

X

m

wðm� kÞ Ijðm; 0Þ � Iu0

j ðm; dtÞ
�

þrIjðm; 0ÞtðuðkÞ � u0ðmÞÞ
�2
: ð8Þ

Minimization of Eq. 8 finally amounts to solving a 2 9 2

local system

HðkÞuðkÞ ¼ cðkÞ: ð9Þ

Let us detail the computation of the matrices HðkÞ for all

pixel index k. While searching for the stationary point

which minimizes Eq. 8, one obtains:

HðkÞ ¼
X

m

wðm� kÞ rIjðm; 0ÞrIjðm; 0Þt
� �

: ð10Þ

If H denotes the matrix valued function k 7!HðkÞ of the

pixel index, Eq. 10 for all pixels k can be globally written

as a convolution:

H ¼ w � rIjð�; 0ÞrIjð�; 0Þt
� �

; ð11Þ

where � stands for the convolution of the scalar weight

function w with each component of the matrix valued

function which is inside the parenthesis. In the same way,

the right-hand side vectors cðkÞ of Eq. 9 can be all

computed by convolutions as follows

c ¼ w � ð�rIjð�; 0ÞÞ ð12Þ

� ¼ Ijð�; 0Þ � Iu0

j ð�; dtÞ � rIjð�; 0Þtu0 ð13Þ

As a result, at each iteration, local systems (9) for all pixels

can be constructed simultaneously by Eqs. (6–11–13)—

note however, that Eq. 11 can be computed once for all

iterations, as already mentioned.

2.4 Overall algorithm and general comments

The global structure of the algorithm, summarized in

Table 1, is a coarse-to-fine multiresolution scheme over J

levels, with a fixed number N of Gauss–Newton iterations

per level. As mentioned above, J should be chosen

depending on the expected displacements in the image, and

N may depend on the quality of the images and on the

radius R of the IWs. More details on the way to choose

these parameters will be given in Sects. 5 and 6. Also, note

that the current version of FOLKI at use in ONERA gathers

additional features specially adapted to PIV, which will be

described in Sect. 4. Here, we simply comment on some

specificities of the algorithm which are already contained

in the above derivation.

A first remark is that, as shown in Table 1, each iteration

begins with an image warp (6). Hence, FOLKI can be related

to image deformation techniques (Lecordier and Trinite

2003; Stanislas et al. 2008). But, as FOLKI computes a dense

vector field, the deformation is available at each pixel

without velocity interpolation.

The dense character of the vector field also deserves

further comment. First, it should be mentioned that it is an

unavoidable building block of the algorithm: solving Eq. 9

for a restricted ensemble of spatial locations cannot be

envisaged here, since computations (12, 13) require the

availability of velocities at a much larger number of

locations. Viewed in the PIV context, this by-product of the

computer vision origin of FOLKI may however, appear

useless, or even detrimental in terms of computational

time. Indeed, as will be shown in Sect. 5, similarly to other

PIV approaches based on window matching, FOLKI’s spatial

resolution remains related to the window size. A first

important remark which justifies our choice is that this

density is not an overload to the computational time: tests

performed on a CPU implementation showed that the

Table 1 Pseudo GPU code of FOLKI

input: Ið�; 0Þ and Ið�; dtÞ
output: u ¼ ðu; vÞ
begin

send Ið�; 0Þ, Ið�; dtÞ from CPU memory to GPU global memory

GPU: compute Burt pyramids (SC)

for j = J - 1 : - 1 : 0

GPU: compute rIjð�; 0Þ (SC)

GPU: compute H (PW)

for n = 1 : N, iterate:

GPU: compute Iu0

j ð�; dtÞ (II)

GPU: compute � (PW)

GPU: compute c (PW?SC)

GPU: solve local systems (9) (PW)

GPU: upsample u vector fields (SC)

(option 1) GPU: compute output image result and transfer

it into GPU visualization memory

(option 2) send u ¼ ðu; vÞ result from GPU to CPU

end

GPU: GPU functions, II: image interpolation, SC: separable convo-

lution, PW: pixelwise operation
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computational time of a dense vector field with FOLKI was

comparable to that of a classical sparse computation with a

commercial PIV software. This is due to the high degree of

optimization of FOLKI. Besides, and paradoxically, it is in

fact this dense character that leads to a highly regular and

parallel algorithm which precisely allows the considerable

speed-up provided by the GPU. In addition, density pro-

vides an appreciable degree of freedom of result sampling,

e.g., to finely evidence vortex cores or investigate flows

close to walls, see Sect. 6.2 for an example.

3 Implementation on a GPU

An implementation has been developed in C?? and

CUDA language for NVIDIA GPU and tested on different

hardwares (generic graphic unit of a laptop, and a dedi-

cated GPU on a PC workstation) with Linux and Windows

OS.

Different packages of FOLKI are freely available on the

ONERA website, at the address: http://www.onera.fr/

dtim-en/gpu-for-image/index.php. Note that the open

source Linux package strictly corresponds to the algorithm

described in Sect. 2, whereas the Windows packages

include the additional features described in Sect. 4.

The efficiency of the GPU implementation stems from

the fact that FOLKI relies mainly on three types of compu-

tations, image interpolation (II), pixelwise operations (PW)

and separable convolution (SC), see Table 1. These com-

putations are performed very efficiently on a GPU, see

Champagnat et al. (2009) for a more detailed account on

GPU architecture and how to make profit of it. Two main

features can be highlighted:

1. Image bilinear interpolation is hardwired on a GPU, it

is thus performed at a cost which is negligible

compared to a CPU.

Higher order interpolation can also be performed very

efficiently thanks to the algorithm of Ruijters et al.

(2008) that combines multiple bilinear interpolations

to perform one bicubic B-spline interpolation.

2. It is fundamental to limit the number of CPU-GPU

transfer which are particularly time-consuming. The

GPU pseudo-code presented in Table 1 is designed to

minimize the number of CPU-GPU image transfers.

Note the optional steps at the end of Table 1: if the

code is used only to visualize an output image which

depends on the computed velocity field (for instance an

image of the vorticity field), it is much faster to

compute this image with the GPU and then to transfer

it directly into the visualization memory of the GPU.

This mode can be very useful for fast parameter tuning

of an experiment.

4 Adapting FOLKI to PIV context

We now discuss some extensions of FOLKI, directly dictated

by the typical constraints of PIV experiments. These

developments principally aim at increasing the accuracy,

properly handling boundaries and giving the user a quality

criterion on the obtained vector fields. Results using this

improved version, which we call FOLKI-PIV, are presented in

Sects. 5 and 6.

4.1 Third-order B-spline interpolator

As mentioned in Sect. 4, the user may choose whether

the image interpolation is performed via simple bilinear

interpolation, or using third-order B-splines. Having such

a choice may prove relevant in order to adapt to the

image characteristics, as will be shown for instance in

Sect. 6.1.

4.2 Symmetric matching cost

Following symmetric SSD criteria like

X

m

wðm� kÞ Ij mþ uðkÞ
2

; 0

� �

� Ij m� uðkÞ
2

; dt

� �� �2

;

ð14Þ

have been proposed by many authors (Keller and Averbuch

2004; Zhao and Sawhney 2002), in order to suppress the

dissymmetry of classical SSD costs, increase precision and

robustness against occlusions. When upgrading toward

FOLKI-PIV, we chose to implement this approach rather than

the simple original SSD criterion (1).

In practice, Eq. 14 can be handled in a very similar

manner as Eq. 1. Replace uðkÞ by u0ðmÞ þ ðuðkÞ � u0ðmÞÞ
in Eq. 14, then take first-order approximation for both

images based on Eq. 7. Finally, one gets modified

expressions for Eqs. 11, 12 and 13. For instance, the 2 9 2

matrix HðkÞ associated to pixel k now writes:

X

m

wðm� kÞ rIj m� u0ðmÞ
2

� �

rIj m� u0ðmÞ
2

� �t�

þrIj mþ u0ðmÞ
2

; dt

� �

rIj mþ u0ðmÞ
2

; dt

� �t�

;

ð15Þ

(the ‘0’ in r Ij(.,0) has been omitted for concision). The

overall structure of the symmetric algorithm remains sim-

ilar to the one in Table 1, except that expression (15) has to

be recomputed at each iteration using spatial gradients and

interpolations of both images. In this process, the compu-

tational time is multiplied by 2 compared to the basic

algorithm of Sect. 2.
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4.3 Robustness to varying illumination

In contrast to a zero-normalized cross-correlation (ZNCC)

maximization objective, which is classically used in PIV,

objectives defined by SSD minimization such as Eq. 14 are

less robust to varying illumination conditions. Of course,

global illumination changes can easily be handled by

equalization using image gain and offset adjustment before

feeding the algorithm with the corrected image pairs. But

this approach will not work when, for instance, the lighting

difference varies across the field of view, a situation which

is encountered in PIV, see for instance both examples of

Sect. 6. In this case, some kind of local equalization is

required.

We follow hereafter the logic of mean and standard

deviation normalization; note that the min–max normali-

zation of Westerweel (1993) could also be implemented

cheaply on a GPU. The principle of such a local equaliza-

tion is to replace the image intensity values Ið�; tÞ (t =

{0, dt}) by normalized intensities eIð�; tÞ. For an IW centered

on a pixel k, the vector of normalized intensities of pixels m

inside the IW, feIðm; tÞgm2WðkÞ, should have approximately

zero mean and unit standard deviation. If the displacement

field is zero, such a normalization simply writes

eIðm; tÞ ¼ Iðm; tÞ �Mðk; tÞð Þ=rðk; tÞ; t ¼ f0; dtg;

where the local empirical mean Mð�; tÞ and standard devi-

ation rð�; tÞ are computed simultaneously for all pixels by

pixelwise operations and separable convolution.

For each iteration of FOLKI-PIV, the current displacement

field is not zero anymore and local means and standard

deviation should be computed on the warped images

I�u0=2ð�; 0Þ and Iu0=2ð�; dtÞ (using the notation from Eq. 6),

in order to write a normalized symmetric criterion from Eq.

14. A fast approximation is to perform the normalization

only once, at the beginning of each level, and then per-

forming the GN iterations on these images. With such a

strategy, there is nearly no extra cost and empirical com-

parisons of both schemes—exact or approximate—show

their equal effectiveness.

4.4 Boundary handling

This problem should be adequately addressed not only to

process pixels located near the boundary of the field of

view but also to take masks into account. A mask is a

binary image aimed at excluding some pixels from the

estimation process, because they belong to some rigid

object (wing, measurement device, etc.) present in the field

of view; see for instance the real dataset of Sect. 6.2. In the

sequel, the image support refers to the set of non-masked

pixels.

It is quite delicate to find an optimal way to handle

boundaries in window-based displacement estimation.

Indeed the support of the estimation, i.e., the pixels for

which the system (9) can be constructed and inverted,

varies with the estimate: if the displacement field locally

tends to escape from the image, the support of the esti-

mation consequently ‘‘moves back’’ away from the

boundary. Such effect is even more pronounced in FOLKI,

because of the dense estimation and also of the multires-

olution process.

The proposed solution retained in FOLKI-PIV relies on

dynamic masks which are updated at each iteration.

Excluded pixels are (i) those whose current displacement

vector falls outside of the image support (in the symmetric

case, the displacement fields which are used are either u0=2

or �u0=2); (ii) those whose IW contains more than 80% of

already excluded pixels. Displacement vectors are com-

puted for the remaining pixels, then the holes are filled with

nearest valid vectors before the next iteration.

4.5 Correlation quality

When analyzing PIV images, imperfect lighting, particle

loss, and CCD noise will impact the quality of the corre-

lation and thus increase the uncertainty of a computed

vector. To yield a quality criterion to the user, we included

in FOLKI-PIV a computation of the correlation peak height, as

is traditionally done in PIV. This is done by first warping

the images by the final displacement, so as to get images

I�u=2ð�; 0Þ and Iu=2ð�; dtÞ. Then, mean and standard devia-

tion normalization is applied on these images, yielding

eI�u=2ð�; 0Þ and eIu=2ð�; dtÞ. As a preliminary step, the

ZNSSD score SZNSSD is then computed. This quantity is

simply the residual of the symmetric SSD criterion (14)

applied to these zero- normalized images:

SZNSSD ¼
X

m

wðm� kÞ eI�u=2
0 ðm; 0Þ � eIu=2

0 ðm; dtÞ
� �2

:

ð16Þ

It finally turns out that SZNSSD is directly related to the

classical correlation score SZNCC, or height of the

correlation peak, which is defined as

SZNCC ¼
X

m

wðm� kÞeI�u=2
0 ðm; 0ÞeIu=2

0 ðm; dtÞ: ð17Þ

Simple algebra, see for instance Pan et al. (2007, Appendix

A), indeed shows that one has

SZNCC ¼ 1� SZNSSD

2
: ð18Þ

Consequently, even though FOLKI-PIV’s objective is formu-

lated differently as in classical PIV, the quality of its results
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may be assessed—and vectors validated or not—in the

same way, using SZNCC. SZNCC = 1 will indicate a perfect

matching, while SZNCC = 0 is the theoretical limit of no

correlation. Further elements on the way we use this score

in practice will be given in Sects. 5 and 6.

5 Performance assessment: synthetic data

In the following, we use synthetic PIV images to study

FOLKI-PIV’s spatial frequency response, along with the

effects of low seeding and noise on the reliability of the

results. In order to determine whether the computation

choices underlying FOLKI-PIV result in a different behavior

as traditional PIV algorithms, we first present simple test

cases for which the behavior of these algorithms is already

documented. Then, we provide comparison of FOLKI-PIV’s

result to that of a state-of-the-art commercial software,

hereafter denoted CPIV.

In the following, CPIV’s estimation of an IW’s dis-

placement relies on the FFT-based computation of the

cross-correlation map, followed by a Gaussian sub-pixel

interpolation of the correlation peak. This process is

embedded in an adaptive multi-pass scheme, in which the

displacements are progressively refined from their previous

estimates; this can be done with IWs of gradually

decreasing size. Between each pass, rejection of spurious

vectors is performed using a median filter, outliers being

replaced either by other correlation maxima or by local

interpolation, and the vector field is filtered with a 3 9 3

pixels Gaussian.

5.1 Parameters for the tests

The synthetic images used in the present work were gen-

erated with the EUROPIV Synthetic Image Generator

(S.I.G.) which is described in Lecordier and Westerweel

(2003). Keeping physical units in pixels, we use

1,025 9 1,025 images with a fully covered 8 bit range.

Particles show as 2 pixels diameter Gaussian intensity

distribution. The intensity level of a given particle depends

on its out-of-plane position with respect to the lw = 2

pixels width Gaussian-shaped light sheet that illuminates

the scene. If Np is the total number of particles in a volume

V illuminated by the laser sheet, then particle density seen

in the image is Nd ¼ Nplw
V . Unless specified otherwise, par-

ticle density is set to Nd = 0.02 and no CCD noise is

added, yielding sample images such as shown in Fig. 2.

Displacement fields are applied symmetrically forward and

backward to an initial cloud of randomly located particles.

For each test case, identical displacement patterns are

repeated in different zones of a given image pair, so that 25

image pairs are sufficient to achieve statistical convergence

of the results.

FOLKI-PIV’s window radius R is varied from 5 to 31

pixels, and the interrogation window has a standard rect-

angular weight. We use J = 1 level because the pixel

displacements in these tests are less than 2 pixels. Con-

vergence is reached for N = 3 iterations. The interpolation

is performed with a third-order B-spline.

CPIV is also used with various IW sizes (8 9 8,

16 9 16, 32 9 32 and 64 9 64 pixels) with rectangular

weight. For a given result, the calculation is done thanks to

a multi-pass scheme composed of 4 passes with the same

IW size. We use a Whittaker pixel interpolation method

and overlap is set to 75%.

5.2 Spatial frequency response

Following Scarano and Riethmuller (2000), the frequency

response of a PIV algorithm can be evaluated using a

sinusoidal shear displacement test:

ðU;VÞ ¼ A sin 2p
Y

k

� �

; 0

� �

ð19Þ

where X and Y are the horizontal and vertical coordinates

and U and V the associated displacement components.

We here reproduce this displacement field with ampli-

tude A set to 2 pixel, and the wavelength k varied from 20

to 400 pixels. Figure 3 compares the ground truth and the

average value found by FOLKI-PIV for the U component, for

case k = 200 processed with R = 10 IWs. For each image

corresponding to a given (k, R) couple, we computed the

ratio between the estimated amplitude of the sinusoid

Afolki�piv and the ground truth value A = 2 pixel. The

evolution of this ratio as a function of the normalized IW

size 2R/k is plotted in Fig. 4. Although we used IW radii

ranging from R = 5 to R = 31, all values of Afolki�piv=A

nearly collapse on a cardinal sine curve, which is the fre-

quency response of a [-R, R] sliding average. In com-

parison, as shown by Scarano and Riethmuller (2000),

iterative multigrid methods with isotropically weighted

Fig. 2 32 9 32 pixel close-up at a S.I.G. image with Nd = 0.02
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IWs follow a similar trend, but with an amplitude damping

compared to the ideal sliding average, which we do not

observe with FOLKI-PIV.

5.3 Resolution versus noise

One other way to evaluate the effective spatial resolution is

to recover the response of the algorithm to a sharp spatial

step in the displacement field, similar to the high velocity

gradient that can be found across a shock wave. The fol-

lowing test was suggested to us by B. Wieneke (private

communication): the displacement field is a sudden step

from a U = 0.25 to a U = 0.35 pixel horizontal transla-

tion. Figure 5 compares the average result found for U by

FOLKI-PIV with R = 15 to the ground truth. For a given

window radius R, we determine the effective spatial reso-

lution by measuring the width over which the PIV algo-

rithm integrates the sharp edge. In practice, this width can

be recovered as the inverse of the slope of the estimated

U(X) at the center of the step. Figure 6, in which this

quantity is plotted against R, shows that FOLKI-PIV integrates

the step exactly like the �R;R½ � moving average, which has

a 2R effective spatial resolution.

An experimentalist seeking a better spatial resolution

will be tempted to use smaller window sizes, but the

drawback is an increased measurement uncertainty. Pre-

vious studies have shown that this resolution versus

uncertainty trade-off also depends on the quality of the

images (Raffel et al. 2007, pp. 174–176). To show how

FOLKI-PIV behaves in that respect, we have considered three

test cases keeping the same sudden step displacement, each

of them characterized with a different type of image deg-

radation or added noise compared to the above ideal situ-

ation. For each of them, we compute the rms displacement

error URMS of both FOLKI-PIV and CPIV, for various IW sizes.

First, we have added an out-of-plane displacement

W = 0.5 pixels so that some particles are lost (case I). W is

to be compared to the Gaussian light sheet width lw = 2

Fig. 3 Sinusoidal shear displacement with A = 2 pixels and k = 200

pixels. Ground truth (black curve) and average displacement found by

FOLKI-PIV with R = 10 IWs, downsampled every 6 pixels

Fig. 4 Sinusoidal shear displacement with A = 2 pixels: amplitude

ratio Afolki�piv=A as a function of the normalized window size 2R/k
(red symbols), for IW radii R ranging from 5 to 31. The dashed line is

the response of a �R;R½ � sliding average (cardinal sine function)

Fig. 5 Sharp horizontal step: displacement estimated by FOLKI-PIV

with R = 15 (red dots, downsampling every 2 pixels) and ground

truth (black curve). Note that the displacement error for FOLKI-PIV

which appears from this figure (roughly 0.005 pixel) remains well

below the usual PIV uncertainty
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pixels. Second, we have added to the images a Gaussian

CCD noise with 20 gray level standard deviation, while

reducing the 8 bit dynamic range down to 7 bit, thus

reducing the signal to noise ratio (case II). Finally, using

the same CCD noise as in case II, we have reduced the

seeding density from Nd = 0.02 down to Nd = 0.005 (case

III). In Fig. 7, FOLKI-PIV’s rms displacement error URMS is

compared to CPIV’s for different IW sizes. For all these

cases, FOLKI-PIV and CPIV have a similar behavior, the rms

error rising as the IW size decreases. But remarkably, it

turns out that FOLKI-PIV performs equally or better than CPIV

depending on the cases, whereas it does not involve any

data post-processing between two successive iterations, as

CPIV does. This is especially true for small windows sizes.

The results presented in this section show a reassuring

behavior of FOLKI-PIV with respect to noise and resolution,

in other terms FOLKI-PIV does not sacrifice measurement

accuracy for speed.

6 Performance assessment: real data

In the following, we provide results on two experimental

PIV datasets using FOLKI-PIV with the improvements

described in previous sections. The main purposes of these

tests are to refine the assessment of FOLKI-PIV’s rms dis-

placement error for difficult experimental conditions, as

well as its peak-locking bias error, to show how FOLKI-PIV

deals with solid boundaries and illustrates the advantages

of density for result sampling.

6.1 Case A of the second PIV challenge

Our first real dataset is case A of the second PIV challenge

(Stanislas et al. 2005). In this experiment, a round turbulent

jet is imaged at a distance from its exhaust large enough for

the flow to be self-similar there. This way, a quantitative

performance assessment is made possible, by comparison

with canonical self-similar turbulent jets, even though the

data are extracted from a real experiment with typically

encountered difficulties. The sample retained in the 2003

PIV challenge consists of 100 images of resolution

992 9 1,004 pixels, in which the particles images have a

diameter estimated to 1 pixel. As described by Stanislas

et al. (2005), the main goals of proposing this test case

were to assess the ability of PIV algorithms to deal with

strongly turbulent flows, as well as to evaluate their rms

displacement error and their peak-locking error.

6.1.1 Choice of the vector computation parameters

In the following, as done in the previous paragraph, we

compare the results obtained by both FOLKI-PIV and CPIV on

these data. For the former, we use J = 3 levels, N = 7

iterations and R = 15 IWs, and for the latter, a multi-pass

iterative scheme composed of 2 passes with 64 9 64 IWs

followed by 4 passes with 32 9 32 IWs (50% overlap at

each pass), with the same intermediate spurious vector

rejection and data processing between passes as described

in Sect. 5. After the last pass of CPIV, this post-processing is

applied once again to yield the final vector fields. For both

Fig. 6 Effective spatial resolution of FOLKI-PIV as a function of the

total IW width 2r (red symbols) computed from the sharp horizontal

step test case, compared with the effective spatial resolution of the

�R;R½ � sliding average (dashed black curve)

Fig. 7 Rms displacement error URMS against IW size 2R for three

test cases of sharp horizontal step displacement (see the text for their

exact characteristics). FOLKI-PIV (F) and CPIV (C) results in open and

filled symbols, respectively. For clarity, CPIV results are linked by

dotted lines
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algorithms, local zero normalization of the image intensi-

ties is applied, and a bilinear interpolator is used, instead of

the more accurate interpolators used in the previous para-

graph. It is indeed known that for data having a low signal

to noise ratio, bilinear interpolation yields optimal perfor-

mance, especially regarding peak-locking (Lecordier and

Trinité 2006; Yamamoto and Uemura 2009). Our tests (not

shown here for conciseness) confirmed this conclusion for

the present dataset.

Concerning FOLKI-PIV’s settings, the choice N = 7 stems

from a convergence study performed on two image pairs,

labeled 1 and 5 in the dataset. We processed these images

with N increasing from 1 to 20, keeping all other param-

eters constant. For each value of N� 2, we here compute at

each image point (X, Y) the norm DðX; YÞ of the difference

between the displacement vectors found at iterations N and

N - 1. The optimal choice for the iteration number then

results from the fact that for N � 7, D is observed to be

inferior to 0.1 pixel in the whole field, this limit being a

traditional estimate of PIV accuracy on experimental

images. Figure 8 below yields an illustration of this con-

vergence, by showing the evolution with N of D, together

with the correlation score SZNCC at (X, Y) = (497, 502). As

can be observed, at this location, an accurate result is

reached for N well below 7. More importantly, the corre-

lation score convergence is seen to be similar to that of D.

This shows that the user may tune the parameters of FOLKI-

PIV by a visual diagnosis of either the velocity fields or the

correlation score SZNCC, by monitoring when the fields

cease to change as N is increased. In practice, this quick

preliminary convergence study should be led bearing the

following typical values in mind: good quality images

usually yield converged results for N as low as 3 (as was

the case for the synthetic images of Sect. 5), whereas

experimental images of poor quality may require values of

N reaching up to 10.

6.1.2 Comparative results

To compare FOLKI-PIV’s and CPIV’s results, we downsample

the dense vector fields of FOLKI-PIV every 15 9 15 pixels.

Upon applying for both datasets the same a posteriori

detection of outliers as in Stanislas et al. (2005), which

amounts to keeping vectors lying in the inside of a given

ellipse in a (U, V) scatter plot, we found 5 outliers with

FOLKI-PIV, over a total of 442,200 vectors. In comparison,

87 vectors were found outside of the ellipse with CPIV, over

a total of 390,600. It is worth noticing that FOLKI-PIV yields

a remarkably small number of outliers despite the fact that

it does not include any spurious vector rejection step

between iterations—whereas CPIV does.

Results for the peak-locking bias are shown in Figs. 9

and 10, where the global histogram for U and the histo-

gram for the fractional part of U are plotted, respectively.

These curves show that for images with particles of small

size, FOLKI-PIV displays a level of peak-locking bias com-

parable with that of CPIV, with a slightly higher level for

even values of the displacement. To date, we have no

explanation for this difference, as both algorithms use a

symmetrical window shift before each iteration or pass.

Overall, both figures thus show that, even though it does

not involve any interpolation of the correlation peak,

FOLKI-PIV performs comparably to algorithms based

on multi-pass schemes involving a three-point Gaussian

Fig. 8 Convergence with N of the displacement found by FOLKI-PIV at

X = 497, Y = 502, image 1 of PIV challenge 2003 A’s dataset.

Plotted quantities are the correlation score SZNCC and the norm

DðX;YÞ of the difference between the displacement vector at

iterations N and N - 1 Fig. 9 Histograms of the U displacement
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sub-pixel interpolation (Westerweel 2000a, b; Westerweel

et al. 1997).

Still following Stanislas et al. (2005), we now represent

the mean and rms axial velocities U and u0 as single one-

dimensional profiles. This can be achieved by taking

advantage of the jet self-similarity: first, the ensemble

averaged axial velocity U must be fitted to

Uðx� x0; y� y0Þ ¼ UcðxÞ exp ð�g2Þ

¼ UcðxÞ exp � y2

lðxÞ2

 !

ð20Þ

with

UcðxÞ ¼
A

x� x0

and lðxÞ ¼ Bðx� x0Þ; ð21Þ

using parameters B (jet spreading rate), x0 and y0 (jet vir-

tual origin), and A. Then, values of U/Uc and u0/Uc from

each profile at a given x may be gathered so as to represent

one single profile depending on g. This is done in Figs. 11

and 12, respectively.

Concerning the mean velocity, an excellent agreement is

found between CPIV and FOLKI-PIV. Both curves collapse

almost perfectly, both in the jet itself and in the outer flow.

The same remark also holds for the rms u0 in the outer flow

and in the jet shear layers (see Fig. 12). In the middle of the

jet, for �1:5	 g	 1:5, discrepancies between both soft-

wares are however observed, which are maximal in the

plateau region, for �0:6	 g	 0:6. The average plateau

value found by CPIV is of roughly 0.255, while that found by

FOLKI-PIV is of roughly 0.235. Note that discrepancies of the

same order of magnitude were found between algorithms

tested during the second PIV challenge. To us, this is not

surprising, since the present test case corresponds to diffi-

cult experimental conditions (seeding inhomogeneities in

the individual images, differences in light intensity

between two images in a pair, small particles). In practice,

we find quite low values of the correlation score SZNCC

close to the jet centerline, especially near the right edge of

the images (typically, between 0.1 and 0.3). This may

explain why algorithms may perform differently there.

As a last quality assessment from this test case, we

consider the level of u0/Uc obtained in the outer flow

region, where turbulence should progressively return to

zero when |g| increases. Similarly to the analysis performed

Fig. 10 Fractional part of the U displacement
Fig. 11 Normalized mean horizontal displacement U/Uc as a func-

tion of the self-similar variable g

Fig. 12 Normalized rms horizontal displacement u0/Uc as a function

of the self-similar variable g
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by Stanislas et al. (2005), we plot in Fig. 13 a close-up of

u0/Uc in the region �4	 g	�2. For �4	 g	�3:5, both

codes reach approximately the same asymptotic limit of

u0/Uc&0.012-0.013. There as well, it appears that FOLKI-PIV

performs nearly identically to a state-of-the-art PIV soft-

ware using a FFT-based cross-correlation and a three-point

Gaussian sub-pixel interpolation (Westerweel 2000a, b;

Westerweel et al. 1997).

Finally, we compare in Table 2 the average time of

computation of one vector field of this dataset for each

algorithm. For CPIV, we also performed a simpler computa-

tion, composed of 1 pass with 64 9 64 IWs followed by 2

passes with 32 9 32 IWs, still with 50% overlap. Such a

setting is usually a standard for a majority of PIV images,

leading to a high enough accuracy. In Table 2, it is denoted

by ‘‘CPIV-standard’’, as opposed to the setting used for the

above comparisons, which is denoted by ‘‘CPIV-high accu-

racy’’. All these computations were performed on a machine

equipped with an Intel Core2 CPU at 3.16 GHz, 3 Go RAM

and a NVIDIA Tesla C1060 GPU.

As shown by Table 2, the high level of optimization of

FOLKI together with the GPU implementation leads to

computational gains ranging from 50 to 100 compared to a

state-of-the-art traditional PIV approach, with a similar

accuracy of the results.

6.2 Massive flow separation over a rounded ramp

(ONERA data, Gardarin et al. 2008)

The data considered in this paragraph are extracted a from

High-Speed PIV (HS-PIV) test campaign on massive

boundary layer separation and its control Gardarin et al.

(2008), performed in the S19Ch wind-tunnel of ONERA

Meudon center (see Fig. 14). In this closed-loop wind-

tunnel, the test section is 300 mm wide and 2 m long and

allows convenient optical access thanks to transparent lat-

eral walls. As seen in Fig. 14, the flow enters the test

section with a horizontal velocity U = 30 m s-1. Separa-

tion then occurs due to the strong adverse pressure gradient

created by the rounded ramp. While the purpose of the

global test campaign has been to evaluate the efficiency of

several control devices [in particular mechanical and flu-

idic vortex generators, Gardarin et al. (2008)], we here

present the reference case, where the unforced separation

occurs.

Figure 15 shows a sample image obtained with a HS-

PIV system composed of a Litron LDY 303HE25 Nd:YLF

laser and a Phantom V12.1 camera (1,280 9 800 pixels

CCD). The generated laser sheet is 1 mm thick, and the

flow is seeded using DiEthylHexyl Sebacate (DEHS)

droplets. The repetition rate of the laser is set to 3 kHz, and

the time interval between two images in a pair is 60 ls.

The zone of interest is a rectangular field located near the

Fig. 13 Normalized rms horizontal displacement u0/Uc as a function

of g, close-up

Table 2 Per image average computational time (in s), PIV challenge

2003 A dataset

FOLKI-PIV CPIV standard CPIV-high accuracy

0.2 9.4 19.4

All computations were performed on a PC with an Intel Core2 CPU at

3.16 GHz, 3 Go RAM and a NVIDIA Tesla C1060 GPU. See the text

for more details on the settings used for each algorithm

Fig. 14 Principle sketch of the ONERA S19Ch wind-tunnel

Fig. 15 PIV image sample of ONERA S19Ch HS-PIV experimental

dataset
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beginning of the rounded ramp, where boundary layer

separation occurs. As mentioned above, this test case is

specially interesting in that it combines several common

experimental difficulties: a solid wall (the rounded ramp) is

included inside the field of view so that a light reflection

occurs on it, and the light intensity is not homogeneous in

the bulk of the image, with in particular irregularities in the

light sheet.

We have processed this PIV image pair with FOLKI-PIV

using mean and standard deviation local normalization, and

a mask following the contour of the rounded ramp. We

used the following parameters: R = 16 IWs, N = 6 itera-

tions, J = 3 pyramid levels. The value of N was chosen

after a qualitative convergence study in the same way as

described in Sect. 6.1.1. Results are shown in Figs. 16 and

17, which represent the obtained velocity field, together

with vorticity iso-contours post-processed from this

velocity field. To compute the velocity gradients involved

in the vorticity, we used a 5 9 5 Gaussian filter before

applying a traditional second-order finite difference

scheme. Note that in both figures, the velocity field has

been downsampled, respectively, to every 32 9 32 and

6 9 6 pixels.

Figure 16 shows that despite the difficult configuration,

the flow physics is fully retrieved, since the boundary layer

separation is precisely captured (here it is visible at around

x = -0.055), as well as the various vortical structures

which develop on the downstream mixing layer. Figure 17

confirms that FOLKI-PIV and its improvements described in

Sect. 4 yield physically sound results even close to the

wall, as seen from the various recirculation vortices which

are captured until the mask edge. In this respect, it is

important to emphasize that the dense result provided by

the improved FOLKI-PIV is a real advantage, since it allows

to sample the vector field even very close to obstacles.

7 Conclusions

We have presented FOLKI-PIV an algorithm that performs

fast computation of dense two-component (2C) PIV vector

fields using Graphics Processing Units. Tested on both

synthetic and real images, FOLKI-PIV proved as accurate as a

state-of-the-art standard PIV software, while being 50

times faster and allowing a convenient degree of freedom

for result sampling due to its dense character.

Our simulation study confirms that the behavior of

FOLKI-PIV is that of a moving average filter—with 1/(2R)

bandwidth, R being the window’s radius. Robustness to

noise is equal or better than state-of-the-art PIV software,

without the need for any spurious vector rejection process

between iterations. As a result, FOLKI-PIV appears very

simple to tune for the practitioner.

To date, these features of FOLKI-PIV already offer to the

experimentalists at ONERA a precious help in the way to

conduct their PIV experiments, by allowing faster diag-

nosis on their experimental settings. Indeed, the accuracy

of optical parameter tunings may now in particular be

assessed also by investigating the mean and rms of the

flows. This is especially precious when dealing with tur-

bulent flows, which require a large number of image pairs

for the turbulent statistics to converge. More generally, we

believe that such a fast PIV code opens the way to sig-

nificant changes in the way to perform experiments in

fluids with PIV, allowing a much faster flow diagnosis and

extending considerably possibilities of trial-and-error in the

optimization phasis of experimental campaigns.

Fig. 16 Instantaneous velocity field obtained with FOLKI-PIV, together

with iso-contours of vorticity post-processed from the velocity field

by using a 5 9 5 pixels Gaussian filter. Vectors are displayed every

32 9 32 pixels

Fig. 17 Instantaneous velocity and vorticity field, close-up on the

recirculation region. For clarity, we only plot velocity vectors which

have a modulus inferior to 1 m s-1. These vectors are displayed every

6 9 6 pixels
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The basic rationale of the algorithm is furthermore

generic enough to enable various extensions. On-going

work considers Stereo PIV [see Leclaire et al. (2010)] and

3D velocity estimation for tomographic PIV, both settings

which can be cast into the FOLKI-PIV scheme, so as to derive

fast GPU implementation in the near future.
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