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Abstract Variational approaches to image motion seg-

mentation has been an active field of study in image pro-

cessing and computer vision for two decades. We present a

short overview over basic estimation schemes and report in

more detail recent modifications and applications to fluid

flow estimation. Key properties of these approaches are

illustrated by numerical examples. We outline promising

research directions and point out the potential of variational

techniques in combination with correlation-based PIV

methods, for improving the consistency of fluid flow esti-

mation and simulation.

1 Introduction

This paper provides a synopsis of more than two decades

research on image motion estimation in the field of image

processing and computer vision. It reflects recent collabo-

rations and exchange of ideas between research groups from

this field and partners in experimental fluid dynamics.

Examples of corresponding projects are the European FET-

project ‘‘Fluid Image analysis and Description’’,1 the pri-

ority programme on ‘‘Image Measurements in Experimental

Fluid Dynamics’’ of the German Science Foundation

(DFG),2 and an international symposium on ‘‘Experimental

Fluid Dynamics, Computer Vision and Pattern Recogni-

tion’’ that held at Schloß Dagstuhl3 in spring 2007.

Rather than making an attempt to comprehensively

review the vast literature, we focus on a concise presen-

tation and classification of essential concepts that we

regard as particularly relevant for image analysis in

experimental fluid dynamics, with a high potential for

future common developments. Likewise, the list of refer-

ences is by no means exhaustive but includes some key

papers as well as links to more recent technical works,

containing details that we deliberately omit here in order

not to disrupt the main threat of the paper.

The material below complements expositions of estab-

lished PIV methods based on image correlation (Adrian

2005; Raffel et al. 2007), and also the recent review (Jähne

et al. 2007) where variational methods are only briefly

mentioned. It also indicates that image processing, visuali-

zation and computer vision has become an interdisciplinary

field of scientific computing with strong links to various

disciplines of applied and computational mathematics.

Recent textbooks illustrate this trend (Chan and Shen 2005;

Aubert and Kornprobst 2006; Paragios et al. 2005).
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E. Mémin

INRIA, Campus Universitaire de Beaulieu,

35042 Rennes, France

e-mail: Etienne.Memin@inria.fr

URL: http://www.irisa.fr/fluminance

C. Schnörr
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This latter trend provides the background and underlines

the main message that we intend to convey in this paper. In

our opinion, variational methods for fluid flow estimation

from image sequences provide a proper framework for

consistently combining image measurements with struc-

tural constraints due to the underlying continuum

mechanics, thus paving the way for bridging the gap

between experiments and simulation in the future. The

latter community (e.g. Berselli et al. 2006) utilizes con-

cepts closely related to those employed in current research

on mathematical image analysis.

Organization. We first outline in Sect. 2 the relation

between fluid flow and optical flow. Optical flow models,

also called data terms or observation models, are presented

for three families of experimental configurations. Then an

analysis of the physical assumptions underlying these

model-based measurements techniques compared to clas-

sical correlation technique is proposed.

Next, we turn in Sect. 3 to basic variational schemes for

motion estimation, broadly classified according to the

representation of vector fields: local, parametric, non-

parametric. Further issues include the underlying assump-

tions that justify a specific representation, discretization,

existence and spatial density of estimates, and complexity

of their numerical computation.

Section 4 is devoted to modifications of the basic

schemes that are suitable for estimation of fluid flows.

These include higher-order regularization in order not to

penalize too much high spatial gradients, a basic distrib-

uted parameter control setting for directly controlling

motion estimation through physical constraints, an outlier

handling through using robust norms or semi-norms, a

multiresolution scheme to handle large displacements, and

an hybrid variational estimation scheme combining the best

properties of approaches from PIV and computer vision.

This section also exhibits very recent developments,

exploiting temporal context in terms of fluid dynamics, for

motion estimation. We outline both a short-time estimation

scheme that iteratively alternates respective numerical

computations, and a more general estimation scheme that

embodies in a distributed parameter setting what is well

known in engineering for the case of lumped systems. This

last approach take a further major step toward an integrated

fluid motion ‘‘estimation and simulation’’ framework.

Numerical experiments illustrating various facets of the

material presented so far are presented and discussed in

Sect. 5.

Finally, we conclude in Sect. 6 and indicate few

research directions that show most promise in our opinion:

extensions of variational approaches to three-dimensional

PIV and the incorporation of turbulence models based on

turbulent kinetic energy decay for motion estimation with

high spatial resolution.

Notation. X � R
2 denotes the two-dimensional image

section and x 2 X any point in it. A recorded image

sequence is given in terms of an intensity function

I: X� ½0; T� ! Iðx; tÞ:

We denote vector fields with

w: X! wðxÞ ¼ ðuðxÞ; vðxÞÞ> ¼ uðxÞ
vðxÞ

� �
;

where �> indicates transposition, i.e. the conversion of row-

vectors to column-vectors, and vice-versa.

This notation reflects the continuous physical origin of

the quantities involved and deliberately ignores the fact

that I is given by samples at discrete locations in r as well

as along the time axis t [ 0, 1, ... , T. Bridging this gap

between numerical computations and the physical world

amounts to devise proper discretization schemes that usu-

ally do not emerge from signal sampling itself.

2 Optical flow representation

In computer vision, rigid or quasi-rigid body motion esti-

mation methods usually rely on the assumption of the

temporal conservation of an invariant derived from the

data. These common photometric invariants used for

motion estimation are described in Sect. 2.1.2. Geometric

invariance deals with particular geometric configurations

of the image function such as corners, contours, etc. They

define local features that are usually stable over time, but

provide only sparse information for motion estimation in

sufficiently structured images. For fluid images, however,

these features are difficult to define and to extract. Photo-

metric quantities, on the other hand, are more easy to define

and to compute, but are not always invariants. This raises

the problem of the connection between optical flow and

fluid flow. This problem is addressed in Sect. 2.1. The

physics-based optical flow equation is given based on the

derivation of the projected motion equations. An analysis

of the physical assumptions underlying these model-based

measurements techniques compared to classical correlation

technique is proposed in Sect. 2.2. Optical flow equations

alone do not suffice to compute image motion. This badly

posed motion estimation problems, called aperture prob-

lem, is defined in Sect. 2.3.

2.1 Optical flow and fluid flow

Optical flow is the apparent velocity vector field corre-

sponding to the observed motion of photometric patterns in

successive image sequences. This motion is described by

the optical flow equation also called observation term or

data term. The optical flow equation establishes precisely
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the link between the spatiotemporal radiance variation

from an emitting object in three-dimensional space and its

projection onto the image plane. For laser sheet flow

visualization, the optical flow equation is the projection of

the equation of motion onto the image plane (see Sect.

2.1.1). For volumic flow visualization of three-dimensional

flows or for visualization of two-dimensional flows, the

optical flow equation has the classical form of the transport

equation (see Sect. 2.1.2). Finally, for three-dimensional

flow with altimetric or transmittance imagery, the optical

flow is derived from the integration of the continuity

equation (see Sect. 2.1.3).

2.1.1 3D flow with laser sheet visualization

The relation between fluid flow and optical flow has been

described exhaustively by Liu and Shen (2008). The pro-

jected motion equations for eleven typical flow visualiza-

tions have been carefully derived. Using the underlying

governing equation of flow (phase number equation for

particulate flow or scalar transport equation), they have

shown that the optical flow w is proportional to the path-

averaged velocity of particles or scalar across the laser

sheet and have proposed the following physics-based

optical flow equation,

otI þrTðIwÞ ¼ f ðx; IÞ; ð1Þ

where f ðx; IÞ ¼ Dr2I þ DcBþ cn:ðNuÞjCþC�
and D is a

diffusion coefficient, c is a coefficient for particle

scattering/absorption or scalar absorption, B ¼ �n:rwjCþC�
�r:ðwjC�rC� þ wjCþrCþÞ is a boundary term that is

related to the considered transported quantity w, and its

derivatives coupled with the derivatives of the control

surfaces C-, C? of the laser sheet illuminated volume.

Since the control surfaces are planar, there is no particle

diffusion by molecular process, and the rate of

accumulation of the particle in laser sheet illuminated

volume is neglected, the term f ðx; IÞ ’ 0 and Eq. 1 reads

otI þ w � rI þ Idiv w ¼ 0: ð2Þ

In Eqs. 1 and 2, the optical flow w is proportional to the

path-averaged velocity weighted with a field w (scalar

concentration or particle number par unit total volume)

which is defined as

w /
R Cþ

C�
wWxydzR Cþ

C�
wdz

; ð3Þ

where Wxy is the projection of the fluid or particle velocity

onto the coordinate plane (x, y).

It should be noted that Eq. 2 corresponds to the inte-

grated continuity equation (ICE) originally proposed by

Corpetti et al. (2002) under the assumption that the

radiance is proportional to an integral of the fluid density

across the measurement volume (see Sect. 2.1.3 for

details). Although the ICE model proposed by Corpetti

et al. (2006) is theoretically valid only for transmittance

imagery, the authors have obtained accurate results for PIV

measurements, which are now rigorously justified by the

recent derivation of the projected motion equation by Liu

and Shen (2008) leading to Eq. 2. The experimental eval-

uation of this method has shown good agreement with hot-

wire measurements for a mixing layer and the wake of a

circular cylinder. The numerical examination of the tech-

nique with the VSJ standard base image has indicated that

the ICE equation provides the best results especially in case

of out of plane component (see Sect. 5.1). Close exami-

nation of Eq. 2 shows that the physics-based optical flow

model is composed of a term otI þ w � rI representing

brightness constancy, while the term Idiv w accounts for

the non-conservation of the brightness function due to loss

of particles caused by non-null out of plane component.

Note that the above physics-based optical flow equations

do not take into account specific phenomenon like for

instance spatiotemporal varying illumination of the laser

that can easily be included with additional models of

brightness variation (Haussecker and Fleet 2001). This

issue can also be tackled with robust cost functions pre-

sented in Sect. 4.3.

Finally, we point out that the data models described by

Eqs. 1 and 2, or 6 and 9 in the following sections, consti-

tute variational models. Their validity cease to hold for

long-range displacements. In this case, it is more reliable to

use an integrated data model. Assuming a constant velocity

of a point between two successive frames, the model

defines a first-order differential equation that can be

straightforwardly integrated:

dIðxðtÞ; tÞ
dt

jt¼u ¼ �IðxðuÞ; uÞ div wðxðuÞ; uÞ 8u
2 ½t; t þ 1�;

leading to the non-linear data model

8x; I2ðxþ dðxÞÞ expð div dðxÞÞ � I1ðxÞ ¼ 0; ð4Þ

where dðxÞ denotes the displacement fields between images

I1ðxÞ ¼ Iðx; tÞ and I2ðxþ dÞ ¼ Iðxþ dðxÞ; t þ 1Þ: These

models are usually linearized around current estimates and

embedded into a multiresolution pyramidal image structure

(see Sect. 4.4.1).

2.1.2 3D flow with volumic visualization or 2D flow

For laser sheet visualization of two-dimensional incom-

pressible flows, the connection between fluid flow and

optical flow is straightforward under the assumption that

the laser sheet is perfectly aligned with the flow and/or
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under the assumption that the field W related to the visu-

alizing medium is constant across the laser sheet. In this

context, the out of plane component is zero, the optical

flow is proportional to the velocity w / Wxy, hence is

divergence free div w ¼ 0 and satisfies the scalar advec-

tion-diffusion equation

otI þ w � rI ¼ Dr2I: ð5Þ

For volumic visualization of three-dimensional flows, like

tomographic reconstruction, the optical flow w is a certain

average of the velocity field due to the imperfect recon-

struction of the three-dimensional image. As a conse-

quence, the connection between fluid flow and optical flow

is less straightforward than for the two-dimensional case

and is a promising direction for further research (see Sect.

6.2). With a three-dimensional perfect visualization of the

flow, the estimated three-dimensional optical flow should

obviously obey to the full Navier–Stokes equations, and the

evolution of the three-dimensional images should follow a

transport equation related to the physical transport law of

the observed quantity (e.g. particle, concentration, density,

temperature,...). To a first approximation, we will consider

in the following that the optical flow w; associated with

three-dimensional flow or two-dimensional flow visualized

respectively through volumic data or two-dimensional

sheets, satisfies Eq. 5.

For PIV measurements, the diffusion coefficient D = 0,

and the physics-based optical flow equation corresponds to

well known optical flow constraint equation (OFC)

accounting for the brightness constancy assumption,

otI þ w � rI ¼ 0: ð6Þ

Equation 6 is the linear differential formulation of the

matching formulation between two consecutive images

also known as the Displaced Frame Difference (DFD):

8x; I2ðxþ dðxÞÞ � I1ðxÞ ¼ 0: ð7Þ

The expression 7 leads to non-linear equations which are

always valid irrespective of the displacement range,

whereas Eq. 6 is locally valid where the linearization of the

intensity function provides a good approximation. This is

only the case for small displacements and smooth photo-

metric gradients. Furthermore, the resulting systems are not

solvable in photometrically uniform image regions.

In computer vision, for the estimation of rigid or

quasi-rigid body motion, other photometric invariants,

than the intensity itself, have been proposed like the

conservation of the luminance gradient rI2ðxþ dÞ ¼
rI1ðxÞÞ (Tretiak and Pastor 1984; Brox et al. 2004), or

from successive gaussian filtering grj
� I2ðxþ dÞ ¼ grj

�
I1ðxÞ (Weber and Malik 1995), where * stands for the

convolution product.

2.1.3 3D flow with altimetric or transmittance imagery

When the observed luminance function relates to the fluid

density, one can rely on the corresponding continuity

equation to obtain a meaningful brightness variation model.

Neglecting mass exchanges via vertical motions at surface

boundaries, we consider the following ICE model (Inte-

grated Continuity Equation):

ot

Z
qdz

� �
þ w � r

Z
qdz

� �
þ

Z
qdz

� �
div w ¼ 0;

ð8Þ

where w stands now for a density weighted average of the

general 3D motion field along the vertical axis.

This model provides a valid invariance condition for

altimetric imagery of compressible flows (Héas et al.

2007a) or for transmittance imagery of compressible fluids

(Fitzpatrick 1988). In cases where the assumption I �$qdz

holds, the ICE data model provides a way to take into

account mass changes observed in the image plan by

associating two-dimensional divergence to brightness

variations and reads like Eq. 2. For long-range displace-

ments, integration of Eq. 2 gives Eq. 4. This model has

been applied to water-vapor and infrared atmospheric

satellite images (Corpetti et al. 2002) and to particle ima-

ges (Corpetti et al. 2006). A similar model has also been

defined for Schlieren images (Arnaud et al. 2006). This

technique allows to visualize the variation of the fluid

density through refraction of a light beam.

Recently, for atmospheric wind measurement applica-

tions, this model has been justified—under the assumption

of negligible vertical velocities at surface boundaries—

through pressure difference image maps (Héas et al.

2007a). The model has been extended to recover the ver-

tical component of velocities, w, at the surface boundaries

of altimetric atmospheric pressure layers (Héas and Mémin

2008)

dh

dt
þ h div w ¼ g½qw�s

þ

s� ; ð9Þ

where h corresponds to observed differences of pressure

and the lower and upper surface boundaries are denoted by

s- and s?. For long-range displacements, integration of

Eq. 9 yields

h2ðxþ dÞ � h1ðxÞ expð� div dÞ

¼ g
½qw�s

þ

s�

div d
ðexpð div d � 1ÞÞ; ð10Þ

which for vanishing divergence of the horizontal motion

fields becomes

h2ðxþ dðxÞÞ � h1ðxÞ ¼ g½qw�s
þ

s� : ð11Þ
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2.2 Optical flow and correlation

In this section, we analyse the physical assumptions

underlying model-based measurements techniques descri-

bed above and classical correlation technique. We indicate

that the correlation technique involves intrinsic assump-

tions giving rise to accuracy limits of the method for

motion estimation. To provide a simple explanation of this

behavior, we shall consider, for simplicity, the DFD model

embedded in a local estimation scheme described in Sect.

3.1 and 3.2.

The displacement field between two consecutive images

can be determined by minimizing the square of the DFD

model

dðxÞ ¼ arg min
d

X
r2WðxÞ

ðI2ðrþ dÞ � I1ðrÞÞ2 ð12Þ

whereWðxÞ is the interrogation window. Since I1 does not

depend on d, the displacement field reads

dðxÞ ¼ arg min
d

X
r2WðxÞ

I2ðrþ dÞ2 � 2I2ðrþ dÞI1ðrÞ
� �

: ð13Þ

Examination of this equation indicates that the

minimization of the square of the DFD model includes

the correlation between the displaced image I2 and the

image I1. The displacement field estimated with the DFD is

thus equivalent to the displacement field obtained through a

correlation maximization when the quantity
P

r2WðxÞ I2ðrþ
dÞ2 does not depend on d. This condition assumes a

constant brightness energy contained in the displaced

interrogation window whatever the displacement and the

point location, i.e.

8d;
X

r2WðxÞ
I2ðrþ dÞ2 � constant: ð14Þ

For PIV images, this condition is clearly met for homo-

geneous particle seeding and sufficiently large interroga-

tion window. Based on a mathematical analysis of the

correlation, this conclusion has also been drawn by Gui and

Merzkirch (2000) when comparing the square of the DFD,

therein called MQD method, with several correlation-based

algorithms.

Since Eq. 12 is the ideal physics-consistent measure of

fit of the displacement field to the data image—for two-

dimensional flow or volumic imagery of three-dimensional

flows—the classical correlation provides biased estima-

tions for non-homogeneous particle seeding. The occur-

rence of this critical phenomenon is locally strengthened

when considering small interrogation windows, region with

large velocity gradients or scalar image. On the contrary,

the square of the DFD intrinsically allows to cope with

smaller interrogations areas, high particle density and

scalar images. This simple analysis clearly shows that the

classical correlation behaves as a poor model which does

not take into account the particle image pattern. As a

consequence, a correlation goodness of fit exhibits accu-

racy limits. Furthermore, for laser sheet three-dimensional

flows visualization, the correlation ‘‘model’’ hides the

effect of intensity variations due to the out of plane com-

ponent leading to limited achievable accuracy (Nobach and

Bodenschatz 2009), whereas the physics-based model 4

take into account this phenomenon.

2.3 Aperture problem

Unlike the non-linear Eqs. 4 and 7, the variational linear

Eqs. 2 and 6 do not suffice to compute image motion. For

instance, the formulation 6 merely links the temporal var-

iation of the luminance function to the component of the

velocity vector normal to the iso-intensity curves (level

lines of the image function)

wðxÞ? ¼ � otIðxÞ
krIðxÞj �

rIðxÞ
krIðxÞk :

As a consequence, motion estimation of linear moving

structures is ill-posed (see Fig. 1). Motion estimation is

thus intrinsically linked in a way or another to the defini-

tion of windowing functions or to the adjunction of addi-

tional spatial constraints or regularization terms. This is

referred to in the literature as the aperture problem. Fur-

thermore, we point out that non-linear Eqs. 4 and 7, and the

variational Eqs. 2 and 6 do not allow to estimate motion in

homogeneous image regions, and are sensitive to noise.

3 Basic motion estimation schemes

Optical flow equations alone do not suffice to compute

image motion. Additional constraints have to be used in

order to define well-posed motion estimation problems.

The type of these constraints depends on the way motion is

?
?

?
?

?
?

?

?

Fig. 1 Schematic illustration of the aperture problem
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represented, parametric or non-parametric, leading to dif-

ferent families of approaches. They include correlation

methods and the Lucas Kanade estimator, and optical flow

methods. Both families of approaches are described in

Sect. 3.1 and 3.2.

3.1 Parametric representation and local or semi-local

estimation

Parametric motion representations allow to consider addi-

tional relations linking the luminance function to the

parameters. These relations are required to hold either on

disjoint local spatial supports, or globally on the whole

image domain.

3.1.1 Local disjoint spatial supports: correlation, ‘‘block

matching’’ and ‘‘Lucas and Kanade’’

These methods belong to region-based techniques. Their

general principle consists in considering a set of windows

WðxÞ centered on different points of the image grid. A

parametric motion field is then estimated on each of these

windows on the basis of a criteria defined classically as the

minimization of the negative cross-correlation or as the

minimization of a metric like the absolute and the squared

differences. A locally constant displacement field is sought

over a discrete state space,

dðxÞ ¼ arg min
d

X
r2WðxÞ

CðI2ðrþ dÞ; I1ðrÞÞ:

The similarity functions, C, used usually are the absolute

value or the square of the DFD, or correlation functions.

The squared differences is commonly used in computer

vision for the motion estimation of rigid or quasi-rigid

body. It has been suggested by Gui and Merzkirch (1996)

for PIV measurements and named minimum quadratic

difference (MQD) method. However, as discussed in Sect.

2.1.1, the DFD model, which relies on the brightness

constancy assumption, is valid either for three-dimensional

flows visualized through volumic data or for two-dimen-

sional flow. For laser sheet three-dimensional flow visual-

ization, this model has to be replaced by the model 4

accounting for particle loss and three-dimensional effects.

3.1.1.1 Correlation Efficient implementations of the

correlation functions are based on the Fast Fourier trans-

form (FFT) and rely on the property that the transform of

the correlation of two signals

I1 � I2 	
X

r2WðxÞ
I1ðrÞI2ðrþ dÞ

is given by the product of transform of the first signal with

the conjugate transform of the second signal

FðI1 � I2Þ ¼ FðI1ÞF�ðI2Þ:

The correlation function is then computed in the Fourier

domain over local windows centered in the same point in

both images. Strictly speaking, this approach is only

defined for periodic signals. For non-periodic signals,

these methods may be sensitive to long-range

displacements.

Another correlation method, defined in the phase space,

relies on the shift invariance property of the Fourier

transform

FðIðxþ w; tÞÞ ¼ FðIðxþ w; 0ÞÞdðkT wþ /Þ;

where d denotes the Dirac mass and k and / designate

respectively the spatial and temporal frequencies. This

equation shows that a feature moving with a velocity w

belongs to a subspace of the Fourier domain. For 2D ? t

image sequences, this is a plane through the origin of the

3D Fourier domain, given by the argument of the d
function

/ ¼ �kT w:

The slope of the plane defines the velocity vector:

w ¼ �rk/. Let us note that the determination of this

vector is ambiguous when the signal spectrum does not

sufficiently cover the corresponding plane. This is the case

when the image signal in the spatial domain is either

homogeneous or has a single dominant direction. We

retrieve then the aperture problem in the frequency domain.

When both images I1 and I2 are linked by a global

translation and a photometric invariance assumption

ði.e.; I1ðx� w0Þ ¼ I2ðxÞÞ, the Fourier transform of image

I2 is given by:F I2 ¼ Î2ðkÞ ¼ Î1ðkÞ expð�ikT w0Þ and

therefore:

Î2ðkÞÎ�1ðkÞ
jÎ1j2

¼ expð�ikw0Þ:

The spatial representation of this normalized spectral cor-

relation coefficient (obtained through inverse Fourier

transform) is characterized by a displaced dirac mass

dðx� w0Þ, which allows to determine the displacement w0

(Foroosh et al. 2002; Jähne 1993).

Methods based on these principles are largely used for

their rapidity and their simplicity. Applications include

image indexing, video compression, velocity measurement

in experimental fluid mechanics (PIV methods; Adrian

1991), and atmospheric wind field estimation in meteo-

rology. In experimental fluid mechanics, different chal-

lenges from 2001 to 2005 have led to very efficient and

reliable variations of the technique. The main variations

concern Gaussian correlation peak approximation for sub-

pixel accuracy, and refined multipass correlation (Adrian

2005; Raffel et al. 2007).
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3.1.1.2 Block matching A second family methods is based

on mean squares brightness conservation 6 and a local para-

metric motion model of p degrees of freedom defined over a

spatial domain. In the case of a linear motion representation

defined as wðxÞ ¼ PðxÞh, where PðxÞ is a 2 9 p matrix which

depends on the chosen parameterization4, motion estimation

amounts to determine the vector bh such that:

bh ¼ argmin
h

Z
WðxÞ

gðx� rÞ otIðrÞþrIðrÞT PðrÞh
� �2

dr ð15Þ

where gðxÞ is a windowing function, typically a Gaussian,

which gives more weight to the window center. This

expression may be written as a convolution product in the

spatiotemporal domain:

min
v

vT gr � PTr3Ir3IT P
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

2
64

3
75v; ð16Þ

with v ¼ ðu; v; 1ÞT and where gr stands here for a (2D ? t)

kernel, andr3I denotes the spatiotemporal gradients of the

luminance function r3I 	 ðoxI; oyI; otIÞT
� �

:

3.1.1.3 Lucas and Kanade For a discrete 2D case and a

constant motion model, the least squares solution of the

expression 15 constitutes the estimator proposed by Lucas

and Kanade (1981):

wðxÞ ¼ �T �1

Z
WðxÞ

grðx� rÞotIðrÞrIðrÞdr

with T ¼
Z
WðxÞ

gðx� rÞrIðrÞrITðrÞdr:

ð17Þ

It is easy to see that matrix T is ill conditioned for small

photometric gradients (uniform image regions) or when the

photometric contours are structured along a single direction

in WðxÞ (8r 2 WðxÞ;rIðrÞ ’ c). We retrieve here again

the aperture problem (see Sect. 2.3).

This local scheme 17 has been applied to flow field

measurements by Okuno and Nakaoka (1991), Sugii et al.

(2000) and Yamamoto and Uemura (2009), and called either

gradient method or spatiotemporal derivative method. The

technique has been extended for the recovery of the velocity

fields and its derivative and has been assessed on PIV

images by Alvarez et al. (2008).

Solutions to this least squares estimation problem

through an eigenvalue analysis (Eq. 16) comprises the

so-called structure tensor approaches (Bigün et al. 1991;

Jähne 1993). The matrix T being symmetric, there exists

an orthogonal matrix Q such that

min
v

vTT v ¼ min
y

yTQTT Qy ¼ min
y

yTKy; ð18Þ

with y ¼ QT v and K = diag(k1, k2, k3), the diagonal matrix

containing the eigenvalues. The solution of Eq. 18 subject

to the constraint kvk ¼ 1 is given by the eigenvector

eðk3Þ 	 e
ðk3Þ
x e

ðk3Þ
y e

ðk3Þ
t

� �T

corresponding to the smallest

eigenvalue k3
5. When the matrix has full rank and is well

conditioned, both components of the velocity vector are

given by:

wðxÞ ¼ ðuðxÞ; vðxÞÞ ¼ e
ðk3Þ
x

e
ðk3Þ
t

:

The eigenvalues enable further analysis. For instance, if all

three eigenvalues are close to zero, no motion can be

estimated. This happens if the spatial support underlying

the least squares estimation corresponds to a homogeneous

image region. A single eigenvalue different from zero

indicates that the luminance gradient has a single dominant

spatial direction, and again only the normal velocity vector

can be estimated (aperture problem):

w? ¼ e
ðk1Þ
t

e
ðk1Þ
x

e
ðk1Þ
x




 


 :

Finally, if three eigenvalues are different from zero, there is

no coherent apparent motion on the considered support due

to a motion discontinuity.

The formulation of the approaches Eqs. 15 and 17 in the

Fourier domain leads to a plane regression problem. A set

of spatiotemporal directional filters, for instance Gabor

filters, enables a direct estimation of the plane parameters

(Fleet and Jepson 1990; Heeger 1988; Jähne 1993;

Simoncelli 1993; Yuille and Grzywacz 1988).

3.1.2 Globalized local smoothing: Ritz method

The previous techniques comprise local independent

motion estimators. While this locality favorably limits

error propagation, it prevents taking into account global

physical constraints. One way to extend the previous

approaches consists in seeking for a solution of the form

w/ðxÞ 	
XN

i¼1

ci/iðxÞ;

4 P(s) = Id for a constant model; PðsÞ ¼ 1 x y 0 0 0

0 0 0 1 x y

� �
for

an affine model and PðsÞ ¼ 1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

� �
for a

quadratic model.

5 This corresponds to the total least squares solution. Given a

(m 9 p) homogeneous linear system Mx ¼ 0, a total least squares

solution minimizes kMxk2
subject to the constraint kxk ¼ 1 in order

to avoid the trivial solution.
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where the coefficients ci are unknown and the shape

functions, /iðxÞ, are fixed. These functions have compact

spatial support and are chosen on a priori grounds of

requirements of given application area. The shape function

basis should be complete, that is the approximation error

kw/ � wk converges toward zero for N ? ?.

The method consists in estimating the coefficients ci by

minimizing

Jðw/Þ¼
Z
X

F x;w/;
ow/

ox
;...

� �
dxþ

Z
C

Gðs;w/;���Þds; ð19Þ

where X define the spatial domain with boundary C = qX,

in which one seeks for the solution. In the case of a

quadratic functional, the minimizer of J with respect to c is

determined by the following conditions:

oJ

oc
¼

oJ
oc1

..

.

oJ
ocN

2
664

3
775 ¼ Kcþ f ¼ 0:

If the functional degree with respect to wh and its derivative

is not larger than 2, the socalled stiffness matrix K is

symmetric:

K ¼

o2J
oc2

1

� � � o2J
ocN c1

..

. ..
.

o2J
oc1ocN

� � � o2J
oc2

N

2
664

3
775

This method has been applied for functions F defined either

from the OFC (Srinivasan and Chellappa 1998; Wu et al.

2000) or from the DFD (Musse et al. 1999; Szeliski and

Shum 1996). In the former case, the system to be solved is

linear, and the shape functions are ‘‘cosine window’’

functions (Srinivasan and Chellappa 1998) and a particular

wavelet function basis (Cai-Wang waveletts) defined from

B-splines of order 4 (Wu et al. 2000). In the latter case,

both methods make use of hierarchical B-splines. As

numerical iterative methods were used a Gauss–Newton

solver (Musse et al. 1999), a Conjugate Gradient technique

(Srinivasan and Chellappa 1998) and the Levenberg–

Marquardt method (Szeliski and Shum 1996; Wu et al.

2000). Standard boundary conditions (Dirichlet or Neu-

mann) were associated with those different approaches.

Basis functions defined on thin-plate splines (Duchon

1977; Wahba 1990) have been also intensively used in

computer vision registration application (Arad et al. 1994;

Bookstein 1989) or for medical image applications (Rohr

et al. 1999). The main problem of these methods consists

to determine an adequate spatial subdivision of the image

domain in terms of the basis functions, and to allow for

strong discontinuities of the solution that are important in

some applications of image sequence processing.

For fluid flow image analysis, an estimator of this kind,

relying on the Helmholtz decomposition, has been pro-

posed in Cuzol and Mémin (2005, 2008). An example of

the results obtained by the latter estimator is shown in

Figs. 12 and 13. The representation on which it relies is

further described in Sect. 4.5.2. Let us recall that the

Helmholtz decomposition separates the velocity field into a

divergent-free and a curl-free component (assuming null

boundary conditions at infinity), the solenoidal and irro-

tational motion components

w ¼ wirr þ wsol; ð20Þ

where div w ¼ div wirr and curl w ¼ curl wsol. It is well

known that these two fields can be represented by two

potential functions, the stream function and the velocity

potential

w ¼ rwþr?/: ð21Þ

These potential functions are solutions of two Poisson

equations (known for the divergent-free component as the

Biot-Savart integral):

Dw ¼ �curl w; D/ ¼ div w: ð22Þ

As a consequence, they may be expressed by the convolution

with the corresponding Green functions. Taking gradients of

these convolution products and slightly mollifying the

associated singular kernels with Gaussian convolution

gives rise to appropriate basis functions for the curl and the

divergence, known in the computational fluid dynamics

community as vortex particles (Chorin 1973; Cottet and

Koumoutsakos 2000; Leonard 1980). The resulting

irrotational and solenoidal motion fields are a linear

combination of these basis functions. The solenoidal

components, for instance, reads

wsolðxÞ �
Xp

i¼0

ciK
? � gei

ðzi � xÞ

�
Xp

i¼0

ciK
?
ei
ðzi � xÞ;

ð23Þ

where Kei
\ is the kernel function obtained by convolving the

orthogonal gradient of the Green kernel, K\, with a

Gaussian function, gei
. The coordinates, zi; denotes the

location of the ith basis functions. A similar representation

of the irrotational component using likewise, source par-

ticles and the Biot-Savart integral associated with the

divergence map (Eq. 24) can be readily obtained. Using

this parameterization together with a photometric model

enables to define a least squares estimation problem for the

unknown coefficients. The estimation of the basis function

parameters, on the other hand, i.e. standard deviation of the

gaussian kernel and location of the basis function, is more

involved and leads to a non-linear system to be solved
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numerically. A solution based on a two-stage process is

proposed in Cuzol et al. (2007). Code corresponding to this

estimator is freely available and can be downloaded on the

Web site of the FLUID project (http://www.fluid.irisa.fr).

For fluid flows analysis and fluid motion estimation

from image sequences spline basis functions minimizing a

second order div–curl constraint (see Eq. 25 Sect. 1) have

been proposed (Amodei and Benbourhim 1991; Suter

1994; Isambert et al. 2008). Compared to vortex particles,

these basis functions have the drawback to impose strictly

an empirical kinematics constraint that is not built from

physical considerations.

3.2 Non-parametric representation and non-local

estimation

A third basic class of motion estimation schemes considers

velocity fields w ¼ ðu; vÞ> as general functions, rather than

as individual velocity estimates at discrete locations (Sect.

2.1.2), or as polynomial vector fields defined in a local

region (Sect. 3.1). These methods are classically called

optical flow or global approaches.

Given an image function Iðx; tÞ, we estimate w for an

arbitrary but fixed point of time t by minimizing the functional

EðwÞ ¼
Z
X

ðrI � wþ otIÞ2 þ k kruk2 þ krvk2
� �n o

dx:

ð24Þ

The variational approach Eq. 24 has been introduced by

Horn and Schunck (1981) in the field of computer vision.

The objective criterion combines two terms: A so-called

data term that enforces the conservation assumption by

minimizing the squared norm of the linearized DFD (see

Sect. 2.1.2), and a so-called smoothness term or regularizer

that enforces spatial smoothness of the minimizing velocity

field w, to a degree as specified by the regularization

parameter k weighting the two terms.

Specific properties of the basic variational approach

(Eq. 24) include:

• Under weak conditions, namely, L2-independence of

the two component functions of the spatial image

gradient rIðxÞ; the functional Eq. 24 is strictly convex

(Schnörr 1991). Because the functional additionally is

quadratic in w; discretizing the variational equation

d

ds
E wþ s~wð Þjs¼0 ¼ 0; 8~w;

with piecewise linear finite elements, or the corresponding

Euler-Lagrange system of equations with finite differences,

yields a sparse linear system that is positive definite. It can

be conveniently and efficiently solved using standard iter-

ative numerical techniques.

• The resulting velocity estimate w is dense even if the

image function I is homogeneous, i.e. rI � 0; in some

image regions. As before in the two previous subsec-

tions, imposing smoothness on the solution is necessary

here, too, to obtain a well-defined estimation approach.

The non-parametric approach (Eq. 24) is less restric-

tive, however, than assuming locally constant velocity

fields (Sect. 2.1.2), or than prescribing a polynomial

form within local regions (Sect. 3.1).

The application of the basic variational approach

(Eq. 24) to PIV has been studied in Ruhnau et al. (2005)

where more details on the discretization are given. More-

over, in this paper, a multiscale representation of the input

image data I obtained by low-pass filtering and subsam-

pling was used to compute long-range motions up to 15

pixels per frame, which is not possible when working with

Eq. 24 on the finest sampling grid only (see Sect. 4.4.1 for

details on this multiscale representation).

Although providing good results with PIV data, the

basic variational approach of Horn and Schunck (1981)

was originally proposed for rigid or quasi-rigid motion.

Therefore some knowledge of the physics of fluid need to

be used to improve the measurement accuracy. For laser

sheet visualization of three-dimensional flow, Eq. 2 must

be used as a data term. Modifications of the regularization

term are addressed in Sect. 4 (higher-order and physics-

based regularization) and in Sect. 4.3 robust norms are

described for removing outliers and for preserving dis-

continuities of the velocity fields. Concerning numerical

approaches relevant to Eq. 24, we refer to Bruhn et al.

(2006) and references therein.

4 Specific motion estimation schemes

The motion estimators presented so far combine a physics-

based model of brightness variation related to the observed

flow with additional spatial constraints expressed through

parametric motion models or smoothness functionals. This

last ingredient was mainly designed in the context of rigid

luminance patterns that are typical for image sequences of

natural scenes.

Regarding fluid flow velocity fields, it is natural to ask

for dedicated approaches taking into account physically

more plausible smoothing functionals, to provide more

accurate velocity measurements. This section addresses

these issues.

4.1 Higher-order regularization

Regarding the estimation of fluid flows with spatially

varying, strong gradients, an apparent weak point of the
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basic variational approach (Eq. 24) is the use of first-order

derivatives in the regularization term. As a consequence,

the value for the parameter k has to be chosen quite small

in order not to underestimate gradients of the flow. On the

other hand, this means that data noise influencing the first

term in Eq. 24 cannot be effectively suppressed through

regularization.

As a remedy, numerous researchers studied higher-order

regularizers, in particular terms involving second-order

spatial derivatives of the flow, of the formZ
X

krdiv wk2 þ krcurl wk2
n o

dx: ð25Þ

We refer to Corpetti et al. (2002), Yuan et al. (2007) and

references to earlier work therein. Further motivation of

Eq. 25 is given by the generalized Helmholtz

decomposition of the space of square integrable vector

fields into gradients and curls (Girault and Raviart, 1986)

L2ðXÞ2 ¼ rH1ðXÞ 
 r?H1
0ðXÞ; ð26Þ

that is valid in two dimensions X � R
2 if the domain X is

simply connected. In Eq. 26, the symbol r? denotes the

vector-valued curl-operator ðox2
;�ox1

Þ> for two-dimen-

sional scalar fields, and H1(X) denotes the Sobolev space of

square integrable functions whose gradients are square

integrable as well. H0
1(X) denotes the subspace of those

functions of H1(X) that vanish on the boundary qX.

Using higher-order derivatives has consequences for

discretization. Unlike the approach (Eq. 24) where stan-

dard textbook schemes apply and lead to numerically stable

computations, the regularizer Eq. 25 yields a complex

Euler-Lagrange system of equations and natural boundary

conditions whose proper discretization is far from being

trivial. The decomposition of vector fields w 2 L2ðXÞ2
into an irrotational and a solenoidal component due to

Eq. 26 highlights this issue as well. For example, it is well

known from computational fluid dynamics that imposing

the incompressibility constraint div w ¼ 0 in connection

with standard discretization schemes may result in w ¼ 0,

due to the so-called locking effect (cf., e.g., Brezzi and

Fortin 1991).

As a consequence, more sophisticated discretizaton

schemes have to be applied. Examples include the Mimetic

Finite Differences framework developed by Hyman and

Shashkov (1997a, 1997b) or alternatively the construction of

adequate Finite Element spaces, see Hiptmair (1999) and

references therein to earlier work. The primary objective of

this line of research is to make hold true orthogonal decom-

positions of spaces of vector fields and the basic integral

identities of vector analysis after discretization. This is an

essential prerequisite for stable numerical computations.

Furthermore, vector field decompositions help to ana-

lyze variational approaches. For example, it is shown in

Yuan et al. (2007) that when using the regularizer (Eq. 25)

together with the data term in Eq. 24, one should include

an additional boundary term in order to remove an inherent

sensitivity against noise in the image data that cannot be

regularized by increasing the weight of Eq. 25.

Comparisons of the approaches of Corpetti et al. (2002)

and Yuan et al. (2007) with correlation technique are dis-

cussed in Sect. 5.1. Results obtained with these higher-

order regularization techniques are displayed in Figs. 4, 5,

6 and 7 for particle and scalar images.

4.2 Physical constraints and controlled estimation

The variational approaches Eqs. 24 and 25 are uncon-

strained. In experimental fluid dynamics, this appears to be

unnatural because the flow to be estimated is governed by

the Navier–Stokes equation. Consequently, one may ask

for approaches that combine flow measurements from

image sequences with the constitutive equations of fluid

dynamics. This basic problem opens a line of long-term

research at the end of which one may expect computational

schemes to be available that consistently combine the

evaluation of experimental data and simulations.

The reader may argue that physical constraints are less

useful in the prevailing two-dimensional measurement

scenarios. For example, even the incompressibility condi-

tion div w ¼ 0 does not strictly hold for flows observed in a

planar section through a volume, due to out of plane par-

ticle movements. While this is true, it should not hamper to

clarify this basic problem that is becoming more and

more relevant as soon as novel measurement techniques

delivering three-dimensional flow measurements become

available.

A basic approach that in some sense provides the sim-

plest setting for a meaningful combination of flow mea-

surements with physical constraints has been recently

proposed in Ruhnau And Schnörr (2007). The variational

approach comprises the objective functional

Eðw; p; f ; gÞ ¼
Z
X

ðrI � wþ otIÞ2 þ akfk2
n o

dx

þ c
Z
oX

kotgk2
ds;

ð27Þ

and the constraint system

�lDwþrp ¼ f in X; ð28aÞ
div w ¼ 0 in X; ð28bÞ
w ¼ g on oX: ð28cÞ
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Estimated flows w have to satisfy the Stokes system Eq. 28

and to fit the observed image motion by minimizing the data

term (i.e. the first term) in Eq. 27. The connection between

the physical constraints and the objective function is

established by virtue of distributed vector fields f ; g inside X
and on the boundary qX, respectively, that control the

estimated flow w through the right-hand side of Eq. 28 so as

to minimize Eq. 27. Regularization terms of the control

variables are included into the objective function, with small

weights a and c, in order to render the whole approach

mathematically well posed. otg denotes the componentwise

tangential derivative of g along the boundary qX.

The following basic observations can be made:

• The approach, Eqs. 27 and 28, is more specific than

Eq. 25 (complemented with the same data term), due to

the constraint system Eq. 28. This is an advantage if the

physical constraints hold true. In fact, if w is actually

governed by the Stokes equation, the variables p; f

become physically significant: Pressure and forces can

be directly estimated from the image data Iðx; tÞ
(Ruhnau and Schnörr, 2007)

• Using the data term Eq. 6, the approach Eq. 27 was

originally devised for two-dimensional flows but may

also hold in a physical sense for three-dimensional flow

with volumic visualization. In these cases, under the

assumptions described in Sect. 2.1.2, the optical flow w

can satisfy the Stokes Eq. 28;

• In the case of turbulent flow w where the Stokes

equation is inadequate but the constraint Eq. 28b still

holds true, the approach Eqs. 27 and 28 still makes

sense. This is because the control variables f ; g are free.

While they are no longer physically significant, they

still control the flow w so as to fit the turbulent

measurements observed through the image data, by

minimizing Eq. 27. In this connection, we point out

that f / Dw in Eq. 28a is proportional to second-order

derivatives of w. As a result, inclusion of kfk2
into

Eq. 27 leads to higher-order flow regularization as in

Eq. 25, but in a physically more plausible way;

• Finally, observe that the Eq. 28 have the common form

used in numerical simulations, and are kept separate

from the functional Eq. 27 involving the data. This

helps to rely on established numerical schemes devel-

oped in both communities.

In Ruhnau and Schnörr (2007), the authors develop a

gradient descent scheme for minimizing Eq. 27 subject to

the constraints Eq. 28. To compute the gradient, the

dependency of the variables w; p on the controls f ; g has to

be taken into account. This can be done by additionally

solving an auxiliary system of the same form as Eq. 28. A

second major issue is to employ proper discretizations for

w and p. We refer to Ruhnau and Schnörr (2007), Gunz-

burger (2003) and Brezzi and Fortin (1991) for details.

4.3 Robust measures

Models of motion estimation described in Sect. 2.1 rely on

assumptions that do not strictly hold true. Non-Gaussian

noise, changes of illumination, and many other local situ-

ations that do not fit well the underlying model provide

examples. To handle such deviations in the different energy

terms of the functional, it is common to replace the L2

norm by a so-called robust normZ
X

qðgðwÞÞdx: ð29Þ

Such cost functions, originally introduced in the context of

robust statistics (Huber 1981), penalize large residual

values less than quadratic functions do (Fig. 2). Under

suitable conditions (mainly concavity of U 	 qð
ffiffiffi
x
p
Þ), it

can be shown that any multidimensional minimization

problem of the form

arg min
w

Z
q½gðwÞ�dx; ð30Þ

can be turned into a corresponding dual minimization

problem (Huber 1981; Geman and Reynolds 1992)

arg min
w;z

Z
½MzgðwÞ2 þ wðzÞ�dx: ð31Þ

This new optimization problem involves additional auxiliary

variables acting as weight functions zðxÞ with value in the

range [0, 1]. Function w is a continuously differentiable

function, depending on q, and M 	 limv!0þ U0ðvÞ:

Fig. 2 Graph of a robust cost function qðxÞ ¼ 1� exp x2

r2

� �� �
compared to a quadratic function
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Optimization is carried out alternating minimizations with

respect to w and z. If the function g is affine, minimization

with respect to w becomes a standard weighted least squares

problem. For w being fixed, the best weights have the

following closed form (Geman and Reynolds 1992):

ẑðxÞ ¼ q0½gðwÞ�
2MgðwÞ ¼

1

M
U0 gðwÞ2
h i

: ð32Þ

Experimentally, the use of these functions either for the

data model or for the regularization term has led to better

performance in a range of computer vision application

(Black and Rangarajan 1996; Mémin and Pérez 2002). For

fluid flows, such functions have been mainly used for the

data term (Corpetti et al. 2006; Héas et al. 2007a). They

allow to introduce a localized discrepancy measure

between the data model and the actual measurements. At

points where such a deviation occurs, only the remaining

terms of the functional (i.e. regularization) are involved.

These functions have been also used together with a clas-

sification map to enable the estimation of atmospheric

layered data (Héas et al. 2007a). In that case, only data

belonging to a predefined layer are taken into account for

motion estimation.

4.4 Multiscale estimation

4.4.1 Multiresolution scheme

Velocity measurements from particle image sequence

present inherent difficulties for variational methods. The

variational formulation is limited to small displacements

(smaller than the shortest wavelength present in the image),

and therefore is typically embedded into a multiresolution

scheme to handle large displacements.

These models are usually linearized around current

estimates and embedded into a multiresolution pyramidal

image structure obtained from successive low-pass filtering

and subsampling of the image sequence (Fig. 3). The

estimation process is then incrementally conducted from

‘‘coarse to fine’’ along the multiresolution structure (Ber-

gen et al. 1992; Enkelmann 1988; Mémin and Pérez 1998;

Papenberg et al. 2006).

4.4.2 Correlation-based variational scheme

As mentioned above, the estimation of long-range dis-

placements with optical flow techniques is usually

embedded into multiresolution data structures and succes-

sive linearizations around the current estimate. These

incremental schemes allow to tackle in a Gauss–Newton

type manner the non-linear optimization associated with

the non-linear integrated brightness constancy assumption,

such as the DFD data model. In this scheme, major

components of the displacements are computed at coarse

resolution levels corresponding to low-pass filtered and

subsampled versions of the original images. However,

when the motion of thin or small structures differs signif-

icantly from the motion of larger regions in their neigh-

borhood, the estimator most likely fails to correctly

determine the motion of these high frequency photometric

structures. This is particularly true for meteorological

images, where for instance mesoscale structures such as

cirrus filaments may exhibit large displacements that are

completely different from the atmospheric layer motion at

a lower altitude. The same problem appears with particle

images. Due to the successive down sampling of the image,

small particles with large velocities are smoothed out, thus

leading to a loss of information and erroneous velocity

measurements. As a result, these problems lead to poor

performance of traditional multiresolution dense motion

estimator.

Correlation techniques have proven to be more robust

with respect to the estimation of long-range displacements.

Nevertheless, as they rely on parametric spatial motion

models, these techniques tend to larger estimation errors in

regions with a high motion variability. Furthermore, they

provide sparser motion fields that must be interpolated and

post-processed in order to compute dense vorticity maps or

related differential motion quantities.

In order to benefit from the best properties of both

variational dense estimators and correlation techniques, an

immediate idea is to combine these two methods. Sugii

et al. (2000) combined sequentially cross-correlation

technique and local variational approach (Lucas and

Kanade method see Sect. 3.1) to achieve high subpixel

accuracy with higher spatial resolution. Seemingly, for

three-dimensional motion estimation, Alvarez et al. (2009)

initialized the estimation with cross-correlation and

improved the results with a global variational approach

(Horn and Schunck method see Sect. 3.2).

To cope with the multiresolution issue, Héas et al.

(2007a) for meteorological satellite images and Heitz et al.

J 0,l

J 1,l

J 2,l

I 0,l

I 1,l

I 2,l dw 2,l

w 1 + dw 1,l

w 0 + dw 0,lw 0 + dw 0,l

Fig. 3 Coarse-to-fine resolution with multiresolution representation

of the images (Heitz et al. 2008)

380 Exp Fluids (2010) 48:369–393

123



(2008) for fluid mechanics particle images, proposed a

collaborative correlation-variational approach combining

the robustness of correlation techniques with the high

spatial density of global variational methods. Both tech-

niques can be formalized as the minimization of the fol-

lowing functional:Z
X

F I;wþ �wð Þ

þb
Z
X

Xp

i¼1

higrðxi� xÞkwcðxiÞ�wk2
dx

þ a
Z
X

krcurl wþ �wð Þk2þkrdiv wþ �wð Þk2
dx; ð33Þ

where w denotes the large scale components of the motion,

whereas �w represents finer scales. Function F stands for

any chosen photometric data model, and wc denotes a finite

set of p correlation vectors located at points xi. Optimiza-

tion is carried out in two separate steps. Setting initially to

zero the finer motion component, the large-scale compo-

nents are obtained on the basis of (1) a photometric data

model, (2) a goodness of fit term including the correlation

vectors that is weighted both by a Gaussian function to

spatially enlarge the correlation vector’s influence and a

correlation confidence factor, and (3) a second-order div–

curl regularizer. Then, in turn, by freezing the large-scale

components, the finer scales are estimated on the basis of

the div–curl regularizer and the photometric data model. In

this second step, the correlations vectors are not anymore

involved. Unlike the multiresolution approach, this scheme

relies on a single representation of the full resolution data

and avoids the use of successive low-pass filtering of the

image data.

This technique has been evaluated with synthetic images

of particles dispersed in a two-dimensional turbulent flow,

and with real-world turbulent wake flow experiments (see

Sect. 5.2).

4.5 Utilizing temporal context

The motion estimation techniques described so far only

rely on kinematic constraints and provide independent

instantaneous motion field measurements for each frame.

All these estimates along the time axis are independent

from each other, hence consistency of spatiotemporal

motion field trajectories cannot be enforced. To do this in a

physically plausible way, it is essential to consider motion

estimation as a dynamical process along the time-resolved

image sequence and to impose corresponding constraints.

Such a process can be set up in two distinct ways. The

first approach extends the traditional dense estimation

method by adding to the objective functional an additional

goodness of fit term comparing the current estimate by the

predicted motion based on previous estimates and a spec-

ified evolution law. The second approach implements the

motion estimation issue as a tracking problem. In this case

a sequence of motion fields is estimated using the complete

set of image data available. The estimation is formulated as

a dynamical filtering problem in order to recover complete

velocity field trajectories on the basis of a dynamical law

and noisy incomplete image measurements. This strategy

can be implemented through a recursive stochastic tech-

nique or in terms of a global variational formulation.

In the following sections we explore these two alterna-

tives in some more details and give pros and cons of each

of them.

4.5.1 Local temporal context and iterative estimation

A variational approach realizing the first option discussed

above has been recently worked out in Ruhnau et al. (2007)

for three-dimensional flow with volumic visualization or

for the two-dimensional case, in Héas et al. (2007a) for

altimetric imagery of three-dimensional flows and in Heitz

et al. (2008) for laser sheet three-dimensional flow visu-

alization of particles or scalar.

4.5.1.1 3D flow with volumic visualization or 2D flow

Let [0, T] denote the local time interval between two

subsequent frames of the image sequence Iðx; tÞ. The

evolution of the flow w to be estimated from Iðx; tÞ is given

by the vorticity transport equation

D

Dt
v ¼ otvþ w � rv ¼ mDv; vðx; 0Þ ¼ v0; ð34Þ

where v0 ¼ curl wjt¼0 denotes the vorticity of the flow

estimated for the first image frame. Solving this equation

numerically in the time interval [0, T], that is performing

simulation, we compute vT ¼ vðx; TÞ and interpret this as

an prediction of the vorticity of the flow observed through

the second frame of the image sequence Iðx; tÞ at time

t = T.

At time t = T, we have again access to image sequence

data. Hence we minimize a motion estimation functional

that takes into account the observed data in terms of Eq. 6

and regularizes the flow by comparison with the predicted

vorticity vT.

EðwÞ ¼
Z
X

ðotI þrI � wÞ2 þ kðv� vTÞ2 þ jkrvk2
n o

dx;

ð35aÞ
subject to div w ¼ 0; curl w ¼ v: ð35bÞ

Computing the minimizer w; we obtain the initialization

v ¼ curl w for Eq. 34, to be solved for the subsequent time
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interval. For details of the non-trivial discretization of both

Eqs. 34 and 35, we refer to Ruhnau et al. (2007).

The following observations can be made:

• Originally proposed for the two-dimensional case, this

approach may also hold for volumic three-dimensional

flow visualization. In these configurations, under the

assumptions described in Sect. 2.1.2, the optical flow w

estimated with Eq. 35 satisfies the vorticity transport

Eq. 34;

• Besides enforcing similarity of v ¼ curl w and the

prediction vT in Eq. 35, the flow w is only regularized

through first-order spatial derivatives of vorticity. As a

consequence, the variational approach Eq. 35 again

generalizes the higher-order regularization approach

Eq. 25 in a physically meaningful way;

• Additionally, the iterative interplay between prediction

(Eq. 34) and estimation (Eq. 35) utilizes spatiotempo-

ral context in an online manner, because for each

computation just two frames of the sequence are used.

The ‘‘memory’’ of the overall approach depends on the

value of the parameter k in Eq. 35. This online property

is in sharp contrast to the commonly employed way in

image processing to exploit spatiotemporal context in a

batch-processing mode by treating the time axis as a

third spatial variable (Weickert and Schnörr 2001);

• Finally, we point out that the simulation (Eq. 34) and

estimation (Eq. 35) are separate processes from the

viewpoint of numerical analysis. This keeps the overall

design modular and avoids reinventing the wheel.

4.5.1.2 3D flow with laser sheet visualization or altimetric

imagery A different but related technique has been pro-

posed for the recovery of atmospherical motion layer by

Héas et al. (2007a) and extended by Heitz et al. (2008) for

2D image sequences of particles dispersed in 3D turbulent

flows. In these works, the predicted vorticity is replaced by

a predicted velocity, wp; obtained from the numerical

integration of a filtered simplified vorticity-divergence

formulation of shallow water models. For laser sheet three-

dimensional flow visualization, the simplified vorticity-

divergence transport equations reads

vt þ w � rvþ vf ¼ ðms þ mÞDv
ft þ w � rfþ f2 � 2jJj ¼ ðms þ mÞDf;

�
ð36Þ

where f ¼ div w; jJj is the determinant of the Jacobian

matrix of variables (u, v), ms ¼ ðCDxÞ2jxij is the enstrophy-

based subgrid scale model proposed by Mansour et al.

(1978), and C the Lilly’s universal constant equal to 0.17.

Here, we minimize a motion estimation functional that

takes into account the observed data in terms of Eq. 2 and

regularizes the flow by comparison with the predicted

velocity wp;

EðwÞ ¼
Z
X

ðotI þrI � wþ Idiv wÞ2 þ kkw� wpk2
n

þj krvk2 þ krfk2
� �o

dx: ð37Þ

The prediction term applies here only at a large scale, and

the quadratic goodness of fit term only involves a large-

scale component of the unknown velocity field. The small-

scale unknown components are computed in an incre-

mental setup and depends only on the data model and the

smoothing term used in the estimator. This term plays the

role of a predictor of a large-scale motion component and

thus avoids the use of a multiresolution scheme in order to

cope with long-range displacements. Interested readers will

find the implementation details and experimental compar-

ison results in Héas et al. (2007a) and in Heitz et al.

(2008). The improvements brought by this spatiotemporal

regularization are discussed in Sect. 5.3 and shown in

Figs. 10 and 11.

Note that as indicated in Sect. 2.1.1, the optical flow w

estimated with Eq. 37 is proportional to the path-averaged

velocity of fluid across the laser sheet and hence does not

satisfy exactly the full Navier–Stokes equations. However,

in the present approach, since the Navier–Stokes equations

have been simplified with shallow flow assumption across

the laser sheet, the optical flow w satisfies Eq. 36.

4.5.2 Non-local temporal context

In the following sections, we briefly present the two dynamic

filtering alternatives that implement a global dynamical

consistency of the estimated velocity fields sequences. The

first one relies on a stochastic methodology whereas the

second one ensues from optimal control theory.

4.5.2.1 Recursive estimation through stochastic filter-

ing In order to estimate optimally the complete trajectory

of an unknown state variable from a sequence of past

image frames, we formulate the problem as a stochastic

filtering problem. Resorting to stochastic filters consists in

modeling the dynamic system to be tracked as an hidden

Markov state process. The goal is to estimate the value of

the random Markovian process—also called state process

and denoted x0:n ¼ fxtgt2½0;n�—from realizations of the

observation process. The set of measurements operated at

discrete instants are denoted z1:n ¼ fz1; z1; :::; zng. The

system is described by(a) the distribution of the state

process at initial time pðx0Þ,(b) a probability distribution

modeling the evolution (i.e. the dynamics) of the state

process pðxkjxt\kÞ and(c) a likelihood (representing the

measurement equation) pðzkjxkÞ that links the observation

to the state. In this framework, the posterior distribution,

i.e. the law of the state process knowing the set of
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observations, carries the whole information on the process

to be estimated. More precisely, as tracking is a causal

problem, the distribution of interest is the law of the state

given the set of past and present observations pðxkjz1:kÞ,
known as filtering distribution. The problem of recursively

estimating this distribution may be solved exactly through

a Bayesian recursive solution, named the optimal filter

(Gordon et al. 1993). This solution requires to compute

integrals of huge dimension. In the case of linear Gaussian

models, the Kalman filter (Anderson and Moore 1979)

gives the optimal solution since the distribution of interest

pðxkjz1:kÞ is Gaussian. In the non-linear case, an efficient

approximation consists in resorting to sequential Monte

Carlo techniques (Arulampalam et al. 2002; Doucet et al.

2000; Gordon et al. 1993). These methods consist in

approximating pðxkjz1:kÞ in terms of a finite weighted sum

of Dirac masses centered in elements of the state space,

named particles. At each discrete instant, the particles are

displaced according to a probability density function

named importance function, and the corresponding weights

are updated using the system’s equations. A relevant

expression of this function for a given problem is essential

to achieve an efficient and robust particle filter. Interested

readers may found different possible choices in Arnaud and

Mémin (2007) and Doucet et al. (2000).

Such a technique has been applied to the tracking of a

solenoidal field described as a combination of vortex par-

ticles (Cuzol and Mémin 2005, 2008). The motion field in

that work is described through a set of random variables

xi; i ¼ 1; . . .; p:

wðxÞ �
Xp

i¼0

ciK
?
�sol

i
xsol

i � x
� �

; ð38Þ

where K?�i
is a smoothed Biot-Savart kernel obtained by

convolving the orthogonal gradient of the Green kernel

associated with the Laplacian operator with a smoothing

radial function. The vector x ¼ ðxi; i ¼ 1; . . .; pÞT represents

the set of vortex particle locations and the coefficient, ci, their

strength. The dynamics of these random variables is defined

through a stochastic interpretation of the vorticity transport

equation Chorin (1973):

dxt ¼ wðxtÞdt þ rdBt; ð39Þ

where B stands for a 2p-dimensional Brownian motion with

independent components, and associated with the diffusion

coefficient r ¼
ffiffiffiffiffi
2m
p

. The evolution of the vortex set, x,

between two frame instants k and k ? 1 and for a

discretization step Dt, is represented by the following

Markov transition equation:

p xk
j jxk

j�Dt

� �
�N xk

j�Dt þ w xk
j�Dt

� �
Dt; 2mDtI2p

� �
; ð40Þ

where I2p denotes the 2p 9 2p identity matrix.

A sample of the trajectories generated between two

frames are then weighted according to the likelihood

pðzkjxkÞ. In this work, this density has been defined in

terms of a reconstruction error measurement, zk, computed

from the pair of images (Ik, Ik?1).

The results obtained with this technique for a two-

dimensional turbulent flow are discussed in Sect. 5.3 and

plotted in Figs. 12 and 13.

4.5.2.2 Global estimation control approach In this sec-

tion, we present the second alternative for a dynamical

filtering of noisy and incomplete data. This framework

ensues from control theories and has been popularized in

geophysical sciences where it is known as variational

assimilation (Le-Dimet and Talagrand 1986; Lions 1971).

Opposite to particle filtering, variational assimilation

techniques have the advantage to enable a natural handling

of high-dimensional state spaces. Before presenting further

the adaptation of such a framework to motion estimation,

let us describe the general notions involved.

As previously, the problem we are dealing with consists

in recovering a system’s state Xðx; tÞ obeying a dynamical

law, given some noisy and possibly incomplete measure-

ments of the state. The measurements, in this context also

called observations, are assumed to be available only at

discrete points in time. This is formalized, for any location,

x, at time t [ [t0, tf], by the system

oX

ot
ðx; tÞ þMðXðx; tÞ; cðtÞÞ ¼ 0 ð41Þ

Xðx; t0Þ ¼ X0ðxÞ þ �nðxÞ; ð42Þ

where M is a non-linear dynamical operator depending on a

control parameter c(t). We assume here that c(t) [ C and

XðtÞ 2 V are square integrable functions. The term X0 is the

initial vector at time t0, and �n is an (unknown) additive

control variable of the initial condition. Furthermore, we

assume that the measurements of the unknown state, Y 2 O,

are available. These observations are measured through the

non-linear operator,H : C ! O. The objective consists then

to find an optimal control of low energy that leads to the

lowest discrepancy between the measurements and the state

variable. This leads to the minimization problem

J ðc; �nÞ ¼
1

2

Ztf

t0

kY �HðXðcðtÞ; �n; tÞÞjj2R�1 dt

þ 1

2
k�njj2B�1 þ

1

2

Ztf

t0

kcðtÞ � c0jj2F�1 dt; ð43Þ

where c0 is some expected value of the parameter. The

norms jj:jjR�1 ; jj:jjB�1 and jj:jjF�1 are induced by the inner

products \R�1�; �[ O; \B�1�; �[ V and \F�1�; �[ C; R,
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B and F are covariances matrices of the observation space

and state space. They are respectively related to the

observations, the initial condition of the state variable and

to the expected value of the control variable.

Regarding the minimization of the objective function, a

direct numerical evaluation of the functional gradient

computationally infeasible, because this would require to

compute perturbations of the state variables along all the

components of the control variables ðdc; d�nÞ—i.e. to

integrate the dynamical model for all perturbed compo-

nents of the control variable, which is obviously not pos-

sible in practice.

A solution to this problem consists to rely on an adjoint

formulation (Le-Dimet and Talagrand 1986; Lions 1971).

Within this formalism, the gradient functional is obtained

by a forward integration of the dynamical system followed

by a backward integration of an adjoint dynamical model.

This adjoint model is defined by the adjoint of the discrete

scheme associated with the dynamical system.

This technique has been recently applied to the estimation

of fluid motion fields (Corpetti et al. 2008; Héas et al. 2007b;

Papadakis and Mémin 2008a, 2008b; Papadakis et al.

2007)and to the tracking of closed curves (Papadakis and

Mémin 2008b). These works rely either on shallow water

dynamical model or on a vorticity–velocity formulation.

They associate motion measurements given by external

motion estimators (Papadakis and Mémin 2008b) or incor-

porates directly luminance data (Papadakis et al. 2007;

Papadakis and Mémin 2008a). The first case provides a fil-

tering technique that allows improving significantly the

observed motion fields. The second technique constitutes a

complete autonomous motion estimator that enforces

dynamical coherence and a temporal continuous trajectory

of the solution. Results obtained with this technique for two-

dimensional turbulent flow are shown in Figs. 12 and 13.

These approaches, compared to traditional motion estimator,

enable to recover accurately a broad range of motion scales.

This technique has been also used recently to recover

the parameters of a reduced dynamical system obtained

from a POD-Galerkin techniques (D’Adamo et al. 2007).

Compared to traditional approaches, this technique allows

an improved accuracy and stability of the estimated

reduced system. For a flow showing periodic behavior this

method allows to denoise experimental velocity fields

provided by standard PIV techniques and to reconstruct a

continuous trajectory of motion fields from discrete and

unstable measurements.

5 Experimental results

In this section, we illustrate various aspects discussed in

previous sections by experimental results, obtained for both

computer-generated and real datasets. First, in Sect. 5.1, we

focus on the effect of using higher-order regularization and

robust norms. Next, in Sect. 5.2, we present first results of a

variational approach that combines correlation measure-

ments and regularization, as outlined below in Sect. 4.4.2.

Finally, in Sect. 5.3, we present results of the currently

most advances estimation schemes utilizing temporal

context. For further experimental results and their discus-

sion, we refer to the original papers cited in the respective

Sects. 4.5 and 4.4.2.

5.1 First- and second-order regularization, robust

norms

Throughout this section, we refer the reader to Sects. 2 and

4 for descriptions of the approaches evaluated below.

When the first efforts in correlation technique were

proposed for PIV, different approaches based on image

analysis were also developed to estimate fluid motion.

Among those attempts, Tokumaru and Dimotakis (1995)

proposed a semi-local approach (Ritz method see Sect.

3.1.2)—involving a parametric cubic model and insuring a

global spatial consistency—appropriate for both scalar and

particle images. The integral form (Eq. 7) of the equation

of motion (Eq. 6) is employed in this method. Using

Fig. 4 Results from a validation experiment, based on VSJ synthetic

images, comparing different combinations of data terms (OFC and

ICE) associated with regularization term (1st order or 2nd order), and

the influence of using a robust norm. The figure shows the relative L1

norm error obtained for eight standard configurations: compared to

case 1, cases 2 and 3 yield large and small displacements respectively;

cases 4 and 5 have dense and sparse particle concentration respec-

tively; cases 6 and 7 contain constant and large particle size

respectively; case 8 exhibits high out of plane velocities. Six

algorithms are compared: A1 approach of Quénot et al. (1998); A2
approach of Ruhnau et al. (2005); A3 robust multiresolution-multi-

grid Horn and Schunck approach of Mémin and Pérez (1998); A4
approach of Corpetti et al. (2006); A5 ICE ? 1st order; A6 OFC ?

2nd order. The best results are obtained with the ICE data term

together with 2nd order div–curl regularization (Corpetti et al. 2006)
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dynamic programming, Quénot et al. (1998) devised a

global approach assuming the conservation of the lumi-

nance, with the dense displacement fields estimated being

small, rectilinear, uniform, and continuous. The proposed

global approach uses the brightness constancy (Eq. 6) as a

data term. Dahm et al. (1992) introduced the concept of

three-dimensional flow fields measurements based on sca-

lar imaging measurements. The proposed technique based

on the direct inversion of the scalar transport equation was

later refined in Su and Dahm (1996) with and integral

minimization formulation including the scalar transport

equation, the continuity equation and a first-order regu-

larization (global approach see Sect. 3.2).

More recently, Ruhnau et al. (2005) evaluated the pro-

totypical variational approach of Horn and Schunck (1981)

(see Sect. 3.2) with particle image pairs commonly used in
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Fig. 5 Spectrum of the vertical velocity component in a two-

dimensional turbulent flow. Top synthetic particle image sequence;

Bottom synthetic scalar image sequence. Black line DNS reference;

Red symbols correlation approach; Blue symbols Corpetti et al. (2006)

approach; Green symbols Yuan et al. (2007) approach. Spectra of the

error for the same data are shown in inset

Fig. 6 Vorticity maps and vector fields in a two-dimensional

turbulent flow obtained with a synthetic particle image sequence.

From top to bottom, correlation approach, Corpetti et al. (2006)

approach and Yuan et al. (2007) approach
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PIV. To estimate long-range motion, they carefully

designed a coarse-to-fine implementation. Their experi-

mental evaluation showed that the prototypical approach

performs well in noisy real-word applications. Corpetti

et al. (2002, 2006) improved this approach by taking into

account the features of fluid flows. A data term based on the

continuity Eq. 2 was used for estimating the apparent 2D

motion of 3D flows, and second-order regularization (see

Sect. 4.1) was proposed to enable the estimation of vector

fields with pronounced divergent and rotational structures.

Figure 4 presents a comparison of the error for different

combinations of data terms (OFC or ICE) and regulariza-

tion terms (1st order or 2nd order). Corpetti et al. (2006)

showed that using the ICE model (2) as a more physically

grounded alternative to OFC leads to better results for the

case of large out of plane motions. As for the regulariza-

tion, only the 2nd order div–curl scheme is able to preserve

the level of vorticity and divergence. Figure 4 also indi-

cates that a robust norm applied to the data term signifi-

cantly improves the results (compare approach A2 with

approach A3).

5.1.1 Influence of discretization

Using the mimetic finite difference method, Yuan et al.

(2007) proposed a novel variational scheme based on a

second-order div–curl regularizer that includes the esti-

mation of incompressible flows as a special case. This new

scheme has been assessed both for particle and for scalar

synthetic image sequences, generated from direct numeri-

cal simulations (DNS) of two-dimensional turbulence.

Compared to the correlation technique of Lavision (Davis

7.2) and the second-order method of Corpetti et al. (2006),

the higher-order approach of Yuan et al. (2007) yields an

enlarged dynamic range with accurate measurements at

small and large scales. This behaviour is displayed in

Fig. 5 showing the better estimated spectrum and the

lowest spectrum of the error obtained with the technique of

Yuan et al. (2007). This higher accuracy is also observed in

Fig. 6 with vorticity maps and vector fields. With scalar

image sequences, the differences between the approach of

Yuan et al. (2007) and the others is more pronounced,

especially at large scales, where as expected the correlation

technique completely failed (see Fig. 7).

5.1.2 Vector field density

It is interesting to mention that the global variational

approaches (see Sect. 3.2) return dense vector fields, i.e.

one vector per pixel. From the metrological point of view,

this behaviour is expected with scalar images since each

Fig. 7 Vorticity maps and vector fields in a two-dimensional

turbulent flow obtained with a synthetic scalar image sequence. From

top to bottom, correlation approach, Corpetti et al. (2006) approach

and Yuan et al. (2007) approach
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pixel exhibits an information of motion; however, it may

be surprising for particle-based optical measurements in

which the particle image density is roughly of the order of

0.01 particles per pixel. The fact that the global variational

techniques provide information of motion beyond the

spatial scale associated with the particle density is obtained

thanks to the regularization operator involved to tackle the

aperture problem. Note that the regularization is conducted

from the beginning of the minimization process—on the

contrary to the post-processing used with correlation

approaches—and complement the information of the data

term with spatial or spatiotemporal coherence. In this

context, the use of physical models as regularization

operators can improve the estimations of the velocity fields

down to the smallest scales. In addition, when the regu-

larizer is physically sound, the adjustment of the weighting

parameter is inferred with the minimization process (Héas

et al. 2009a). The monotonically vanishing error spectra

(difference between the estimation and the DNS solution)

shown in inset of the Fig. 5 indicate that the dense

information is consistent with the reference down to the

smallest scales. This behaviour can also be observed in

Stanislas et al. (2008) with the results of the third PIV

challenge for the global approach of Corpetti et al. (2006).

In the following (see Sect. 5.3) it is shown that the use of

spatiotemporal regularizer like the Navier–Stokes equa-

tions can significantly improve the accuracy on the whole

dynamic range.

5.2 Correlation-based variational scheme

The combined correlation-variational scheme proposed by

(Heitz et al. 2008) for laser sheet three-dimensional flow

visualization, described in Sect. 4.4.2, was evaluated with

synthetic images of particles dispersed in a two-dimen-

sional turbulent flow and with real-world turbulent wake

flow experiments. Figure 8 shows for particles images, the

comparison of results obtained with a multiresolution

technique and the collaborative approach. One advantage

of the latter method is that, due to the global scheme

Fig. 8 Instantaneous vector

field with horizontal velocity

color map measured with real

images of particles in near the

wake of a circular cylinder at

Re = 3,900. Top optical-flow

approach (Corpetti et al. 2006);

Bottom combined correlation-

variational approach (Heitz

et al. 2008)
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including regularization, ‘basic’ correlation estimations are

sufficient. Furthermore, compared to correlation technique,

the combined correlation variational scheme yields dense

information as observed in Fig. 9.

5.3 Spatiotemporal regularization

Following the route to incorporate explicit physical prior

knowledge into variational motion estimation schemes, that

was suggested by Ruhnau et al. (2007) in connection with

PIV and by Héas et al. (2007a) for satellite imagery, Heitz

et al. (2008) adapted and evaluated the latter technique to

estimate dynamically consistent large eddy apparent

motion of laser sheet 3D turbulent flow visualization (see

Sect. 4.5.1 for details of the methods).

Applied on synthetic particle images generated with

DNS of two-dimensional turbulent flows, this method

enlarges the dynamic range resolved as a function of

the time (see in Fig.10 the estimated spectrum). The use

of spatiotemporal regularization enhances the accuracy,

Fig. 9 Instantaneous vector

field with vorticity colormap

measured with real images of

particles in the near wake of a

circular cylinder at Re = 3,900.

Top correlation approach;

Bottom combined correlation-

variational approach (Heitz

et al. 2008)
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Fig. 10 Energy spectra showing the enlargement of the dynamic

range as a function of the time when using spatiotemporal regular-

ization (Heitz et al. 2008). Spectra of the error for the same data are

shown in inset. Measurements obtained with synthetic particle images

generated from DNS of two-dimensional turbulent flows
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particularly for noisy image sequences. As observed in

Fig. 11, through the map of the deviation from the exact

velocity modulus, the technique improves the estimation of

the main vortices as a function of the time. As a conse-

quence, this approach is especially well suited for analyz-

ing time-resolved particle image sequences which exhibit

noise due to CMOS sensors. Regarding the implementation

of this iterative scheme, we point out that the computa-

tional costs of the simulation of the dynamic Eq. 34 are

negligible in comparison to the variational estimation

(Eq. 35).

Spatiotemporal consistency of the measurements can be

improved with non-local context approaches taking into

account the whole image sequence with recursive estima-

tions (see Sect. 4.5.2.).

Cuzol et al. (2007) proposed a non-linear stochastic

filter for the tracking of fluid motion. The tracking is based

on a low-dimensional representation of the velocity field

obtained through a discretization of the vorticity and

divergence maps. Beyond the tracking, this method allows

to recover a set of consistent velocity fields for a whole

sequence and provides an accurate low order representation

of the dynamic of fluid flows. The order of the simplified

motion estimation is related to the number of vortex par-

ticles involved in the estimation.

Papadakis and Mémin (2008b) described a global spa-

tiotemporal variational formulation in order to optimally

fuse the information obtained from the data images and the

dynamic model. The technique relies on an optimal control

approach and consists in a forward integration of the Na-

vier–Stokes equations, followed by a backward integration

of an adjoint evolution model. Results obtained with an

image sequence of particles dispersed by a turbulent 2D

flows are quite impressive. As observed in Figs. 12 and 13,

Papadakis and Mémin (2008b) approach outperform other

techniques since the whole dynamic range is recovered

with this approach. The best results are provided when the

image luminance is directly assimilated in the dynamic

model, instead of assimilating vector fields previously

estimated from image sequences.

Note that the evaluation of the above spatiotemporal

regularization techniques have been conducted with image

sequences for which the time resolution was ten times the

time step of the DNS used to generate the sequence.

Fig. 11 Results of velocity estimation with spatiotemporal regular-

ization. The analyzed synthetic image sequence is based on a two-

dimensional turbulent flow with additive noise simulating the

reduction of the power of a virtual laser. From top to bottom: Map

of the deviation from the exact velocity modulus for time 1, 2 and 3

(Heitz et al. 2008)
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Fig. 12 Spectrum of the vertical velocity component measured in

particle image sequences generated with DNS of two-dimensional

turbulent flow. Black DNS; Red approach of Cuzol et al. (2007); Blue
approach of Corpetti et al. (2006); Green, approach of Papadakis and

Mémin (2008b). Spectra of the error for the same data are shown in inset
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6 Conclusion and perspectives

After a brief conclusion, we indicate some promising

directions for further research.

6.1 Conclusion

This paper is an attempt to provide an abridged report on

variational motion estimation techniques, focusing on

techniques that we deem especially relevant for experi-

mental fluid mechanics. After sketching representatives of

established basic schemes, we presented modifications that

have been developed for the specific case of fluid motion

estimation. This latter work indicates the emerging col-

laboration between two communities, image processing

and computer vision, and experimental fluid mechanics.

Yet, in our opinion, this is just the tip of the iceberg

regarding the potential for further research. In the follow-

ing subsections, we indicate few promising research

directions. We hope that this paper will stimulate further

cooperation along these lines.

6.2 3D-PIV

Recently, Tomographic Particle Image Velocimetry (To-

moPIV) (Elsinga et al. 2006) has attracted a lot of interest.

Observing projections of particles in a volume of interest

with 4–6 cameras, the three-dimensional volume function

Iðx; tÞ; x 2 X � R
3, can be reconstructed with high spatial

resolution. A closer look to the currently employed stan-

dard algebraic reconstruction techniques shows that there is

a potential for improving the trade-off between function

reconstruction from a limited amount of noisy data, and

increasing the particle density to facilitate subsequent

motion estimation (Petra et al. 2009; Petra and Schnörr

2009).

This move to three dimensions plus eventually time will

likely enable physics-based models and methods to provide

accurate inspection tools for experimental fluid mechanics.

6.3 Turbulence models

Taking seriously the ultimate goal of synergy between

experiments and simulation, the question of how to utilize

turbulence models in connection with motion estimation

naturally appears. To the best of our knowledge, models

combining these two worlds in order to improve estimation

from real data have not been devised so far.

A promising direction of research concerns ways to

incorporate invariants and laws governing the turbulence

Fig. 13 Vorticity maps and vector fields in a turbulent flow. From top
to bottom, Corpetti et al. (2006) approach, Cuzol et al. (2007)

approach and Papadakis and Mémin (2008b) approach
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statistics into a variational estimation scheme. A reason-

able approach is to include a regularizing term into the

energy functional that enforces quantities derived from the

velocity gradient tensor to be smooth. The objective is to

preserve the salient enstrophy and dissipation structures that

are relevant for characterizing the topology of turbulent

regions, like vortex tubes, vortex sheets, and pure straining

(Perry and Chong 1987; Chong et al. 1998). Likewise

Kolmogorov’s law, describing the statistical structure of

turbulence in the inertial range, Héas et al. (2009a) proposed

a multiscale estimator based on scaling power laws

accounting for the turbulent kinetic energy decay. A spatial

regularization properly constraints the solution to behave

through scales as a self-similar process via second-order

structure function. This enlarges further the dynamic range

of the estimates. In contrast to standard approaches, this

multiscale regularization presents the valuable advantage of

solving the aperture problem while fixing regularizers’

weights at the different scales. Figure 14 shows estimations

obtained for real particle images in grid turbulence. In this

case, the method is combined with a simple hot-wire mea-

surement providing the real parameters of the power law

(Héas et al. 2009b). Results exhibit the ability of this tech-

nique to estimate large dynamic ranges and better accuracy

than other PIV methods. Note that instead of measuring the

parameters with hot-wire anemometry, a promising exten-

sion of this approach consists in selecting by Bayesian

evidence the most likely scaling law given the image data

(Héas et al. 2009c).
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Corpetti T, Héas P, Mémin E, Papadakis N (2008) Pressure image

assimilation for atmospheric motion estimation. Tellus series A:

dynamic meteorology and oceanography (in press)
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Petra S, Schröder A, Schnörr C (2009) 3D Tomography from few

projections in experimental fluid mechanics. In: Nitsche W,

Dobriloff C (eds) Imaging Measurement methods for flow

analysis notes on numerical fluid mechanics and multidisciplin-

ary design, vol. 106. Springer, New York, pp 63–72
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