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Abstract Singular value decomposition (SVD) is often

used as a tool to analyze particle image velocimetry (PIV)

data. However, experimental error tends to corrupt higher

SVD modes, in which the root mean square velocity value

is smaller than the experimental error. Therefore, we sug-

gest that the threshold criterion, sk [
ffiffiffiffiffiffiffi

DT
p

�; can be used as

a rough limit of the validity of SVD modes extracted from

experimental data (where sk is the singular value of mode k,

D and T are the number of data sites and time steps,

respectively, and � is the root mean square PIV error).

By synthesizing the relationship between the general

SVD procedure and its two special cases—biorthogonal

decomposition (BOD) and proper orthogonal decomposi-

tion (POD)—we show that our criterion can be used to

assess modes extracted by either BOD or POD. We apply

our threshold criterion to PIV data of the wake behind a

live swimming Giant Danio (Danio aequipinnatus). The

biorthogonal decomposition of the fish wake, which is a

reverse-Kármán street, reveals that the first four modes are

similar to the modes of a regular Kármán street created in

the wake of a stationary cylinder and that higher modes are

corrupted by experimental error.

1 Introduction

Singular value decomposition (SVD) is a well-known

mathematical tool that can be used to decompose an

ensemble of velocity field data into spatiotemporal modes

that may reveal coherent flow structures (Gentle 1998).

Two special cases of the general SVD procedure are

used in experimental fluid dynamics: Proper orthogonal

decomposition (POD) is used if the data are un-correlated

in time (as in a turbulent flow) (Holmes et al. 1996, 1997;

Berkooz et al. 1993), and biorthogonal decomposition

(BOD) is used if the data are correlated in time (as in a

laminar flow) (Aubry 1991; Aubry et al. 1991).

Several recent experimental studies have employed POD

or BOD to analyze particle image velocimetry (PIV)

velocity field data: For example, POD was performed on PIV

data of flow past a backward-facing step (Kostas et al. 2005),

past a half-cylinder (Santa Cruz et al. 2005), in an internal

combustion engine (Fogleman et al. 2004), and through an

annular jet (Patte-Rouland et al. 2001). BOD was used to

analyze PIV measurements of flow through a model of the

human voice box (Neubauera and Zhang 2007), and BOD

also was applied to experimental hot-wire anemometry

velocity data in the study of the boundary layer on a rotating

disc (Aubry et al. 1994). Recently, PIV-derived POD modes

were used as a basis for direct numerical simulations of the

flow past a circular cylinder by Ma et al. (2003). However,

Ma notes, ‘‘the higher modes obtained from [POD of PIV

velocity data] are noisy...’’, and they employ a numerical

method to work around these corrupted modes.

Aside from Ma’s work, this previous research has given

little consideration as to how experimental error affects the

results of POD or BOD. In theory, large-scale flow struc-

tures are captured by the lower decomposition modes,

whereas small-scale flow structures are captured in higher

modes. In practice, experimental PIV error may dominate

higher modes, rendering them corrupted by noise. Typical

sources of experimental error in PIV can include poor

seeding density, high velocity gradients, and out of plane

particle motion (Raffel et al. 2002).
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Herein, we derive a threshold criterion that can be used

to assess whether the magnitude of a decomposition mode

is above the noise of the measurement. Modes that do not

meet the criterion have a root mean square (RMS) velocity

value that is less than the RMS measurement error. It is

important to assess whether or not a mode meets our

threshold criterion before it is interpreted physically (as in

the above studies) or used as an input to a numerical

simulation (as in Ma et al. 2003), because modes that do

not meet the threshold may represent measurement error,

not the physical flow phenomena of interest.

We apply our threshold criterion to the decomposition of

PIV data of the wake behind a live swimming Giant Danio

(Danio aequipinnatus). In our experiment, the flow evolves

gradually between each frame of the high-speed PIV image

sequence, so the measurements are correlated in time, and

we employ the biorthogonal decomposition procedure.

Generally, a two-dimensional slice of a carangiform

swimming fish wake resembles a reverse Kármán street,

which generates thrust to propel the animal through the

water (Borazjani and Sotiropoulos 2008; Epps et al. 2009).

The BOD of the fish wake reveals that the first four modes

are similar to the modes of a regular Kármán street created

in the wake of a stationary cylinder (Ma et al. 2000, 2003)

and that higher modes are corrupted by experimental error.

In order to show that our error threshold criterion, which

we develop for the general case of SVD, can be used to

assess modes extracted by either BOD or POD, we present

a brief synthesis of the relationship between SVD, BOD,

and POD. We then proceed by deriving the error criterion

and applying it to the experimental data from the swim-

ming Danio.

1.1 Synthesis of SVD, POD, and BOD

Here, we briefly synthesize the mathematical relationship

between SVD and its special cases, BOD and POD, in

order to show that our error threshold criterion can be used

to assess modes extracted by either BOD or POD, thus

making it widely applicable to a range of experimental

studies. The singular value decomposition (SVD) of a size

[T, D] data matrix, X, is

X ¼ u � s � vT ð1Þ

where T and D are the number of time steps and data sites,

respectively; matrices u, s, and v are size [T, T], [T, D], and

[D, D], respectively; u contains the temporal eigenfunc-

tions of X; v contains the spatial eigenfunctions of X; and s

contains the singular values. That is, the SVD results in T

modes (assuming D [ T, which is typical of PIV data),

each consisting of a time-varying amplitude, a singular

value (which represents the magnitude of the mode), and a

spatial mode shape. The first few modes capture the

primary dynamics of the flow, and small perturbations are

captured in the higher SVD modes (Holmes et al. 1996).

Many additional definitions are required. Consider mode

k: Its singular value is sk : s(k,k) (note, all off-diagonal

terms in s are zero). Its time-varying amplitude is given by

the kth column of u, namely u(1:T,k). Its spatial mode shape

is given by the kth column of v, namely v(1:D,k). The mode

k data matrix is given by Xk = u(1:T,k) � s(k,k) � v(1:D,kÞT;
which is in accord with (1) and is size [T, D]. By

definition, each column of u and v is normalized such that

its ‘2-norm is unity. That is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
i¼1 uði; kÞ2

q

� 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
j¼1 vðj; kÞ2

q

� 1: Thus, the magnitude of the mode is

captured by its singular value. Also by definition, uT � u ¼
I and vT � v ¼ I; where I is the identity matrix (Holmes

et al. 1996).

1.1.1 SVD of temporally correlated data (BOD)

Consider first, the case when the T realizations of data are

correlated in time, as in the present work. The method is to

perform an SVD and then to analyze both the spatial

modes, v, and temporal modes, u, for coherent structures

and temporal regularities. In fluid dynamics, this method is

referred to as the biorthogonal decomposition (BOD)

(Aubry 1991; Aubry et al. 1991), and in other disciplines,

the method of empirical orthogonal functions. In summary,

BOD and SVD are mathematically synonymous.

1.1.2 SVD of temporally uncorrelated data (POD)

Consider now, the case when the T realizations of data are

uncorrelated in time, as in a turbulent flow experiment.

The method then is to perform an SVD and analyze the

spatial modes, as scaled by their singular values:

Y ¼ s � vT ð2Þ

Since there is no correlation in time, the temporal eigen-

function matrix, u, has no physical meaning and is dis-

carded. In fluid dynamics, this method is referred to as the

proper orthogonal decomposition (POD) (Holmes et al.

1996, 1997; Berkooz et al 1993) or the method of snap-

shots or method of strobes (Sirovich 1987). In other

disciplines, this procedure is also known as the Karhunen-

Loève transform, principal components analysis, or method

of empirical eigenfunctions.

The POD procedure is often presented as something

distinct from SVD, but the following analysis shows that

POD and SVD are actually equivalent, as implied by (2).

The actual POD procedure is as follows: First, one forms

the matrix of observed covariance between time steps,

RT ¼ X � XT (where RT is size [T, T]). Next, one solves the
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eigenvalue problem (RT) � u = u�sT
2 , which yields the size

[T, T] eigenvector matrix u (which is identical to the SVD

temporal amplitude matrix) and the size [T, T] eigenvalue

matrix, sT
2 (which contains the squares of the T singular

values of X. That is, s2
T ¼ s � sTÞ: Finally, one finds the

POD modes, Y, by projecting the eigenvectors onto the

data set by Y ¼ uT � X: Using (1), this POD procedure is

equivalent to Y ¼ uT � u � s � vT ¼ s � vT; as given in the

SVD-based POD procedure (2). In summary, the POD

procedure is equivalent to performing an SVD and dis-

carding the temporal modes.

We have synthesized the BOD and POD procedures and

shown that they both rely on the umbrella mathematical

tool, the SVD. Thus, the threshold criterion developed in the

following section to assess the validity of SVD modes can

be applied to either POD or BOD analyses. In Sect. 4, we

apply the threshold criterion to the BOD analysis of

experimental PIV data of the wake behind a swimming fish.

2 Threshold criterion

We now present a threshold criterion for rejecting SVD

modes obtained from experimental PIV data. The criterion

that determines whether the magnitude of a mode is larger

than the experimental error can be stated in three mathe-

matically equivalent ways:

(a) the root mean square (RMS) velocity of the mode is

larger than the RMS PIV measurement error,

(b) the signal to noise ratio is greater than unity,

(c) the kinetic energy of the mode is greater than the

kinetic energy of a hypothetical spatiotemporal

velocity field, with normally distributed velocities

that have zero-mean and a standard deviation equal to

the RMS PIV measurement error.

To derive the criterion, first note that the velocity for

mode k at time step i and measurement site j is Xk(i,j) :
u(i,k)s(k,k)v(j,k). Thus, the root mean square (RMS)

velocity of mode k is

RMSk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

DT

X

T

i¼1

X

D

j¼1

uði; kÞsðk; kÞvðj; kÞð Þ2
v

u

u

t

¼ sðk; kÞ
ffiffiffiffiffiffiffi

DT
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

T

i¼1

uði; kÞ2
v

u

u

t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

j¼1

vðj; kÞ2
v

u

u

t

¼ sk
ffiffiffiffiffiffiffi

DT
p

Suppose that the PIV velocity data have root mean square

error of �. Then (a) requires that the threshold criterion

sk [
ffiffiffiffiffiffiffi

DT
p

� � ð3Þ

be met for the magnitude of the mode to be larger than the

experimental error. If (3) is not satisfied, then the magni-

tude of the mode is less than the measurement error, and

the mode will be, as Ma et al. (2003) says, ‘‘noisy’’, since it

may be dominated by random PIV measurement error.

Our threshold criterion can also be viewed in terms of a

signal to noise ratio. From this viewpoint, the singular value

is a measure of the signal content of the mode; modes which

do not satisfy (3) have low signal content and may be dom-

inated by noise. The signal to noise ratio of mode k is, by

definition, SNRk � RMSk

�

� �2¼ s2
k

DT�2: Statement (b) requires

that SNRk[ 1, which is mathematically equivalent to (3).

A third way to view our threshold criterion is in terms of

kinetic energy. The total kinetic energy (per unit density of

fluid) of mode k is the sum of the kinetic energy of each of

the D velocity values over all T-time-steps, which works

out to be KEk ¼ 1
2
s2

k : The kinetic energy of a hypothetical

error velocity field with normally distributed velocities

with zero mean and standard deviation, �, is 1
2
�2DT (Venturi

2006) (this kinetic energy is also recovered in the hypo-

thetical scenario of all velocities equal to �). Criterion (c)

requires 1
2
s2

k [ 1
2
�2DT ; which implies (3).

We suggest that the threshold criterion (3) be used as a

rough limit of the validity of SVD modes extracted from

experimental PIV data. Modes that do not satisfy (3) should

be considered artifacts of the noise in the measurement and

disregarded. Since we showed in Sect. 1.1 that both the

BOD and POD procedures are equivalent to SVD, this

threshold criterion applies to both BOD and POD analyses.

3 Materials and methods

3.1 Experimental details

To test the threshold criterion (3), we analyzed experi-

mental data from a study with swimming fish (Epps et al.

2009). In this experiment, a Giant Danio (Danio aequip-

innatus) was allowed to swim freely in a 15 cm by 30 cm

tank, with 10-cm-deep water. The flow features were

characterized using high-speed PIV (Raffel et al. 2002).

The tank was seeded with silver-coated, neutrally buoyant,

hollow glass spheres (average diameter 93 lm). The par-

ticles were illuminated using a low-powered, near-IR diode

laser. The Lasiris Magnum diode laser produced a maxi-

mum output of 500 mW at 810 nm and was fitted with

optics to produce a 10� fan of light. The horizontal light

sheet was imaged using an IDT XS-3 CCD camera with an

85 mm Nikkon lens, which viewed up from the bottom of

the tank, as illustrated in Fig. 1a. The high-speed camera

captured 8-bit-depth images at 100 frame/s, with a reso-

lution of 1,280 9 864 pixels. The field of view was

19.94 9 13.46 cm, giving a 64.2 px/cm zoom.
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The time series of particle images were processed using

the multi-pass cross-correlation algorithm in the LaVision

DaVis 7.2 software package. In the first pass, interrogation

windows at the same location in each of two successive

PIV images were cross-correlated to give an estimate of the

particle displacements in that window. In the second pass,

the window from the second image was centered at the

displacement position estimated in the first pass, increasing

the accuracy of the cross-correlation. In this experiment,

we performed the first pass with 64 9 64 px interrogation

windows and the second pass with 32 9 32 px windows,

with 50% overlap in adjacent windows for higher resolu-

tion velocity fields. The output was velocity fields of 80

9 54 vectors, with approximately 40 vectors along the

length of the fish body. For this time-series data, the time

step between velocity fields was the same as the time

between PIV image frames, Dt. All data post-processing,

including wake interrogation, data smoothing, and the

BOD analysis, was performed in MATLAB.

Each time the fish swam steadily through the field of

view with the laser at its mid-plane, a time series of images

was saved. Results presented herein are for an adult fish

(which had an overall length of L = 9.89 cm) swimming

steadily at a speed of U = 9.49 cm/s = 0.96 L/s, which

corresponds to a Reynolds number of Re = UL/m = 9300.

Three successive tail beats were observed T = 38 frames

apart, yielding a constant flapping frequency of f = 2.6 Hz.

The average tail flap amplitude was H = 1.38 cm = 0.14 L,

which corresponds to a Strouhal number of St = fH/U

= 0.37.

In this particular case, the fish made two nearly-identical

tail flaps, so these data were selected for the example BOD

analysis presented herein. The tail flaps were biased to the

lower end of the page, resulting in an asymmetric wake.

The wake is qualitatively illustrated in Fig. 1b, where

instantaneous vorticity contours show that its configuration

is a reverse Kármán street.

3.2 Wake interrogation

Technically, the BOD procedure does not require the

spatial location of each measurement to have a ‘fixed

identity’ (i.e., a fixed location relative to the fish). How-

ever, in order to facilitate interpretation of the BOD modes

and to be able to compare them to the modes of a regular

Kármán street formed behind a stationary cylinder com-

puted by Ma et al. (2003), we must interrogate the wake in

a body-fixed frame of reference.

Outlines of the first and last wake interrogation grid are

shown in Fig. 2a. The fish trajectory was determined by

locating the position of the caudal fin fork at each extrema

in tail lateral excursion and fitting straight lines via least

squares through these points, with the average of these two

fits giving the centerline of the trajectory. The origin

(x = 0) locations of the grids for the first and last time steps

were located by perpendicularly projecting the tail extrema

positions onto the trajectory centerline, as shown. Inter-

mediate wake grids were equispaced along the trajectory,

which yielded a body-fixed interpolation, since the fish

swam at steady speed. Interpolation was performed using

the MATLAB command griddatað. . .; ‘cubic0Þ; which

performs a triangle-based cubic interpolation (MathWorks

2009). The raw PIV velocity field was cropped (as shown

in Fig. 2a) in order to expedite the interpolation procedure,

which does not use data far away from the interpolation

sites anyway. These interpolated wake data were projected

into the wake coordinate system to find wake-aligned

velocity components, Vx and Vy. The translation velocity of

the wake grid was ignored in the interpolation procedure,

since it is constant and would, therefore, be removed prior
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Fig. 1 a Experimental PIV setup used for swimming study. The

high-speed camera viewed up through the bottom of a glass aquarium,

and the laser sheet was oriented horizontally at the mid-plane of the

fish. b Qualitative illustration of the vorticity field in the last time

step. Clockwise vorticity are shown in blue, and counterclockwise

vorticity are shown in red. The fish tail is shown in black. The fish

swam from right to left at nearly-constant speed and made two nearly-

identical tail flaps

358 Exp Fluids (2010) 48:355–367

123



to BOD anyway. By interpolating on a moving grid, we

‘collected’ PIV data in a body-fixed reference frame.

3.3 Experimental PIV error

The two primary sources of PIV measurement error are the

loss of in-plane particle pairs and error due to large velocity

gradients. Other factors such as particle image diameter

and particle image displacement have lesser effects (Raffel

et al. 2002; Melling 1997). Adequate seeding density (*15

particles per interrogation window) and a high frame rate

can mitigate the loss of in-plane particle pairs, but PIV

velocity measurement error due to velocity gradients per-

sist. In our experiment with the Danio, the ‘‘noisy’’ data

had an RMS velocity gradient of 0.02 [(px/Dt)/px], where

Dt is the time step between successive images, which

according to Raffel et al. (2002) corresponds to an RMS

PIV velocity error of approximately

� � 0:1 ½px=Dt�: ð4Þ

In the present experiment, the number of data sites is

D = 1,776, and the number of time steps is T = 38;

therefore, the threshold singular value (3) is

sk [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1776 � 38
p

� 0:1 ½px=Dt� ¼ 26:0 ½px=Dt� ð5Þ

Note that by definition, singular values contain the units of

the original data. Since we presently consider a decom-

position of velocity fields, the units of the singular values

are [px/Dt]. We chose not to normalize the singular values

(say, by the swimming speed), since it is easier to compare

singular values to PIV error using the raw units.

3.4 Data smoothing

In order to assess the effect of measurement error on the

BOD, we must compare the interpolated PIV data to a set of

data in which the error has been removed. In the high-speed

PIV experiment, the flow appears to evolve smoothly to the

naked eye, but—presumably due to measurement error—

the PIV measurements deviate from otherwise smooth

trajectories. To find the trajectory of each measurement, we

fit a smoothing spline to these data using the MATLAB

function spaps (MathWorks 2009). For example, Fig. 2b

shows the transverse velocity at approximately one stride

length downstream of the tail, Vy(SL, 0)(t), where noisy PIV

data follow the trajectory fit by the smoothing spline.

In the ‘‘noisy’’ and ‘‘smoothed’’ data sets presented

herein, each trajectory is phase-averaged, as shown in

Fig. 2b. Phase averaging eliminates minor transient dif-

ferences between the flapping cycles and allows us to

perform BOD on one flapping cycle worth of data. (The

authors have also performed BOD without phase averaging

and found that the first two BOD modes are nearly identical

to those of the phase-averaged data, confirming quantita-

tively that the flow is periodic.) Finally, the ‘‘error’’ data set

presented herein was constructed by taking the difference

between the ‘‘noisy’’ and ‘‘smoothed’’ data. For each data

set (‘‘noisy’’, ‘‘smoothed’’, and ‘‘error’’), a time series of

velocity fields capturing one flapping cycle was input to the

BOD analysis.

4 Results and discussion

4.1 PIV wake data

The ‘‘noisy’’, ‘‘smoothed’’, and ‘‘error’’ time series of wake

velocity data are shown in Fig. 3. Since the translation

velocity of the wake grid was ignored in the data interpo-

lation, these vectors represent deviation from the free-

stream in this body-fixed reference frame. The ‘‘noisy’’ and

‘‘smoothed’’ time series both represent a reverse Kármán

position [px]
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tio
n 
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x]

t = 0t = 2T

0 200 400 600 800 1000 1200

0
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400
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800

y
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(a) (b)

Fig. 2 Illustration of data processing: a Wake interpolation sche-

matic: tail maximum excursion positions, filled circle; swimming

trajectory, dashed line; and outline of wake interpolation grid, solid
line. The period of tail flapping is 38 frames (f = 2.6 Hz). b Data

smoothing: interpolated PIV data, filled square, are phase-averaged to

yield the ‘‘noisy’’ data, filled circle; smoothing spline values, dashed
line, are phase-averaged to yield the ‘‘smoothed’’ data, plus. The data

shown are Vy(x & SL, y & 0)(t)
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(a) Noisy data

(b) Smoothed data

(c) Error data
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Fig. 3 Filmstrips of velocity field data input to the BOD analysis. Points of interest: swimming centerline, y = 0; tail flap envelope, y = ±0.07L;

tail flap plane, x = 0; and stride length, x = 0.37L

360 Exp Fluids (2010) 48:355–367

123



street, which is the well-known wake structure of a

carangiform swimming fish (Nauen and Lauder 2002;

Borazjani and Sotiropoulos 2008). The velocity and vorticity

fields of the ‘‘error’’ data have much smaller magnitude than

the ‘‘noisy’’ data, and they appear random, indicating that

the ‘‘error’’ data is in fact random PIV measurement error.

The fish swam with nearly constant speed, but had a bias

in its kick toward the bottom of the image. Thus, the

vortices on the bottom side of the wake have higher vor-

ticity levels than those on the top, and all vortices drift in

the negative y direction as they convect downstream (due

to self-induction of the wake).

The time-average of these V(x, y, t) velocity data is

Vavgðx; yÞ ¼ 1

T

X

T

i¼1

Vðx; y; tiÞ ð6Þ

The time-averaged wake is a jet which grows in both

magnitude and breadth as it progresses downstream, as

shown in Fig. 4a. The maximum streamwise velocity

occurs at approximately one stride length downstream of

the tail flapping plane.

The time-averaged ‘‘error’’ data are shown in Fig. 4b. All

velocity values are nearly zero; the mean ‘‘error’’ velocity is

0.001 [px/Dt]. For comparison, the mean velocity value of

the ‘‘smoothed’’ data is 0.19 [px/Dt], nearly two hundred

times greater than the mean ‘‘error’’ velocity value. Figure 4

indicates that the error data is random noise and that the

signal to noise ratio of our measurements is quite high.

4.2 Singular values

We now present the results of the biorthogonal decompo-

sition (BOD) of the ‘‘noisy’’, ‘‘smoothed’’, and ‘‘error’’

data sets. In order to perform the BOD, the velocity com-

ponent data (which each are of size [N = 37, M = 24,

T = 38]) are formatted into matrix X, which is of size

[T = 38, D = 2MN = 1776]. Each column of X contains the

T measurements made at a particular data site, less their

time-averaged value, which was computed using (6). The

BOD was performed using the MATLAB command svd

(MathWorks 2009).

Figure 5a shows the singular values of the BOD modes,

as well as a dashed line showing our threshold criterion

(5), which is sk [
ffiffiffiffiffiffiffi

DT
p

� � ¼ 26:0 ½px=Dt�: For both the

‘‘noisy’’ and the ‘‘smoothed’’ data, singular values 1 and 2

are approximately three times the error threshold and also

three times larger than the next singular values. This

implies that modes 1 and 2 capture most of the flow

dynamics (i.e., they contain most of the kinetic energy).

Singular values 3 and 4 are nearly equal to our error

threshold criterion. In both the ‘‘noisy’’ and ‘‘smoothed’’

cases, singular values 5–38 are lower than the threshold;

these modes may be contaminated by measurement noise.

Note that we do not imply that modes 5–38 only contain

noise. Rather they must contain some of the signal, but

since their magnitude is so small (and so little signal is left

for them to capture), they are most likely dominated by

measurement noise. Likewise, mode 1 must contain some

measurement noise, but this is likely a small fraction of the

signal content in this mode.

The singular values of the ‘‘error’’ data, shown in

Fig. 5b, are all less than our threshold criterion, which

indicates that the ‘‘error’’ data does not contain appreciable

signal content. In addition, these singular values span only

one order of magnitude; that is, compared to the singular

values of the ‘‘smoothed’’ data, the singular values of the

‘‘error’’ data are nearly constant.

To appreciate this fact, consider a size [T, D] random

data matrix, Xrand, populated by normally distributed ran-

dom numbers with zero mean and standard deviation, �.

Since there is no coherent signal in such a matrix, all T

singular values will be equal ðassuming DoT � 1Þ: To

find their value, srand, note that the total kinetic energy of

the data is

Error data(b)Smoothed data(a)
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Fig. 4 Time-averaged wake

velocity and vorticity fields. The

time-average of the ‘‘smoothed’’

and ‘‘noisy’’ data are nearly

identical, so the time-averaged

‘‘noisy’’ data is not shown. The

time-averaged fields for the

‘‘error’’ data are nearly zero.

The vector scale and vorticity

colormap are the same for both

figures
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1

2

X

T

i¼1

X

D

j¼1

Xrandði; jÞ2 ¼
1

2
DT�2

and also is given by

X

T

k¼1

1

2
s2

k ¼
1

2
Ts2

rand:

Therefore,

srand ¼
ffiffiffiffi

D
p

� ð7Þ

which is clearly less than the threshold,
ffiffiffiffiffiffiffi

DT
p

�: Many of

the singular values of the ‘‘error’’ data are approximately
ffiffiffiffi

D
p
� � ¼ 4:2 ½px=Dt�; which supports the claim that these

data are random noise.

One may argue that sk [
ffiffiffiffi

D
p

� should be the error

threshold criterion, instead of (3). However, since (7) is the

limit of no signal, it seems that modes for which
ffiffiffiffi

D
p

�\sk\
ffiffiffiffiffiffiffi

DT
p

� may still have significant noise content.

Hence, (3) is our suggested threshold criterion.

The RMS of the ‘‘error’’ velocity data actually is

l = 0.14 [px/Dt], which is slightly higher than the estimated

RMS PIV error of � & 0.1 [px/Dt]. In hindsight, finding the

RMS of the ‘‘error’’ velocity values may be a more accurate

way of estimating PIV error than the arguments offered in

Sect. 3.3. Nevertheless, the results presented herein hold

whether � & 0.1 or 0.14 is used. F5

or reference, the (nearly-constant) singular values of a

size [T, D] matrix of Gaussian random numbers with

standard deviation, l = 0.14 [px/Dt], are shown in Fig. 5b.

4.3 Mode shapes and amplitudes

Figures 6, 7, and 8 show BOD modes 1–10 for the ‘‘noisy’’,

‘‘smoothed’’, and ‘‘error’’ data, respectively. Each BOD

mode consists of a normalized temporal amplitude,

normalized velocity field mode shape, and a singular value.

In Figs. 6, 7, and 8 vorticity fields are shown, which were

computed from the modal velocity fields; also, the tem-

poral amplitudes shown are scaled by their respective

singular values, in order to show the magnitude of each

mode explicitly.

Consider first the BOD amplitudes of the ‘‘noisy’’ data,

shown in Fig. 6. Amplitudes 1 and 2 are approximately

sinusoidal, which is expected since the tail motion (and

thus, the fluid forcing) was approximately sinusoidal.

Because the flow is periodic, we expect the BOD modes

appear in pairs, similar to the sine and cosine modes of a

Fourier decomposition. Indeed, BOD amplitudes 1 and 2

have frequencies of approximately the tail flapping fre-

quency, f, and amplitudes 3 and 4 have frequencies of

approximately 2f. However, BOD amplitudes 5 and higher

(5?) are quite noisy and do not appear sinusoidal.

In sync with the temporal-frequency doubling of the

amplitudes, vorticity fields 1–4 also display a spatial-fre-

quency doubling. Vorticity fields 1 and 2 display one

clockwise and one anticlockwise vorticity patch within the

first stride length downstream of the tail; in other words,

modes 1 and 2 have the same spatial frequency as the ori-

ginal data, which resembled a reverse Kármán street (see

Fig. 3). Modes 3 and 4 contain two cycles of vorticity

within the stride length, which corresponds to twice the

spatial frequency of the original data. Modes 5? again

break the mould; they do not repeat the pattern of frequency

doubling that we would expect in a Fourier decomposition.

Modes 5? should be ignored since neither their tem-

poral amplitudes nor their spatial mode shapes show the

expected frequency doubling observed in prior modes;

instead, these modes appear noisy and random. According

to our error threshold criterion (3), modes 5? have a

magnitude lower than the PIV measurement error and

should be ignored, since they may be contaminated by
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Fig. 5 a BOD singular values for the ‘‘noisy’’ data, filled circle, and

‘‘smoothed’’ data, plus. The dashed line represents the PIV error

criterion (3); modes 5–38 should be ignored, since their singular

values are less than this threshold. (b) Singular values of the ‘‘error’’

data, filled square, and singular values of a size [T, D] matrix of

Gaussian random numbers with standard deviation l = 0.14 [px/Dt],

filled diamond. The dashed line represents the PIV error criterion (3),

and the dash-dotted line represents the expected singular values of a

size [T, D] matrix of Gaussian random numbers with standard

deviation, � = 0.1 [px/Dt]

362 Exp Fluids (2010) 48:355–367

123



measurement noise. Amplitudes 5? shown in Fig. 6 do not

evolve smoothly in time, as this flow appears to the naked

eye. Vorticity fields 8–10 show no coherent structures.

Although vorticity fields 5–7 appear to contain a coherent

pattern of vortical patches, these could be due to some

actual dynamics of the flow or could very well be indica-

tive of some systematic PIV error, which appears more

often in regions of high shear along the centerline of the

wake. In any case, modes 5? should be considered con-

taminated by measurement noise and ignored in data

reconstructions or further dynamic analyses.

One might be concerned about whether the PIV spatial

resolution is fine enough to resolve the small vortical

structures expected to appear in modes 5 and higher. If

modes 5 and 6 did contain information about the flow,

then it would be expected that their spatial frequencies
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would be three times that of modes 1 and 2 (i.e., six vor-

tices per stride length). Thus, the diameter of the vortices

expected to appear in modes 5 and 6 would be d = (0.37L)/

6 = 0.06L. The PIV spatial resolution was 16 px = 0.025L,

which should be fine enough to resolve these vortices.

However, modes 5 and 6 do not show such a vortical

pattern.

One final point of interest in Fig. 6 is that the general

form of vorticity fields 1 and 2 is similar to that of the

decomposition of a Kármán street formed in the wake

behind a circular cylinder (Ma et al. 2000). This is

expected, since the fish wake is a reverse Kármán street.

Consider now the amplitudes of the temporally

smoothed data, shown in Fig. 7. In the processing of these

data, the trajectory of each data site (e.g., Vy(SL, 0)(t)) was

smoothed in time by fitting a smoothing spline to the data;

thus, the temporal fluctuation of each data site was

removed, but no spatial smoothing was performed. As a

result, the BOD amplitudes shown in Fig. 6 evolve quite

smoothly in time, whereas the vorticity fields contain the

noise of this data set.

All amplitudes approximate sinusoids: amplitudes 1 and

2 have frequency, f; 3 and 4, 2f; 5 and 6, 3f; and so on,

which is in agreement with the expected Fourier result.
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Fig. 7 BOD modes 1–10 for the ‘‘smoothed’’ data. The vector scale and vorticity colormap are the same as Fig. 6
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However, only vorticity fields 1–4 display the expected

spatial frequencies. As with the ‘‘noisy’’ data, ‘‘smoothed’’

data modes 5–7 do not display the expected spatial fre-

quency, and modes 8–10 show no coherent pattern.

Finally, the BOD modes of the ‘‘error’’ data are shown

in Fig. 8. None of the temporal amplitude signals show a

coherent pattern. Spatial modes 2 and 3 of the ‘‘error’’ data

have alternating vortical patches along the centerline of the

swimming trajectory, similar to spatial modes 5–7 of the

‘‘noisy’’ data. This implies that the PIV error that corrupted

‘‘noisy’’ modes 5–7 is being captured by ‘‘error’’ modes 2

and 3. The other ‘‘error’’ mode shapes appear to be random

noise, indicating that ‘‘error’’ data is primarily random

measurement error.

4.4 Wake reconstruction

Since the present PIV experiment is only capable of

resolving the first four BOD modes, one may ask if these

modes are sufficient to reconstruct the fish wake. In gen-

eral, one constructs a rank r approximation of X (called a

Galerkin approximation) by summing the first r BOD

modes, XðrÞ ¼
Pr

k¼1Xk = u(1:T,1:r) � s(1:r) � s(1:r,1:r)�
v(1:D,1:rÞT, The original data matrix X can be recovered
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by summing all T modes, X =
P

k=1
T Xk, which is just a

restatement of (1).

Only the first two BOD modes are needed in order to

reconstruct the vortex street behind the swimming fish.

Since the amplitudes of modes 1 and 2 are shifted tem-

porally and their vorticity fields are shifted spatially, modes

1 and 2 can represent the formation and convection of

vortices into the wake behind the fish, as shown in Fig. 9a.

This is expected, since other researchers have found that

only modes 1 and 2 are needed to reconstruct the (regular)

Kármán street behind a circular cylinder (Ma et al. 2000).

These modes capture 90.7% of the kinetic energy of the

‘‘noisy’’ time series of data.

Figure 9b illustrates that modes 3 and 4 add further

detail to the shape and strength of the vortices in the

reconstructed wakes. Since modes 1 through 4 capture

96.1% of the kinetic energy of the original velocity fields

(i.e., they contain most of the signal content), many of the

snapshots shown in Fig. 9b look virtually identical to the

original ‘‘noisy’’ data (shown in Fig. 3a). The inclusion of

modes 6–10 in the reconstruction (not shown) yields even

better agreement with the ‘‘noisy’’ data, but since the signal

strength of modes 5 through 10 is significantly lower than

our error threshold criterion, we anticipate that these modes

only serve to reintroduce the PIV error back into the

reconstructed solution.

5 Conclusions

In this work, we developed a threshold criterion (3) for

rejecting singular value decomposition (SVD) modes. This

threshold criterion can be interpreted in three ways:

1. the root mean square (RMS) velocity of the mode is

larger than the RMS PIV measurement error,

2. the signal to noise ratio is greater than unity,

3. the kinetic energy of the mode is greater than the

kinetic energy of a hypothetical spatiotemporal veloc-

ity field, with normally distributed velocities that have

(a) Modes 1+2

(b) Modes 1+2+3+4

Fig. 9 BOD low-order reconstructions of the ‘‘noisy’’ data. The vector scale and vorticity colormap are the same as Fig. 3

366 Exp Fluids (2010) 48:355–367

123



zero-mean and a standard deviation equal to the RMS

PIV measurement error.

Further, we showed that since both biorthogonal decom-

position (BOD) and proper orthogonal decomposition

(POD) are rooted in the SVD, this threshold criterion

applies to both types of analyses.

Herein, we performed a BOD analysis of 2D PIV data of

a fish wake. We obtained ‘body-position-invariant’ veloc-

ity fields by interpolating the PIV data on a grid that

translated with the swimming fish. We have shown that the

first two BOD modes can represent the fish wake, which is

a reverse Kármán street. Modes 3 and 4 add detail to the

wake, whereas modes 5 and higher add little additional

information and contain much of the measurement noise.

As expected, only the first four modes obtained from our

experimental data had magnitudes that met the threshold

criterion. We found that smoothing our PIV data using

smoothing splines has little effect on these first four BOD

modes. However, since the smoothing removes PIV error,

the magnitudes of higher BOD modes was reduced.

Some parallels can be drawn between the present anal-

ysis and the results presented by Ma et al. (2003) regarding

the POD modes of a cylinder wake, which is a regular

Kármán street. They compare POD modes extracted from

(noisy) PIV ‘‘experimental’’ data to those extracted from

(precise) direct numerical simulation ‘‘DNS’’ data.

(Unfortunately, they do not report the number of velocity

vectors in their experiment nor do they report the units of

their singular values, so we cannot verify if our threshold

criterion (3) is valid in their case.) Similar to our results,

Ma finds that the ‘‘experimental’’ data eigenmodes 1–4

were acceptable, but modes 5 and higher were corrupted by

measurement error. In both our ‘‘noisy’’ data and Ma’s

‘‘experimental’’ data, the singular values of modes 5 and

higher (5?) are clustered within one order of magnitude,

whereas for our ‘‘smoothed’’ data and Ma’s ‘‘DNS data’’,

these singular values span six orders of magnitude. Since a

matrix of random data has constant singular values, we

assert that in comparison to the singular values of our

‘‘smoothed’’ and Ma’s ‘‘DNS’’ modes 5? , the singular

values for our ‘‘noisy’’ and Ma’s ‘‘experimental’’ modes

5? were relatively constant, indicating that these modes

are capturing the experimental error.

These points taken together indicate that Kármán streets

can be represented adequately with two to four BOD

modes and that experimental error must be very precisely

controlled if higher modes are desired.

Acknowledgments Funding through a Link Foundation Fellowship

helped support this work. We gratefully thank Prof. George Karni-

adakis and Dr. Tadd Truscott for many helpful discussions and the

anonymous reviewers for their constructive suggestions that helped

improve this manuscript.

References

Aubry N (1991) On the hidden beauty of the proper orthogonal

decomposition. Theor Comput Fluid Dyn 2:339–352

Aubry N, Guyonnet R, Lima R (1991) Spatio-temporal analysis of

complex signals: theory and applications. J Stat Phys 64(3/

4):683–739

Aubry N, Chauve MP, Guyonnet R (1994) Transition to turbulence on

a rotating flat disk. Phys Fluids 6(8):2800

Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal

decomposition in the analysis of turbulent flows. Annu Rev Fluid

Mech 25:539–575

Borazjani I, Sotiropoulos F (2008) Numerical investigation of the

hydrodynamics of carangiform swimming in the transitional and

inertial flow regimes. J Exp Biol 211:1541–1558

Epps BP, Valdivia y Alvarado P, Yousef-Toumi K, Techet AH (2009)

Swimming performance of a biomimetic compliant fish-like

robot. Exp Fluids doi:10.1007/s00348-009-0684-8

Fogleman M, Lumley J, Rempfer D, Haworth D (2004) Application

of the proper orthogonal decomposition to data sets of internal

combustion engine flows. J Turbulence 5(N23), doi:10.1088/

1468-5248/5/1/023

Gentle JE (1998) Numerical linear algebra for applications in

statistics. Springer, New York

Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent

structures, dynamic systems, and symmetry. Cambridge Univer-

sity Press, Cambridge

Holmes PJ, Lumley JL, Berkooz G, Mattingly JC, Wittenberg RW

(1997) Low-dimensional models of coherent structures in

turbulence. Phys Rep 287:337–384

Kostas J, Soria J, Chong MS (2005) A comparison between snapshot

POD analysis of PIV velocity and vorticity data. Exp Fluids

38:146–160 doi:10.1007/s00348-004-0873-4

Ma X, Karamanos GS, Karniadakis GE (2000) Dynamics and

low-dimensionality of a turbulent near wake. J Fluid Mech

410:29–65

Ma X, Karniadakis GE, Park H, Gharib M (2003) Dpiv-driven flow

simulation: a new computational paradigm. Proc R Soc Lond A

Math Phys Sci 459:547–565 doi:10.1098/ rspa.2002.0981

MathWorks (2009) http://www.mathworks.com

Melling A (1997) Tracer particles and seeding for particle image

velocimetry. Meas Sci Technol 8:1406–1416

Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomo-

tion by chub mackerel scomber japonicus (scombridae). J Exp

Biol 205:1709–1724

Neubauera J, Zhang Z (2007) Coherent structures of the near field

flow in a self-oscillating physical model of the vocal folds.

J Acoust Soc Am 121(2):1102–1118

Patte-Rouland B, Lalizel G, Moreau J, Rouland E (2001) Flow

analysis of an annular jet by particle image velocimetry and

proper orthogonal decomposition. Meas Sci Technol 12:1404–

1412

Raffel M, Willert C, Kompenhans J (2002) Particle image velocime-

try: a practical guide. Springer, New York

SantaCruz A, David L, Pecheux J, Texier A (2005) Characterization

by proper-orthogonal-decomposition of the passive controlled

wake flow downstream of a half cylinder. Exp Fluids 39:730–

742 doi:10.1007/s00348-005-0006-8

Sirovich L (1987) Turbulence and the dynamics of coherent structures.

part 1: coherent structures, part 2: symmetries and transformations,

part 3: dynamics and scaling. Q Appl Math 45:561–590

Venturi D (2006) On proper orthogonal decomposition of randomly

perturbed fields with applications to flow past a cylinder and

natural convection over a horizontal plate. J Fluid Mech

559:215–254

Exp Fluids (2010) 48:355–367 367

123

http://dx.doi.org/10.1007/s00348-009-0684-8
http://dx.doi.org/10.1088/1468-5248/5/1/023
http://dx.doi.org/10.1088/1468-5248/5/1/023
http://dx.doi.org/10.1007/s00348-004-0873-4
http://dx.doi.org/10.1098/ rspa.2002.0981
http://www.mathworks.com
http://dx.doi.org/10.1007/s00348-005-0006-8

	An error threshold criterion for singular value decomposition modes extracted from PIV data
	Abstract
	Introduction
	Synthesis of SVD, POD, and BOD
	SVD of temporally correlated data (BOD)
	SVD of temporally uncorrelated data (POD)


	Threshold criterion
	Materials and methods
	Experimental details
	Wake interrogation
	Experimental PIV error
	Data smoothing

	Results and discussion
	PIV wake data
	Singular values
	Mode shapes and amplitudes
	Wake reconstruction

	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


