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Abstract A new approach for the interpolation of a
filtered turbulence velocity field given random point
samples of unfiltered turbulence velocity data is de-
scribed. In this optimal interpolation method, the best
possible value of the interpolated filtered field is ob-
tained as a stochastic estimate of a conditional aver-
age, which minimizes the mean square error between
the interpolated filtered velocity field and the true fil-
tered velocity field. Besides its origins in approximation
theory, the optimal interpolation method also has
other advantages over more commonly used ad hoc
interpolation methods (like the ‘adaptive Gaussian
window’). The optimal estimate of the filtered velocity
field can be guaranteed to preserve the solenoidal
nature of the filtered velocity field and also the
underlying correlation structure of both the filtered
and the unfiltered velocity fields. The a posteriori
performance of the optimal interpolation method is
evaluated using data obtained from high-resolution
direct numerical simulation of isotropic turbulence.
Our results show that for a given sample data density,
there exists an optimal choice of the characteristic
width of cut-off filter that gives the least possible rel-
ative mean square error between the true filtered
velocity and the interpolated filtered velocity. The
width of this ‘optimal’ filter and the corresponding
minimum relative error appear to decrease with in-
crease in sample data density. Errors due to the opti-
mal interpolation method are observed to be quite low
for appropriate choices of the data density and the
characteristic width of the filter. The optimal interpo-
lation method is also seen to outperform the ‘adaptive
Gaussian window’, in representing the interpolated
field given the data at random sample locations. The

overall a posteriori performance of the optimal inter-
polation method was found to be quite good and
hence makes a potential candidate for use in interpo-
lation of PTV and super-resolution PIV data.

1 Introduction

Particle tracking velocimetry (PTV) measures the
velocities of sparse, individual particles located at
random points in the flow; super-resolution particle
image velocimetry (PIV) (Keane et al. 1995) achieves
the same type of measurements in higher concentra-
tions of particles by first estimating the vector field
with a multi-particle correlation algorithm. In each
case, an important post-processing step is the inter-
polation of the random point samples of the velocity
vector field onto a uniform grid, or onto a continuous
function. Interpolation of randomly sampled, random
data is interesting because it is not subject to the
requirements of Nyquist’s criterion, but it may intro-
duce significant distortion of the signal (Adrian and
Yao 1987; Mueller et al. 1998; Benedict et al. 2000).
Discontinuities in the interpolating function can
introduce wide-band noise, and missing information
about the small-scale fluctuations between interpolat-
ing points leads to attenuation of the measured
spectrum.

Perhaps the most common method for interpolating
PTV data is the ‘adaptive Gaussian window’ or AGW
(Koga 1986; Agui and Jimenez 1987; Spedding and
Rignot 1993). Letting vp denote the velocity of the article
‘p’ that resides at xp at time t, and u(x,t) denote the
Eulerian velocity field, the velocity of a particle that
follows the fluid motion with negligible slip is equal to a
random point sample of the Eulerian field:

uðxp; tÞ ¼ vpðtÞ: ð1Þ
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The AGW algorithm uses the set of samples {up}
contained in a spatial window W(x) to form the inter-
polated field:

uðx; tÞ ¼
P
fxpg2W ðxÞ uðxp; tÞGðxp � xÞ
P
fxpg2W ðxÞ Gðxp � xÞ ; ð2Þ

where G(x) is typically a Gaussian function. (By letting
G be a second order tensor, one can form the interpo-
lation in such a way that the interpolated field is sole-
noidal, cf. Zhong et al. 1991.) Since G vanishes for large
distances from x, the summations can be extended over
the entire space of particles; restricting the summations
to the window is just a computational convenience.
Some insight is gained by expressing Eq. 2 in terms of
the random point sample function:

gðn; tÞ ¼
X

8p
dðn� xpÞ: ð3Þ

The interpolated field can be expressed as

uðx; tÞ ¼
R
uðn; tÞGðn� xÞgðn; tÞdn
R

Gðn� xÞgðn; tÞdn
; ð4Þ

from which one sees that the interpolated field is linear
in u, but decidedly non-linear in the random locations
of the samples. This causes a problem in interpreting u

which cannot be expressed simply as a filtered form of
the Eulerian field, u, due to the appearance of g and x
in both the numerator and the denominator. If we tried
to write uas a convolution with a filter response func-
tion, Eq. 4 implies that the impulse response would
depend upon g, i.e. the filter would be a random
function of the random particle positions. A second
issue with the AGW and similar variations is simply
that it is ad hoc. This is common to most interpolation
schemes, but unsatisfying nevertheless. Another unde-
sirable feature resulting from the ad hoc nature of these
interpolation methods is that the correlations between
the interpolated field and the randomly sampled data
differ from the corresponding correlations between the
underlying field (which is interpolated) and the ran-
domly sampled data.

In order to address these limitations, we consider an
‘optimal’ interpolator on the mathematical basis that it
is required to yield the least mean square error between
the velocity field and its estimate based on the actual
velocity samples at random locations. We can further
generalize our definition of the mean square error
function to represent the error (in the mean square
sense) between some known (and useful) function of the
velocity field and its estimate based on the actual
velocity samples at random locations. For instance, an
optimal estimate of the filtered velocity field (given the
actual velocity samples) can be obtained by minimizing
the mean square error between the filtered velocity field
and its estimate. It is plausible that for any given filter
function operating on the velocity field, there exists an

optimal value of filter width parameter that gives the
best possible estimate of the filtered velocity field, in the
sense that the mean-square error (between the filtered
field and its estimate) relative to the filtered signal, is a
minimum. Note that the unfiltered velocity field can be
considered as a special case of the filtered velocity field,
with filter width parameter being zero. We represent a
Cartesian component (along the xI coordinate axis) of
the filtered version of the Eulerian velocity field by
~ui x; tð Þ;which is defined as

~ui x; tð Þ ¼
Z

hij n; xð Þ uj n; tð Þdn; ð5Þ

where hij denotes the filter impulse response function and
uj denotes a Cartesian component (along the xj coordi-
nate axis) of the unfiltered Eulerian velocity field. This
form allows for inhomogeneous filters that depend
explicitly on x. To preserve the solenoidal property of
the filtered field, it is necessary to have a second order
tensor for the filter impulse response, hij. Then, it is
possible to construct the impulse response so that
@~ui=@xi ¼

R
@hijðn; xÞ=@xiujðn; tÞdn ¼ 0: For instance,

the convolution of a Fourier cut-off filter function (de-
fined in the following section) and the actual Eulerian
velocity field results in a low-pass filtered velocity field
that is solenoidal. We would like for our optimal esti-
mate of the low-pass filtered velocity field to also inherit
the solenoidal property of the underlying filtered field. It
may be noted that not all filter response functions con-
volving with the actual Eulerian velocity field result in
solenoidal (filtered) fields, in spite of the actual Eulerian
velocity field being solenoidal. An inhomogeneous filter
response function convolving with the actual velocity
field can result in filtered fields that are non-solenoidal.
In this paper, we focus our attention on the optimal
interpolation of solenoidal filtered fields alone; although
a generalization to non-solenoidal filtered fields can be
carried out quite easily within the framework of our
formulation.

An optimal estimate of a filtered Eulerian velocity
field based on the random point samples of the velocity
field can be obtained using the theory of stochastic
estimation. For simplicity of exposition, we consider a
random variable Y, which is to be estimated based on
some known information, represented as a vector of
random event data E. Let y(E) be an estimate of Y. Of
all possible estimates, the best estimate yb(E) is the one
that has minimum error between the estimate and the
random variable in the mean-square sense. It can be
shown (cf. Papoulis 1984; Adrian 1996) that this best
estimate yb(E) (in the mean-square sense) is given by the
conditional average Y Ejh i: Often it may not be possible
to determine the best estimate because this conditional
average may be difficult to obtain. Hence, we use sto-
chastic estimation to constrain y(E) in some fashion and
require that it approximate the conditional average
Y Ejh i as closely as possible. For instance, for linear
stochastic estimation, we insist that y(E) be linear in E.
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If e1 � Y j Eh i � yðEÞj j2
D E

denotes the mean-square er-

ror involved in the approximating conditional average

and e2 � Y � yðEÞj j2
D E

denotes the mean-square error

between the random variable and the estimate, one can
show that these errors are related by the following

identity: e2 � e1 þ Y j Eh i � Yj j2
D E

: From this it follows

that a stochastic estimate that minimizes e2 also mini-
mizes e1. For our purpose of obtaining an optimal
interpolator, we minimize e2 instead of directly mini-
mizing e1. A linear stochastic estimate that minimizes the
mean-square error, e2, is obtained when ÆY æ=Æy æ and
E0iðY 0 � y0Þ
� �

¼ 0: Note that the primes denote fluctua-
tions about the mean values, for instance, Y 0 � Y � Yh i:
Given the data {xp}, {up} we seek to determine an esti-
mator ~u

^

that represents the filtered vector field with least
mean square error:

ei ¼ ~u
^

i � ~ui

� �2
�
�
�
� fupg; fxpg

� �

, i ¼ 1,2,3. ð6Þ

The exact solution to this minimization problem can
be shown to be

~u
^

iðx; tÞ ¼ ~uiðx; tÞ
�
� fupg; fxpg

� �
; ð7Þ

the conditional average of the turbulent velocity field
given the values of the random velocity samples and
the points at which they were measured (cf. Papoulis
1984; Adrian 1996). Equation 7 averages over all pos-
sible velocity fields that are consistent with the mea-
sured data. Note that Eq. 7 is linear in u, but it may be
non-linear in both the position data and the velocity
data.

Direct use of the exact solution given by Eq. 7 is
infeasible because the space of velocity-position data is
huge. A typical two-dimensional PTV experiment might
have of order 104 two-dimensional velocity samples
corresponding to a 108 dimensional function. As in the
optimal algorithm numerical method of Adrian (1977)
for the turbulent Navier–Stokes equations, practical
implementation of the optimal method requires
approximation. The linear stochastic estimate of the
conditional average in Eq. 7 is found by expanding the
conditional average as a power series in the velocity data
and truncating at first order:

~̂ui ¼ linear estimate ~uiðx; tÞ
�
� fupg; fxpg

� �

¼ Aiðx; fxpgÞ þ
X

p

Bpijðx; fxpgÞ upj: ð8Þ

Substituting Eq. 8 into

ei ¼ ~̂ui � ~ui
� 	2 ��

� fupg; fxpg
D E

; i ¼ 1,2,3 ð9Þ

and minimizing with respect to variations of Ai and Bpij,
one finds, after some manipulation:

~̂ui ¼ ~uih i þ
X

p

Bpij upj � upj
� �� 	

; ð10Þ

where Bpij is found by solving the system of linear
equations:

X

p

Bpij u0pju
0
qk

D E
¼ ~u0iu

0
qk

D E
: ð11Þ

Here, a prime denotes fluctuation with respect to the
mean:

�ð Þ0 ¼ �ð Þ � �ð Þh i: ð12Þ

The linear stochastic estimate has been shown to be
quite good for various types of conditional averages of
turbulence flows (Adrian et al. 1989).

Implementing Eqs. 11 and 12 requires data input

for uih i; ~uih i; u0pju
0
qk

D E
; ~u0u0qk

D E
The mean of the unfil-

tered field can be found from the ensemble of exper-

imental flow fields, provided that the number of
samples is large enough to give a good average over a
small area around the point in question. The maxi-
mum size of this area depends upon the rate at which
the mean varies in space, but clearly its dimension can
be at least as great as the displacement of the particles
in the image fields. The mean of the filtered field can
be found by filtering the mean field, since filtering and
averaging commute.

The two-point spatial correlations between the
velocity samples, and the velocity sample and the
velocity at the arbitrary location x, can be approxi-
mated by assuming that the spatial separations lie in a
range of distances corresponding to the inertial sub-
range. The correlations may be modeled using corre-
lations derived from the isotropic viscous-inertial tur-
bulence spectrum, as an approximation to the true
spectrum of the flow. While this approximation is not
always justified, either because of insufficiently large
Reynolds number or strong inhomogeneity and/or
anisotropy, the interpolating functions still have the
virtue of being rooted in fluid dynamics, and conse-
quently they are less ad hoc than those used in other
methods. The physics of high wave-number turbulence
is imbedded in the process that determines the inter-
polating functions. The standard form of the isotropic
representation only requires the longitudinal two-point
correlation as input, and it guarantees that the corre-
lation tensor is solenoidal (Batchelor 1960). It can be
shown that the optimally interpolated field given by
Eq. 10 is then also solenoidal.

These attractive features of optimal interpolation
may not, however, guarantee better interpolation re-
sults. To judge this aspect one must appeal to a poste-
riori analysis of the optimal interpolation method. In
this paper, we analyze the performance of the optimal
interpolation method using random point samples of
data, obtained from a high-resolution direct numerical
simulation (DNS) of turbulence (with micro-scale Rey-
nolds number, Rk�164), that mimic PTV and super-
resolution PIV results.
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2 Simulation and error analysis

In order to test the a posteriori performance of the
optimal interpolator, we consider known turbulence
fields where the statistics of filtered and unfiltered
velocities can be accurately determined (except for
sampling errors). This enables us to provide accurate
inputs for the two-point correlations needed for
obtaining a linear stochastic estimate of the ‘optimal‘
interpolator, thereby eliminating a priori errors. The
turbulence fields used in the present analysis are ob-
tained using a well-resolved 2563 numerical simulation
of incompressible, forced isotropic turbulence (Rk�164).
Negative viscosity forcing on modes with wavenumber
magnitude k £ 3 was used to attain stationarity in time.
The simulation is based on a pseudo-spectral algorithm
(Rogallo 1981) and the time integration is done using a
second-order Runga–Kutta method. The magnitudes of
the minimum and maximum resolved wavenumbers are
k=1 and 121, respectively.

The effects of filtering are analyzed using a sharp
Fourier cut-off filter, whose effect is to annihilate all
Fourier modes of |k| greater than a cut-off wavenum-
ber kc and leave the rest of the modes unaltered. For
each kc, we associate a characteristic filter width
Dc ” p/kc. The transfer function of this filter is
H(kc�|k|), where H denotes the Heaviside function. It
can be shown that the filtered velocity field (Eq. 5)
obtained using this filter is solenoidal. A sharp cut-off
filter in Fourier space tends to introduce oscillations in
the filtered velocity field (in physical space). These
oscillations are inherent to the nature of the sharp cut-
off filter and hence should be captured by our optimal
estimates. In cases where these oscillations are signifi-
cant, it is possible that our optimal interpolator may
result in a poor estimate, as reflected by a large error in
the mean square sense. The resulting optimal estimate
is the one with the minimum possible error (in the
mean square sense), but in such cases may be con-
taminated with large errors.

To obtain an estimate of a component of the filtered
velocity field at any chosen point, given the three-
dimensional vector information of velocities at N ran-
dom points uniformly distributed over the entire cubic
domain of side L, we need to solve 3N equations
(Eq. 11). For high concentrations, the number of equa-
tions to be solved is very large and the linear system may
include a number of equations that contribute little to
the estimate owing to loss of correlation between the
estimate and events for very large separations. This
problem is addressed by dividing the entire cubic
domain (with side L) into non-overlapping cubic sub-
domains, each with side Ls (<L), and considering M
(�N) random samples that are uniformly distributed
within each sub-domain. For each grid point location
within a sub-domain, the estimate is evaluated based
only on the events (or velocity samples) within that sub-
domain and hence requires fewer equations (3M) to

solve. The length Ls characterizes the maximum allow-
able loss of (longitudinal or transverse) correlation be-
tween the estimate and the event-data. It may also be
useful to think of the role of Ls as that of an additional
cut-off filter.

We note that the partitioning of our domain into
non-overlapping sub-domains is done only to reduce the
computational costs involved. The estimates within each
sub-domain are continuous and satisfy (local) diver-
gence-free constraints. There may be jumps or discon-
tinuities in the estimate across the boundaries of the
non-overlapping sub-domains. But this is a result of a
trade-off for computational efficiency. It is not clear that
the use of overlapping sub-domains would alleviate the
discontinuity problems at the boundaries of the
sub-domains.

Given our choice of the filter (i.e., the Fourier cut-off
filter), the performance of our optimal interpolator
(Eq. 10) for filtered velocities depends, a priori, on the
following non-dimensional parameters: (i) Ls/k, (ii)
w ” Mk3/Ls

3, and (iii) Dc/k, where k denotes the Taylor
micro-scale of the unfiltered velocity field and w repre-
sents the (normalized) data density. Hence, the nor-
malized mean square error, / � e=r2

eu
may be expressed

as: /=f (Ls/k, w, Dc/k), where e ” (e1+e2+e3)/3 denotes
the component averaged mean square error between the
true filtered velocity and the interpolated velocity (see
Eq. 9) and r2

~u denotes the variance of the filtered velocity
field.

The true filtered velocity at each of the (2563) grid
points in our computational domain can be obtained
by the use of the transfer function on the true unfil-
tered velocity field. The evaluation of the interpolated
filtered velocity requires the knowledge of the true
velocities (i.e., event data) at each of the random
sample points obtained from a uniform distribution.
The true velocities at these randomly sampled points
are computed using a spectral interpolation procedure.
Besides satisfying the solenoidal constraint on the event
data, the spectral interpolation procedure also ensures
that there are no errors in the specification of event
data.

The correlations among event data, appearing on
the left-hand side of Eq. 11, are evaluated using lon-
gitudinal velocity correlations obtained from DNS,
along with the use of constraints imposed by isotropy
and incompressibility of the flow. The correlations

~u0u0qk

D E
; between filtered and unfiltered velocities,

appearing on the right hand side of Eq. 11, can be
shown to be equal to ~u0 ~u0qk

� �
for the case of a Fourier

cut-off filter. Similar to the unfiltered correlation ten-
sor, the latter correlation can be evaluated from the
longitudinal filtered velocity correlations obtained from
DNS. For more general use of the optimal interpola-
tion method for a wide range of Reynolds numbers,
we can use the three-dimensional model spectrum of
Pope (2000) to derive all correlations appearing in
Eq. 11.
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3 Results and discussion

The basic simulation parameters of the turbulence field
obtained from DNS (using 2563 grid points) are sum-
marized in Table 1 (in arbitrary simulation units). Note
that kmax (kmax=121) is the magnitude of the maximum
resolved wavenumber in our DNS. The three-dimen-
sional energy spectrum obtained from DNS is shown in
Fig. 1, as a function of the wavenumber magnitude. We
investigate the effects of filtering on the performance of
the optimal interpolation procedure by considering
sharp Fourier cut-off filters at wavenumber magnitudes
kc=121, 64, 32, 16, 8 and 4. The case with kc=121 (or
greater) corresponds to DNS (i.e., unfiltered velocity
field). The dashed lines in Fig. 1 show the cut-off filter
locations, each of which may be associated with a nor-
malized characteristic filter width Dc/k.

The correlation tensor that appears on the left hand
side of Eq. 11 can be derived from a unique scalar
function, i.e., the longitudinal correlation of filtered
velocities, which is dependent on the cut-off wave
number kc. Figure 2a and b shows the dependence of the
longitudinal and transverse correlation coefficients of
filtered velocities on kc and the separation distance
(normalized by the Kolmogorov length scale, g). The
transverse correlation function can also be derived from
the longitudinal function (and vice versa), for the case of
incompressible, isotropic turbulence. The longitudinal
correlation coefficient (q||) of filtered velocities increases
with a decrease in kc (or increase in Dc). The magnitude
of the transverse correlation coefficient q?ð Þ of filtered
velocities also appears to increase with kc for both small
and large separations. However, the trend with kc is not
very clear in the zero-crossing region (around r/g � 180–
200). The amount of kinetic energy of the filtered
velocity field, relative to that of the unfiltered velocity
field, for different kc is shown in Fig. 3. The ratio of the
variance of the filtered velocity field to that of the
unfiltered velocity field decreases with increase in the
characteristic width of the filter (or decrease in kc), as
expected. A quantitative measure of the variance of the

filtered velocity field (shown in Fig. 3) is useful for two
reasons: (a) the variance of the filtered velocity field is
relevant to estimation equations (i.e., right–hand side of
Eq. 11), and (b) it is also used in defining a normalized
mean square error, /, due to the interpolation method.
The behavior of the normalized error /, which is a true
indicator of the a posteriori performance of our optimal
interpolation method, is shown in Fig. 4a–c. In Fig. 4a,
the dependence of / on the (normalized) sample data
density (w) and filter width is illustrated for a fixed Ls/
k=0.939. For any given w, the normalized mean square
error / appears to have a minimum value (say /min).
The value /min and the width of the cut-off filter where
/min occurs are observed to decrease with increase in
data density. Except for large bandwidth filters, the er-
ror / is also seen to decrease with increase in data
density for any given width of the cut-off filter. The data
points for the lowest Dc/k shown in Fig. 4a also repre-
sent the unfiltered DNS case. For the highest data
density case chosen, the minimum mean square error
between the true filtered velocity and the velocity ob-
tained from the optimal interpolation method is about
0.9% of the filtered velocity variance. For the lowest w
chosen here (for Ls/k=0.939), the minimum error is
about 13.5% of the filtered velocity variance.

The mean square error obtained using the AGW is
also shown in Fig. 4c (dashed line) for comparison. To
enable a fair comparison, the same data density
w=2.412 (highest data density case) was used for both
the AGW and our optimal interpolation method. The
evaluation of the mean-square error in the AGW case is
carried out by comparing the estimate from AGW with
the actual unfiltered velocity field. The performance of
the optimal interpolation method appears to be better
than the AGW for this particular density (highest data
density case chosen), with a relative error of only about
4% in the former case (for moderate filter widths) and

Table 1 Basic simulation parameters. N0 (grid size), L (domain
size), Rk (micro-scale Reynolds number), Æeæ (energy dissipation
rate), m (viscosity), ru

2 (velocity variance), D (grid spacing), g
(Kolmogorov length scale), k (Taylor micro-scale), L11 (longitudi-
nal integral length scale) in arbitrary simulation units

N0 256

L 2p
Rk 164
Æeæ 62.9
m 6.667 ·10�3
ru

2 27.4
D/g 2.963
k/g 25.228
L11/g 121.331
kmax 121 Fig. 1 Three-dimensional energy spectrum E(k) versus k. The

dashed lines denote the several cases of kc used in our analysis
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about 14% in the latter. Although not shown in the
figure, our optimal interpolation method appears to
have lower relative errors compared to the AGW for all
data density cases considered. It may be noted that the
AGW width selected in our computations is based on
the optimum ratio H/d=1.24 used in Agui and Jimenez
(1987) and Spedding and Rignot (1993), where H and d
denote the Gaussian window width and mean nearest
neighbor distance, respectively.

Figure 4b and c represents cases with Ls/k fixed at
twice and four times the value used in Fig. 4a. The ef-
fects of moderate and low data densities are also illus-
trated in Fig. 4b and c, respectively. The behavior of /
and the trends with change in w are similar to the ones
observed for Fig. 4a. The results from Fig. 4a–c suggest
that our optimal interpolation method gives the best
possible results for interpolating a filtered velocity field
from a random sample of unfiltered velocities, if we

appropriately choose the width of the cut-off filter. For
very small filter widths, our optimal interpolation
method gives better results with increase in filter cut-off
width (for fixed Ls/k). The dependence of the error / on
the data density w and Ls/k is better depicted in Fig. 5,
which shows a plot of / versus w for different Ls/k. Two
sets of curves shown here are for interpolation of (a)
unfiltered velocity data and (b) filtered velocity data. For
a given data density and filter width, the mean square
error decreases with increase in Ls/k. The figure also
suggests that for low data densities w and large Ls/k,
optimal interpolation of a filtered velocity field yields a
lower normalized error / compared to the interpolation
of an unfiltered velocity field (for small widths of the
cut-off filter). On the contrary, optimal interpolation of
unfiltered velocity fields performs better than that of
the filtered case for high data densities and low Ls/k.
The error in the optimal interpolation of unfiltered
velocity data appears to scale with the data density
as /�w�2/3. The effects of data density on the spectral
performance of the optimal interpolation method and
AGW are shown in Fig. 6a and b, respectively. For the
optimal interpolation case, the agreement between the
unfiltered interpolated energy spectrum and the true
(DNS) energy spectrum appears to get better with in-
crease in data density especially for low wavenumbers.
However, for the AGW case, the trend with data density
appears less certain and the errors in the low wave-
number range are greater than those of the optimal
interpolation method (for the highest data density case
considered). The disparity between the two methods in
the nature of convergence of energy spectra, with in-
crease in data density, possibly has its origins in the very
nature of the interpolation method. It can be shown that
with increase in data density, the optimally interpolated
signal converges to the true signal (since optimal esti-

Fig. 3 Ratio of the variances of unfiltered to filtered velocities
versus the characteristic filter width relative to the Taylor micro-
scale (of unfiltered velocity field)

Fig. 2 Correlation coefficients versus r/g for different kc. a
Longitudinal (q||) (top). b Transverse q?ð Þ (bottom). The correla-
tion coefficients are defined as qjðrÞ � ~ujðxÞ~ujðxþ rÞ

� �

~ujðxÞ~ujðxÞ
� �

and q?ðrÞ � ~u?ðxÞ~u?ðxþ rÞh i= ~u?ðxÞ~u?ðxÞh i
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mation gives an exact result at sample points). The high
wavenumber noise in the spectrum shown in Fig. 6b, for
the AGW case, is a result of using non-overlapping sub-
domains, whose significance was discussed in the previ-
ous section.

The spectral behavior of the error due to the optimal
interpolation method at low wavenumbers is illustrated

in Fig. 7, wherein a plot of the relative error spectrum
versus the wavenumber (normalized by the Kolmogorov
scale) is shown for different data densities. The relative
error spectrum is defined by

h�ðkÞ � EtrueðkÞ � EestðkÞ
EtrueðkÞ

; ð13Þ

where Etrue(k) and Eest(k) denote the true spectrum and
the estimated spectrum due to the optimal interpolation
method, respectively. The relative error clearly decreases
with an increase in data density at low wavenumbers and
relative errors of the order of 1% were obtained in the
low wavenumber region (containing the most energetic
modes) for the highest data density chosen (w=2.40).

The behavior of this relative error due to the optimal
interpolation method is compared to that of the AGW in
Fig. 8 for the highest data density chosen (w=2.40). We
find that the optimal interpolation method performs
better than the AGW in the low wave number range.
Such a comparison would be fair for nearly identical
bandwidths (i.e., wavenumber range where the relative
error is less than 0.5) of the optimal interpolation and
AGW filters, which is indeed the case shown in Fig. 8.
The bandwidth (normalized by the Kolmogorov scale) is
about 0.2 in this case.

A sample trace of the true unfiltered velocity signal
along a line parallel to the x-axis is compared to the
signal obtained from the optimal interpolation method
(in Fig. 9a) and that obtained using the AGW (in
Fig. 9b) for (D c/k, w, Ls/k)=(0.117, 19.296, 1.878). The

Fig. 4 Normalized mean square
error / versus normalized
widths of the cut-off filters for
several values of the normalized
data density w. a Ls/k=0.939
(top). b Ls/k=1.878 (bottom
left). c Ls/k=3.756 (bottom
right). The dashed line in c
shows the error due to AGW
for w=2.412

Fig. 5 Normalized mean square error / � e=r2
~u versus normalized

data density w. The solid lines correspond to the cases for unfiltered
velocities, whereas the dashed lines correspond to those for the
filtered field, with kc=8. The symbols, viz. circles, triangles,
diamonds and squares, denote cases with Ls/k=0.470, 0.939, 1.878
and 3.756, respectively
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optimal interpolation method appears to perform better
than the AGW case in approximating the true signal.
The local extrema are found to be better represented by
the optimal interpolation method, compared to the
AGW case. For the cases shown in Fig. 9, the overall
relative mean square error / is about 2% for the optimal
interpolation method compared to 5% for the AGW
case, for the chosen parameter values.

4 Summary

The optimal interpolation process defines the best pos-
sible interpolator of the continuous turbulent velocity
field given the available velocity data located at random
points. Linear estimation of the conditional average is a
method of proven accuracy in other contexts of turbu-
lence representation. Application of the method to the
interpolation problem yields a simple procedure that
offers three attractive features: (1) the interpolated field
is solenoidal, (2) the interpolation functions reflect
approximate fluid dynamics of small scale turbulence,
and (3) the interpolation allows for a readily interpret-
able filtered field defined independently of the sampling
process.

Our results indicate that there exists an optimal
choice of the width of the cut-off filter that gives the least
possible error in the interpolation of the filtered velocity
field for any given density of the random point samples.
For low data densities, optimal interpolation of the fil-
tered velocities was found to be more reliable than the
optimal interpolation of unfiltered velocities. The most
energetic modes, i.e., the low wavenumber modes, ap-
pear to be well approximated by the estimated signal
using the optimal interpolation method. The a posteriori
performance of the optimal interpolation method ranks
better than the AGW case and can be improved with an
increase in data density.

Fig. 6 Comparison of normalized energy spectra for different data
densities using a the optimal interpolation (i.e., stochastic estima-
tion) method (top), and b the adaptive Gaussian window (bottom)
for kc=128 and Ls/k=3.758. The solid line shows the exact
spectrum obtained from direct numerical simulation (DNS)

Fig. 8 Comparison of relative error spectra obtained using the
optimal interpolation method (SE) and the adaptive Gaussian
window (AGW) for kc=128, w=2.40 and Ls/k=3.758

Fig. 7 Relative error spectra versus normalized wavenumber for
different data densities using the optimal interpolation method
(kc=128 and Ls/k=3.758)
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In contrast to the ad hoc nature of AGW, the optimal
interpolation method is based on a rational approach
involving minimization of a mean square error function;
this minimization is done by imbedding the known sta-
tistical properties of the flow. These advantages are
perhaps some of the reasons for the better a posteriori
performance of the optimal interpolation method,
compared to AGW. In the case of high Reynolds
number flow experiments in a laboratory, the input
correlations may be approximated using classical models
of energy spectra. The sensitivity of the a posteriori
performance of the optimal interpolation method to a
priori errors in the approximation of these input corre-
lations needs to be investigated further. An alternative
approach for specifying the input correlations (Eq. 11)
in the case of more practical turbulent flows (i.e., not just
isotropic turbulence) is to use a large ensemble of ran-

domly sampled velocities for constructing the statistical
correlation functions. For instance, using this alternative
approach, the longitudinal and transverse correlation
functions can be evaluated from a large ensemble of
randomly sampled velocities in a self-consistent manner,
thereby reducing the need for other simplifying model-
ing assumptions (on correlations or spectra).

The optimal interpolation method appears to be a
promising approach applicable for approximating a fil-
tered velocity field given the unfiltered velocities at
random sample locations obtained from PTV or super-
resolution PIV. This approach may also be extended for
interpolating other physical quantities of interest in
turbulent flows such as filtered versions of velocity gra-
dients, vorticity, scalar concentrations and scalar gra-
dients given the relevant randomly spaced event data.
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