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Analysis of interpolation schemes for image deformation

methods in PIV

T. Astarita, G. Cardone

Abstract Image deformation methods in particle image
velocimetry are becoming more and more accepted by the
scientific community but some aspects have not been
thoroughly investigated neither theoretically nor with the
aid of simulations. A fundamental step in this type of
algorithm is reconstruction of the deformed images that
requires the use of an interpolation scheme. The aim of
this paper is to examine the influence of this aspect on the
accuracy of the PIV algorithm. The performance assess-
ment has been conducted using synthetic images and the
results show that both the systematic and total errors are
strongly influenced by the interpolation scheme used in
the reconstruction of the deformed images. Time perfor-
mances and the influence of particle diameter are also
analysed.

Abbreviations
BSPL M interpolation scheme based on the B-spline of
order M

FFT fast Fourier transform

FFT M  interpolation scheme based on the shift theorem
of the Fourier transform using M x M points

IDM image deformation methods

IDWO iterative discrete window offset

IS interpolation scheme(s)

PID particle image distortion
PIV particle image velocimetry
SINC M interpolation scheme based on the sinc formula

using M x M points

List of symbols

D particle diameter, pixels

f grey intensity of the first image, dimensionless

g grey intensity of the second image, dimension-
less

i horizontal image coordinate (integer value),
pixels

j vertical image coordinate (integer value), pixels
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1 horizontal shift, pixels

m vertical shift, pixels

N number of measurement points, dimensionless

N; number of particles per interrogation window,
dimensionless

r displacement field, pixels

r. corrector displacement field, pixels

ry displacement field averaged over the interroga-
tion window, pixels

t time needed to perform deformation of the

images, seconds

u mean measured displacement, pixels

u imposed displacement, pixels

u; local measured displacement, pixels

w interrogation window linear dimension, pixels
x horizontal image coordinate, pixels

y vertical image coordinate, pixels

B mean bias error, pixels

B bias error, pixels

4 mean total error, pixels

0 total error, pixels

i mean operator

Gim cross-correlation coefficient, dimensionless
o random error, pixels

Superscript

k iteration counter, dimensionless

1

Introduction

Recently, particle image velocimetry (PIV) has become a
widespread technique for measuring instantaneous flow
fields and for this reason there is a great interest in the
improvement of the technique. Clearly, continuous hard-
ware evolution has an important effect in the bettering of
PIV but, in the past few years, progress in digital analysis
techniques has been surprising.

In the early 1990s various authors worked on an effi-
cient digital approach to the analysis of PIV images and in
most cases a classical cross-correlation approach was
proposed, e.g. the works of Utami et al. (1991), Willert and
Gharib (1991), Keane and Adrian (1993) and Westerweel
(1993). By using this “classical” approach the “loss of
pairs” (Keane and Adrian 1993) due to in-plane motion
causes both a decrease of the signal-to-noise ratio and a
significant increase of the total error, which is more evi-
dent for smaller particles.

233




234

One of the possible solutions to this problem is to
displace the interrogation windows by a discrete offset in
order to follow the particles between the two different
frames. Various authors have proposed an iterative dis-
crete window offset (IDWO) approach and in particular
the works by Soria (1996), Westerweel et al (1997), Scarano
and Riethmuller (1999), Hart (2000) and Wereley and
Meinhart (2001) are acknowledged.

The immediate extension of this method is the dis-
placement of the interrogation windows by a “sub-pixel”
offset (Lecordier et al. 2001). A further extension is to also
take into account the deformation and rotation of the
interrogation windows caused by the flow field. Huang
et al. (1993) made pioneering work in this direction by
introducing the particle image distortion (PID) technique.
The main idea was to maximize the correlation coefficient
in the presence of large velocity gradients. Deformation of
the interrogation windows was evaluated by calculating the
components of the velocity gradient and by applying
classical kinematic formulae. Jambunathan et al. (1995)
developed a different algorithm to estimate deformation of
the interrogation windows. They simply interpolated the
predictor displacement field on each pixel of the first im-
age and used it to evaluate the distortion of the second
image.

As also testified in a recent review article by Scarano
(2002), image deformation methods (IDM) in PIV have
recently became widely used and accepted. Use of this
approach requires evaluation of the image intensity, also
in location between the true pixels values and, conse-
quently, an interpolation scheme (IS) must be used to
reconstruct the images. To the authors’ knowledge, in the
literature there is not a systematic study of the effects of
the interpolation schemes on the accuracy of IDM for PIV
applications; thus, the aim of the present paper is to
provide information on this aspect. The performance
assessment is conducted using synthetic images with
particles of Gaussian shape, a constant displacement field,
and without added noise apart from the 8 bit digitaliza-
tion. These hypotheses are clearly simplistic but the au-
thors believe that many useful results and conclusion can
still be drawn.

In Sect. 2 the PIV algorithm used in this work will be
described in detail, while in Sect. 3 the experimental pro-
cedure and the synthetic image characteristics will be
presented. In Sect. 4 the accuracy of classical (non IDM)
methods will be analysed and compared, when possible,
with previous results. In Sect. 5 various image interpola-
tion schemes will be illustrated and in Sects. 6 and 7 their
accuracy and time performances are presented. Prior to
conclusions being drawn, Sect. 8 discusses an analysis of
the influence of particle diameter on both the systematic
and total error.

2

Iterative image deformation method

In the literature there are many contributions on IDM for
PIV applications and, because each author propose a dif-
ferent approach, there is not a standard algorithm. Thus,
this section illustrates in detail the iterative image defor-
mation method used in this work, which is very similar to

the one described by Scarano (2002). The algorithm is
iterative and multigrid and the major steps are as follows:

1. The predictor displacement field is built with a stan-
dard cross-correlation method on a rather coarse grid.
In particular, the FFT approach is used to evaluate the
cross-correlation coefficient ¢;,, between homologous
square interrogation windows as:
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where f and g are the grey intensities of the two
interrogation windows extracted from the first and
second image, ir and u, are the means evaluated
over the corresponding interrogation windows, and
W is the square window linear dimension. The use of
FFT, for evaluation of the cross-correlation, produces
a number of effects that are treated in detail by Raffel
et al. (1998). The position of the maximum in the
correlation plane is determined with subpixel accu-
racy by means of a three point Gaussian interpolation
scheme (Westerweel 1993). Weighting factors can be
used to correct the bias error associated with the
imposed periodicity due to application of the FFT
(Westerweel 1993; and Raffel et al. 1998). The dis-
placement field obtained is then validated in order to
remove possible outliers.

2. The predictor displacement field is interpolated on
each pixel of the image by using a bilinear IS and, by
using one of the interpolation schemes described in
Sect. 5, the two complete images are deformed
accordingly. This step is similar to the one proposed
by Jambunathan et al. (1995) whereas the essential
difference (apart from the IS) is that both images are
distorted simultaneously (symmetrically). In this way
it is possible to have a second order accurate esti-
mation of the velocity (Nogueira et al. 1999; Wereley
and Meinhart 2001).

3. A refinement may be performed resulting in the eval-
uation of the displacement field on a finer grid. Typi-
cally during the refinement process the linear dimen-
sion of the interrogation windows is halved, and in the
final iterations, overlapping windows may be used.

4. Applying the method described in step 1 to the de-
formed images, a corrector displacement field is cal-
culated.

5. To evaluate the true displacement field r ( i, j) (for the
sake of brevity, the dependence of r on the image
coordinates will be dropped here) two courses of
action may be pursued.! The first approach, proposed
by Scarano (2004), is to sum the corrector displace-
ment r. with the displacement r,, obtained by
averaging the predictor over the whole interrogation
window:

! In many previous works this point is not described in detail, so
it is difficult to clearly understand who was the first to propose
the two approaches.



A I (2)
where the superscript indicates the iteration counter. This
procedure enables a stable method even in the presence of
high spatial frequencies (Scarano 2004). The second ap-
proach is to sum the corrector displacement with the local
displacement obtained during the previous iteration:

e I (3)
As explained in detail by Nogueira et al. (1999), the
latter method may be unstable if large spatial frequencies
are present in the flowfield, thus an appropriate weighting

of the interrogation windows should be used to avoid
instabilities. Clearly this complicates the algorithm and
does not add any further information to the influence of
the interpolation schemes on the accuracy of IDM for PIV
applications. For this reason, only the first approach will
be used here. The obtained displacement field is then used
as a predictor for step 2.

Steps 2-5 are repeated for a prescribed number of
times. Typically three iterations are needed to reach the
final dimensions of the interrogation windows and then
one or two iterations at the final overlapping factor are
needed to reach convergence.

3
Procedure
Synthetic images are used to estimate the influence of
different IS on the accuracy of iterative image deformation
methods for PIV application and only constant (along a
principal direction) displacement fields are simulated.
Each particle is supposed to be of Gaussian shape and thus
the intensity level is obtained by integrating the particle
light distribution over each image pixel. The latter sup-
posed to have a unity fill factor and a maximum level of
255, i.e. 8 bits. If two or more particles overlap, the
intensity level of each pixel is the sum of the intensities
relative to each particle. In most of the simulations a
standard set of images is used, in this case, a sample of 81
images with a constant displacement linearly varying be-
tween 0 and 4 pixels (i.e. a step of 0.05 pixels) and about 20
thousands particles randomly distributed are generated in
a 512x512 pixels image resulting in a particle density of
0.076 particles per square pixel. A uniform randomly
varying particle mean diameter D of 3 pixels with a max-
imum deviation of +£0.5 pixel and mean brightness of 120
with a maximum deviation of £40 is also used. No addi-
tional noise is used because only the influence of the
interpolation schemes on the accuracy of IDM for PIV
applications is investigated.

Since the exact displacement field is known it is pos-
sible to easily define three types of errors: bias 3, random o
and total 6 (Gui and Wereley 2002):

p=u-u 4)

where 7 is the mean measured value, u is the exact im-
posed displacement, u; the measured displacement and N
is the number of samples. Clearly, the three errors satisfy
the equation § *= ¢ >+ .

In this work the bias error and the total error will be
shown and most of the results will be presented for a final
interrogation window of 16x16 pixels. The number of
samples used for computation of the bias and total errors
is always greater than 14 thousand.

4

Accuracy of classical methods

First of all the accuracy of the classical cross-correlation
method will be analysed and compared with the results
obtained by Raffel et al. (1998). Such a comparison is
shown in Fig. 1 where, for three different values of the
number of particles per interrogation window Ny, W =32,
D =2.2 and a fixed brightness of 120 (i.e. practically the
same conditions of Raffel et al. 1998), J is plotted against
the imposed displacement u. Open symbols are relative to
the data of Raffel et al. (1998) while closed ones to the
present simulations. The error increases almost linearly
with the imposed displacement and decreases with
increasing particle density; this agreement should confirm
the goodness of the procedure.

By using the standard set of images, the comparison
between IDWO methods and the classical cross-correla-
tion approach (circles are used as symbols) is shown in
Fig. 2. In particular, both the symmetric (diamonds) and
asymmetric (triangles) displacement window offset is
used. To show the effects of the correction on the bias
error associated with the imposed periodicity (see Sect. 2,
point 1), open symbols are used for corrected values while
closed ones for the raw data. By looking at Fig. 2a where 8
is plotted, it is possible to see that, for both the corrected
and raw data, the bias error is equal for the three methods
untill the displacement is less than 0.5 pixels, i.e. while the

0.03
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0 0.2 0.4 u 0.6

Fig. 1. Total error as a function of the imposed displacement for
different N; values; closed symbols are relative to present data
while open ones to data of Raffel et al. (1998)
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Fig. 2. Bias (a) and total (b) errors as a function of the imposed
displacement for the classical algorithms; open symbols are
relative to corrected values while closed ones to raw data

two IDWO methods and the classical cross-correlation
approach are equivalent. The raw data show a significant
bias error that is more than one order of magnitude higher
than the corrected one.

By focusing attention on the raw data it is evident that
both the IDWO methods show a periodic behaviour for f§
with a period equal to 1 or 2 pixels for the asymmetric and
symmetric methods, respectively. Indeed, for the former
method, the interrogation windows in the second image
are offset by 1 pixel when the predictor displacement is
greater than 0.5 pixels and by two pixels when the dis-
placement reaches 1.5 pixels, and so on. For the symmetric
method both the interrogation windows, in the first and
second image, are offset by 1 pixel when the displacement
is greater than 1 pixel and by two pixels when the dis-
placement reaches 3 pixels, and so on. The periodic
behaviour is typical of iterative methods and will be found
again for the image deformation methods. Since the
symmetric method follows the classical cross-correlation
methods for a larger imposed displacement its bias error
is, on average, larger with respect to the asymmetric one.
The comparison of the present results with the ones of
Scarano and Riethmuller (2000) and of Gui and Wereley
(2002) is fairly good even if in both cases f is slightly

higher than the present values. The latter authors used
32x32 interrogation windows and synthetic images with
particles that, on average, have a diameter slightly larger
than the one used in the present work and this latter effect
might explain the small discrepancy. Even if not clearly
stated, it is probable that the authors of both the cited
papers did not use the correction for the bias error and
used an asymmetric IDWO method. When the correction
associated with the imposed periodicity of the interroga-
tion windows is applied, the bias error shows, for the
classical cross-correlation approach, a change of sign for u
< 0.5 and then reaches a nearly constant value.

The graph of Fig. 2b show a similar behaviour for é.
The total error for the raw data, similar to that found by
Scarano and Riethmuller (2000), is significantly higher
relative to the curves obtained by applying the correction
on the bias error associated with the imposed periodicity
of the interrogation windows. The classical cross-correla-
tion method shows a large oscillation of 6 for u >3 pixels
which is due to the loss of pairs associated with the large
imposed displacement. Clearly the iterative nature of the
two IDWO methods completely removes this type of ran-
dom error and, for this reason, only data relative to u <2
pixels will be further presented herein.

5

Image interpolation schemes for PIV

As it will be seen in the next section the choice of the
interpolation scheme is of fundamental importance in the
application of IDM and for this reason various IS will be
analysed. The well known bilinear interpolation scheme is
widely used in PIV algorithms, for example, it can be
found in the works of Huang et al. (1993), Jambunathan
et al. (1995), Nogueira et al. (1999), Gui and Wereley
(2002), and Meunier and Leweke (2003). The bilinear
interpolation formula may be easily found by using suc-
cessive linear interpolations along the two principal
directions. First, two intermediate values are evaluated by
means of linear interpolations along the x direction (a
sample interpolation grid, also called stencil in the fol-
lowing, is shown in Fig. 3a):

fey=0 = foo + X(fl.o —fo,o) (7)
fry=1 = fo1 + x(fm —fo,1) (8)

where, for the sake of brevity but without loss of gener-
ality, it is assumed that both x and y are included in the
interval [0 1], and the image coordinates are indicated by
subscripts.

The obtained values are then interpolated along the y
direction:

fey=Fry=0+ ¥ (fry=1 = fiyo)
=1 =x)(1 = y)foo +x(1 = y)fio + (1 = x)yfor + xpfin
9)

Equation 9 is the standard bilinear formula. By using
the same procedure it is possible to find IS of higher order,
e.g. by using three quadratic interpolations along the x
direction and a successive quadratic interpolation along
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Fig. 3. Interpolation grids for various IS. a Bilinear. b Biquadratic.
¢ Bicubic. d-h Simplex

the y direction the biquadratic interpolation formula can be
found. The biquadratic interpolation formula, used by
Nogueira et al. (2001) for PIV application, should be more
accurate because it uses information from nine neigh-
bouring points as shown in the grid of Fig. 3b. The suc-
cessive approximation is the bicubic interpolation that uses
the information from 16 neighbouring points (Fig. 3c).
Another family of IS is based on a simplex stencil that
results in three points for the linear approximation, six for
the quadratic, and so on for increasing order. From
Fig. 3d-g, which shows, for the quadratic simplex IS, the
four possible interpolation grids each rotated 90° with
respect to the previous one, the lack of symmetry of this
scheme is clear. A possible way to overcome this problem
is to average the values of the interpolations from the four
different simplexes; in this way 12 points are used for the
final formula (Fig. 3h):

fry=foo +% (+f0,71 —foo—fo1+foz+fi—1—fio—fia +f1.2)

"‘% (frro+fo11—foo—for—fro—fir+fao+fa1)
+x)’(fo.o —fo1—fio +f1,1)
x
+§(—f0,4 —7foo+%01 —foo—fii1+fio+fii—fiz)
+)§/ (~fr0—faa—Tho+for+%0+fi1—fro—fri)
(10)

Scarano and Riethmuller (2000) suggest using an
interpolation scheme based on the sinc function (it will be
further referred to here as SINC IS):

i=o0 j=00

D S oys ==t EL
i=—00 j=—00

Furthermore, they suggest using an interpolation grid
of 7x7 pixels. A similar formula may be obtained by
applying the well known shift theorem of the Fourier
transform in the frequency domain (here referred to as
FFT IS). A discussion on the characteristics of these last
two interpolation schemes and their relationships can be
found in a paper by Yaroslavsky (1996). As the number of
points used in these types of IS may be chosen arbitrarily,
in the following the number that follows the acronym will
indicate the linear dimension of the interpolation grid, e.g.
FFT3 indicates the Fourier shift theorem IS on a grid of
3x3 points.

The last family of interpolation schemes used in this
work is the one based on B-spline functions (BSPL). In this
case it is also possible to use square interpolation grids
with a linear dimension that is a function of the spline
order. In particular, a spline of order two uses a stencil of
3x3 points, while a spline of order three uses 4x4 points.
By slightly changing the convention introduced in the
previous paragraph, the number following the acronym
will indicate the order of the B-spline and not the stencil
linear dimension. Details on implementation of the algo-
rithm and on the relations of the B-spline IS with the
cardinal interpolation formula can be found in Unser et al.
(1993a, 1993b) and in Unser (1999).

Clearly it is expected that if more points are used for
the IS the accuracy should improve while the time per-
formance should worsen. As will be seen this is not always
the real situation and other factors, like the choice of odd
or even linear dimensions of the interpolation grid, may
produce different behaviours of the interpolation schemes
in the PIV process.

6

Accuracy of image deformation methods

Each interpolation scheme described in the previous sec-
tion will now be analysed in detail. A comparison of the
“high speed” IS, i.e. the ones that use 16 or less points, is
shown in Fig. 4a and b; the curves relative to the sym-
metric IDWO method (diamonds) are also included for
reference. In this figure the correction on the bias error
associated with the imposed periodicity has been applied
and the same images of section 4 are processed. By looking
at Fig. 4b, where the total error is plotted, it is clear that
the worst results are those relative to the FFT3 (triangles)
and biquadratic IS (stars) both of which have odd linear
dimensions of the interpolation grid. A significant part of
the total error is due to the extremely high bias error, for
this reason in Fig. 4a the two curves relative to the
aforementioned IS are not plotted. It is interesting to note
that for these two IS the total error can be even larger
relative to the classical cross-correlation method and a
period of two pixels is found. The bilinear IS (open
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Fig. 4. Bias (a) and total (b) errors as a function of the imposed
displacement for various IS

squares) performs relatively well considering the small
number of points used. Even if the IDM used in this paper
is symmetric, and should have a period of two pixels, this
IS has a period of one pixel for the total error which
reduces significantly the average total error. A similar
behaviour, but with a slightly smaller error, is seen for the
FFT4 (crossed circles), SINC4 (crossed squares) and
BSPL2 IS (open triangles) and it is clear that the differ-
ences between them, in this case, are very small. The
bicubic formula (closed squares) performs significantly
better by halving the error with respect to the bilinear IS.
The simplex IS (open crosses) behaves even better and has
a flatter response with a period of two pixels. The BSPL3
(open diamonds) attains, among the high speed interpo-
lation schemes, the smaller total error again with a peri-
odic behaviour and a period of one pixel. Apart from the
first two IS, the IDM has an average total error smaller
than that relative to the symmetric IDWO method (closed
diamonds) but the same is not true for the bias error. In
Fig. 4a it is clear that the smaller bias error is obtained by
using the classical IDWO method while the IDM may have
significantly higher errors. In particular, the larger sys-
tematic error is associated with the bilinear interpolation
scheme, followed by FFT4, SINC4 and BSPL2 IS. Bicubic,
BSPL3 and simplex interpolation schemes again perform
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Fig. 5. Bias (a) and total (b) errors as a function of the imposed
displacement for various IS

better. For all the IDM the period is two pixels and f is
equal to zero for integer displacements.

Present data for the bilinear IS should be, in principle,
comparable with the results of Gui and Wereley (2002), but
comparison of the bias error is unsatisfactory which is
most probably due to the fact that, in the present case,
smaller interrogation windows are used and both the
images are deformed symmetrically while, most probably,
in their case the asymmetric approach has been followed.
This should explain both the halved period of their data
and the smaller error. In particular the latter effect is also
due to the fact that one image is not reconstructed, thus
reducing the interpolation errors. Clearly, as previously
stated, by distorting symmetrically both the images it is
possible to have a second order accurate estimation of the
velocity when the displacement is not constant.

The effects of varying the linear dimension of the
interpolation grid for the Fourier shift theorem interpo-
lation formula and the SINC IS are shown in Figs. 5 and 6.
In particular the total error for the FFT IS for an inter-
polation grid from 6x6 to 9x9 and for the SINC IS with a
stencil of 6x6 and 8x8 is plotted as a function of the im-
posed displacement in Fig. 5b. In Fig. 6b only even stencil
from 10x10 to 16x16 points are shown. Closed symbols
refer to the FFT IS and open symbols to the SINC IS. As
already observed, when the linear dimension of the
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interpolation grid is odd this IS behaves poorer with a
period of two pixels. Similarly for the total error, and even
when using 9x9=_81 points, the total error is higher than
that relative to the simplex method (Fig. 4b). Results rel-
ative to the FFT7 interpolation scheme differ significantly
from the data of Scarano and Riethmuller (2000) both in
magnitude and in shape. Most probably this discrepancy is
analogous to the one with the data of Gui and Wereley
(2002). The behaviour is completely different for an even
number of points on the interpolation grid’s linear
dimension, the period is again one pixel and the maximum
total error for the FFT IS on 8x8 points, in this case, de-
creases by a factor of two with respect to the BSPL3; some
smaller effects are achievable with a bigger stencil

(Fig. 6b). For an even linear dimension of the stencil the
Fourier shift theorem based interpolation schemes behave
a little better with respect to the SINC IS. The bias error
follows a similar behaviour, as shown by Figs. 5a and 6a,
reaching for an odd linear dimension of the stencil higher
values with respect to even ones. In particular, the curve
relative to the FFT7 IS has not been plotted on account of
its large bias error. Increasing the linear dimension of the
interpolation grid, f§ decreases considerably reaching val-
ues that are one order of magnitude smaller than that
relative to the classical methods (less than 0.0005 pixels for
the FFT based interpolation schemes).

The effects of varying the dimensions of the interpo-
lation grid for the B-spline interpolation scheme are shown
in Fig. 7. As seen in Fig. 7a, where the bias error is plotted,
increasing the stencil dimension f decreases significantly
at first and then only slightly. In particular for the bigger
interpolation grid the bias error reaches values that are
very similar to the ones relative to the FFT and SINC
interpolation schemes. The total error, shown in Fig. 7b, is
less influenced by the stencil dimension and practically
does not change for B-spline of order seven or higher. It is
interesting to note that the BSPL interpolation scheme is
not influenced by a choice of odd or even linear dimension
of the interpolation grid and the error is monotonically
decreasing with the spline order.

Figure 8 shows the curves relative to the same IS of
Fig. 4 but without the correction of the bias error associ-
ated with the imposed periodicity of the interrogation
windows. As expected the only curve that is significantly
affected by the correction is that relative to the IDWO
method; the iterative nature of IDM methods completely
removes the need for the bias correction because at each
iteration the relative displacement decreases and with it
the bias error. Unexpectedly, in some cases, both the total
and bias error tend to slightly decrease for IDM by
neglecting the bias correction but the overall behaviour
does not change.
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Fig. 7. Bias (a) and total (b) errors as a function of the imposed
displacement for various IS
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7

Time performance of image deformation methods

For processing large amounts of PIV images both high
accuracy and low processing times are needed. For this
reason, in Fig. 9a and b, the mean bias and total errors for
the standard images, evaluated by averaging the absolute
value of the errors in the displacement interval from zero
to four pixels, are plotted against the time ¢ needed to
deform the images (i.e step 2 of Sect. 2).? For the classical
method ¢ is equal to zero and so the abscissa for this point
has been fictitiously fixed at 0.15 s. Closed circles indicate
high speed methods, open circles BSPL IS (the number
indicates the spline order), closed squares and open
squares FFT and SINC interpolation schemes (the number
indicates the stencil linear dimension), respectively.

By focusing attention on the high speed methods it is
evident that the time needed to perform the image defor-
mation does not change much while both the total and bias
error may change considerably. The total error for the
simplex and bicubic interpolation schemes is significantly
smaller than that relative to the symmetric IDWO method
but the biquadratic IS performs worse. The average bias
error is smaller for the classical method.

2 Of course the time ¢ is a function of the computer used during
the simulation so it should be regarded as a relative measure-
ment.
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Fig. 9. Bias (a) and total (b) mean errors as a function of time for
various IS. Closed circles indicate high speed methods, open
circles BSPL IS (the number indicates the spline order), closed
squares and open squares FFT and SINC interpolation schemes
(the number indicates the stencil linear dimension), respectively

By using BSPL, FFT or SINC interpolation schemes on
rather big interpolation grids, the performances of IDM
change radically. The time needed to deform the images
may increase more than one order of magnitude while
both the errors decrease significantly. The FFT methods
are slower than SINC and BSPL interpolation schemes. The
BSPL IS has the advantage of reducing significantly the
total error, also for smaller interpolation grids. For big
interpolation grids, i.e. 16x16 points, both the bias and the
total error result one order of magnitude smaller than that
relative to the IDWO method.

8

Influence of the particle diameter

It is well known that the particle diameter influences sig-
nificantly the performance of the PIV algorithm. Wester-
weel (2000) has analysed this effect both theoretically and
by using synthetic images for the classical methods and
found, in agreement with the simulation of Raffel et al.
(1998), that the optimal particle diameter is of about two
pixels, i.e. rather small. In this section the influence of
particle diameter on the accuracy of IDM methods will be
analysed. A set of 96 synthetic images is used with a fixed



particle diameter ranging from 0.5 to 10 pixels and the
same particle density of the standard set of images. Fol-
lowing the same symbology of Figs. 4, 5 and 6, the total
and bias error for a fixed imposed displacement of 1.5
pixels are shown in Figs. 10, 11 and 12.

As seen in Fig. 10b—although the same also occurs for
bigger stencils—most of the curves tend to overlap for
high values of particle diameter which is most probably
due to the small number of points (5) used in interpolation
of the correlation map maximum. The optimal particle
diameter for the classical IDWO method is found to be of
about two pixels, which is in perfect agreement with the
cited papers. As already found, the FFT3 IS performs
poorly for all the tested particle diameters. The biqua-
dratic, bilinear, BSPL2, bicubic and BSPL3 IS, in this order,
perform increasingly better and have a larger optimal
particle diameter. The SINC4 has a relatively large plateau
where the total error attains a minimum. The FFT4 has an
optimal particle diameter of about two pixels and for small
D performs better than the other methods. The simplex
method has an optimal diameter of about four pixels. As
shown in Fig. 10a the bias error for most of the interpo-
lation schemes is higher, for all the tested particle diam-
eters, with respect to the classical IDWO method.
Comparison with data presented by Gui and Wereley
(2002) is quite good and the ¢ profiles, for both the IDWO
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Fig. 10. Bias (a) and total (b) errors as a function of particle
diameter for various IS
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Fig. 11. Bias (a) and total (b) errors as a function of particle
diameter for various IS

and bilinear IS, resemble the ones reported herein. In
particular the previous authors did not find the absolute
minimum for the bilinear interpolation scheme because
they tested particle diameters of maximum 5 pixels.

Figure 11 shows the curves relative to the same IS
shown in Fig. 5. Again, the methods based on odd linear
dimensions perform poorly with regard to both the total
and bias error. From Fig. 11b it is evident that for small
particle diameters all the curves behave in the same way
but the absolute minimum tends to shift to higher D with
increasing linear dimension of the interpolation grid. In
Fig. 12b a similar behaviour is also found for larger sten-
cils but in this case a relatively large plateau is found. The
bias error appears to increase significantly when the par-
ticle diameter is bigger than the value relative to the
minimum for the total error. For bigger interpolation grids
the B-spline interpolation scheme has a behaviour that is
very similar to the FFT IS. From Fig. 13, where ¢ and f for
the FFT16 (thick grey line) and BSPL16 (thin black line) IS
are plotted, it is evident that the two IS schemes are
practically equivalent.

9

Conclusions

The influence of the interpolation schemes on the accuracy
of image deformation methods for PIV applications has
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Fig. 12. Bias (a) and total (b) errors as a function of particle
diameter for various IS

been examined. The total and bias errors have been
analysed and, when possible, compared with results al-
ready present in the literature. The performance assess-
ment has been conducted using synthetic images with
particles of Gaussian shape, a constant displacement field
and without added noise apart from the 8 bits digitaliza-
tion. In this paper no attempt has been made to study the
influence of the IS on the spatial resolution of the PIV
algorithm and most probably this will be the object of a
future work. Results show that both the systematic and
total errors are strongly influenced by the interpolation
scheme used in the reconstruction of the deformed images.
The choice of interpolation scheme has been proved to
be a crucial point in the IDV, in fact, both the bias and
total errors of image deformation methods may be even
higher than that relative to classical IDWO methods.
Normally, interpolation schemes, apart from B-spline,
based on even linear dimensions of the interpolation grid
behave significantly better than those based on odd ones.
For a particle diameter of about three pixels, when
using a significant amount of interpolation points, the
interpolation schemes based on the shift theorem of the
Fourier transforms and B-spline result in the lowest total
error and practically no bias error. The IS based on the
sinc formula perform slightly worse while the schemes
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Fig. 13. Bias (a) and total (b) errors as a function of particle
diameter for BSPL16 and FFT16 interpolation schemes

based on 16 or less interpolation points perform signifi-
cantly worse.

The influence of particle diameter on accuracy has
shown a behaviour similar to that of the classical methods.
An absolute minimum is found for relatively large particle
diameters and the errors increase significantly for very
large and very small particles.

By also taking into account the time performances of
the various IS the following conclusions may be drawn. If
speed is a prime concern, simplex or bicubic methods
should be used to obtain a good compromise between
speed and accuracy with the former method behaving
better in both the aspects. If accuracy is the only concern,
the SINC, FFT or BSPL IS with a large number of points
should be used which results in significantly smaller errors
than that associated with the simplex method; on the other
hand, the processing time may increase more than one
order of magnitude. It has to be stressed that for highly
overlapped final interrogation windows the time to per-
form the correlations may be of the same order of mag-
nitude or, in some cases, even higher than the one needed
to perform the image deformation so that even when time
is a prime concern the sinc, Fourier shift theorem or B-
spline based interpolation schemes may be the optimal
choice.
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