Experiments in Fluids 38 (2005) 197-208
DOI 10.1007/500348-004-0899-7

An efficient anti-aliasing spectral continuous window

shifting technique for PIV

Qian Liao, Edwin A. Cowen

Abstract A new sub-pixel correlation peak locating algo-
rithm for PIV analysis is introduced. The method is the-
oretically consistent with the method of continuously
shifting interrogation sub-windows by fractional dis-
placements, which has proven to be an effective way to
reduce the bias error associated with integer pixel aliasing,
or ‘peak-locking’. However the proposed algorithm per-
forms continuous window shifting in the spatial frequency
domain using the ‘shift’ property of the Fourier transform,
thus it is equivalent to interpolating the original digital
image with the Fourier transform reconstruction.
Synthetic and real PIV images are used to test the new
algorithm’s performance relative to that of traditional
(non-iterative) peak-finding methods and other peak-
locking reduction algorithms, such as the continuous
window shifting technique. The resultant bias error of the
proposed algorithm is smaller (by an order of magnitude
in some cases), and importantly, the periodic nature of the
bias error, the characteristic signature of ‘peak-locking’, is
eliminated as long as the discrete particle images have
been sampled at a rate greater than the Nyquist sampling
frequency. Moreover, this new algorithm is shown to be
computationally efficient and it converges faster than the
competing algorithms.

1

Introduction

Particle image velocimetry (PIV), with its continued
improvement, has become the dominant tool for deter-
mining fluid velocities in the laboratory, principally due to
its ability to resolve instantaneous 2-D and even 3-D
velocity field structures. Although the accuracy of corre-
lation-based PIV has improved significantly in recent
years (Hart 2000; Gui et al. 2000; Wereley and Meinhart
2001; Gui and Wereley 2002) this has often been achieved
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at relatively high computational cost (Fincham and Del-
erce 2000).

One of the most important sources of measurement
error comes from the inherent discrete sampling of par-
ticle images by CCD (and more recently CMOS) based
cameras. The mean displacement of the particle image
pattern (PIP), which is commonly determined by cross-
correlation, is quantized yielding discrete displacement
components of integer pixel value. These components are
converted to discrete physical displacement upon image
calibration. Since PIV was originally proposed in its digital
form (Willert and Gharib 1991), this discrete nature has
been accounted for and measures have been taken to find
sub-pixel accurate estimates of the location of the corre-
lation peak. This can minimize the uncertainty in the PIPs
displacement estimate to a level that is an order of mag-
nitude smaller than a pixel. Discrete interrogation sub-
window offsets along with iterative schemes (Cowen and
Monismith 1997; Wereley and Meinhart 2001; Westerweel
et al. 1997) have been introduced to minimize the in-plane
loss-of-pair effect, thus a smaller interrogation window
can be used to enhance the measurement resolution. Not
only are the accuracy and resolution increased, but also
the dynamic range of the measured fluctuating velocity
field can be increased significantly, without sacrificing
sub-pixel precision, by extending the exposure time delay
(Af) (Raffel and Kompenhans 1994).

At first glance it appears that extending A ¢ leads to the
reduced importance of sub-pixel displacement uncer-
tainty, since the increased dynamic range renders the non-
dimensional uncertainty (pixels/pixel) smaller. However,
two important issues emerge: the wide range of scales in
even moderate Reynolds number (Re) turbulent flows and
the fundamental assumption of all particle image based
quantitative imaging techniques - that displacements can
be accurately determined from discrete samples along a
Lagrangian track. For even moderate Re turbulence, the
separation between the large scale energy containing ed-
dies and smallest fluctuations at the dissipation scale is
always more than a decade. This provides a great challenge
to PIV interrogation algorithms as both wide dynamic
range and excellent sub-pixel precision are desirable if
both the largest and smallest structures are to be resolved
simultaneously with acceptable accuracy.

In such flows, extending the exposure time delay can
analytically be shown to introduce serious measurement
errors. Lourenco and Krothapalli (2000) demonstrated
that the determined velocity vector by a PIV algorithm is a
filtered version of the actual velocity field, U(X, t), since it
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is approximated by a finite time difference of the PIP
displacement, i.e.
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where X is the Lagrangian location of the moving PIP
which is coincident with X (the Eulerian location of PIV
measurement) at time #; A ¢t is the exposure time delay and
AX is the PIP displacement. In a 1-D sense, the transfer
function (spatial frequency response) of this filter is

p) = R, @)

where k = ﬁ, the spatial frequency. Thus if |A%X| is allowed
to be too long (by extending Atf) and it becomes much
larger than the length scale of the small eddies in the
turbulence field, the filtering can cause serious errors to
the calculated velocity spectra or estimates of the fluctu-
ating strain rates and hence the turbulent dissipation. Also
extending At will increase the probability of the loss of
particle pairs in the PIP due to the out-of-plane motion,
which will decrease the reliability of PIV correlations.
The limitation on the magnitude of the PIP displacement
reemphasizes the importance of sub-pixel precision. In the
PIV literature, the sub-pixel measurement error is generally
decomposed into bias and random error components

E=E, +E (3)

The above error components arise, in general, from:
discrete sampling, the optical transfer system, the devia-
tion of the particle image shape from an assumed sym-
metric form, the size of interrogation sub-window, the
sub-pixel peak finding algorithm, the in-plane shear, etc.
In this paper, we will focus on the sources of perhaps the
dominant bias error, the well-known peak-locking phe-
nomenon, or the tendency of determined displacements to
alias toward integer pixel displacements.

The peak-locking tendency of various types of PIV
algorithms can most easily be identified by the histogram
of the measured velocity field, where spurious peaks are
found at velocity values that correspond to integer pixel
displacements (or +0.5 pixel displacements). Peak-locking
effects are relatively well studied, often involving error
analysis based on synthetic particle image pairs of a uni-
formly translating flow. These analysis procedures show
that if the discrete sub-window offsets are applied, the bias
error versus the fractional displacement has a periodic
distribution with a period of one pixel. The bias error is
always minimal for integer pixel displacements. While its
maximum location varies according to different sub-pixel
peak location finding algorithms. The error is anti-sym-
metric with respect to the 1/2 pixel displacements. Raffel
and Kompenhans (1994) showed that the peak-locking
phenomenon in the velocity histogram is directly related
to the profile of the bias error distribution plus the random
error amplitude variation.

Nogueira et al. (2001a) determined that there are three
major sources of peak-locking bias errors:

- The under-sampling of particle images, i.e., the image
resolution is insufficient to describe a particle (Prasad
et al. 1992; Westerweel 1998).

- The sub-pixel peak finding algorithm. Earliest PIV
algorithms relied on center-of-mass estimators to
determine the sub-pixel correlation peak location. This
involves a proper selection of a cut-off threshold, which
is in general rather arbitrary. Other estimators have
recently proved more popular, and most of them are ad-
hoc 1-D or 2-D interpolations or curve-fittings over the
local neighborhood of the peak value on the discrete
correlation plane. Examples include: three-point expo-
nential curve fits (Willert and Gharib 1991), three-point
Gaussian curve fits (Cowen and Monismith 1997), fitting
by the nine-point 2-D Taylor expansion of a Gaussian
surface (Sholl and Savas 1997), etc. Westerweel (1993)
provided a simple analytic model to investigate the
performance of several such interpolators and found all
of them to be unavoidably biased, yielding bias error
distributions that agree well with simulations from
synthetic images. Although Gaussian fits are in many
cases shown to be superior, the choice of an optimal
interpolator is still an open question since other factors
such as the particle diameter and in-plane shear are
important as well. It should also be noted that, while all
of these interpolators themselves are low pass filters
(that contribute to the errors in peak location as well),
using a Fourier transform reconstruction (i.e., Whit-
taker’s reconstruction) on the discrete correlation plane
may decrease the peak-locking effect. Lourenco and
Krothapalli (1995) actually took such an approach to
find the sub-pixel correlation peak location. However,
the reconstruction they used was based on a localized
5%5 cell region, which was arbitrary, also a detailed
analysis of the performance was not given.

- The truncation of particle images by the borders of the
interrogation sub-window. For Fourier transform based
correlation algorithms, this truncation effect introduces
oscillations in the Fourier domain over all frequencies,
due to the periodic assumption of the discrete Fourier
transform (DFT). The spurious oscillations will
contaminate the cross(auto)-correlation if the true
displacement is not an integer pixel, resulting in peak-
locking errors.

Despite all of the above factors, there is no bias error
when the true displacement is, in fact, an integer pixel.
Thus a solution to reducing peak-locking is to apply the
continuous window shifting technique (Gui and Wereley
2002; Nogueira et al. 2001a), i.e., iteratively shift the
interrogation sub-window by fractional displacements
until the final determined sub-pixel displacement is driven
to zero. It should also be mentioned that for PIV algo-
rithms which include particle image distortion (Huang
et al. 1993; Scarano and Riethmuller 2000; Fincham and
Delerce 2000), the same peak-locking reduction (anti-ali-
asing) approach is implemented de facto when an iterative
PID scheme is applied. Generalizing, for non-correlation



based approaches (e.g., the minimum quadratic difference,
or MQD), iterative approaches have also been shown to
reduce bias errors associated with integer pixel aliasing
(Gui et al. 2000).

Both continuous image shifting and particle image
distortion require re-sampling of the original particle
images. Interpolations of the original particle images are
again found to be unavoidable. Bi-linear and bi-parabolic
interpolation, 2-D spline interpolation and Whittacker
reconstruction are all reported to have satisfactory results
at reducing peak-locking, although no theoretical justifi-
cation has been given.

Below we propose a new approach to continuous win-
dow shifting. Our approach differs from those described
above in that the shifting is achieved in the spatial fre-
quency domain, rather than in the image space. This new
algorithm takes advantage of the ‘shift’ property of the
Fourier transform and thus no image re-sampling is re-
quired, making it computationally efficient. The new
algorithm avoids the low-pass filtration effect that is
inherent to many ad-hoc image interpolators, thus
resulting in complete elimination of the peak-locking ef-
fect when the appropriate sampling criteria are met.

2
An optimal iterative sub-pixel peak locating algorithm

2.1

Basic algorithm

The proposed peak-locking removal algorithm is com-
patible with any conventional PIV algorithm that utilizes a
spectral based DFT correlation technique. Without loss of
generality, in this paper we will work with the dynamic
sub-window offset technique of Cowen and Monismith
(1997), upgraded to the second-order accuracy in space
(Wereley and Meinhart 2001). Namely, if the velocity
components are to be determined at a given image location
(i, j), interrogation sub-windows with size N x N, which
may be separated by an initially estimated displacement
(Si, S; ) are used to sample local regions in an image pair
(referred to as images a and b, respectively), where N may
be selected to be a power of 2 (or the sub-images can be
padded with zeros to make their size a power of 2) if a
standard 2-D FFT algorithm is to be used. The centers of
the two sub-window are located at the points

(' ,]—§> and (i+%,j+%) on images a and b,
respectlvely. The scheme is seen to be a central finite
difference in space and hence it is second-order accurate
in space. The PIPs on the interrogation sub-windows are
normalized by subtracting their mean and dividing by
their standard deviations, such that the resultant cross-
correlation values are not larger than 1.

The cross-correlation of the two sub-window images
are calculated and the integer displacement of the PIP is
determined based on the pixel index of the maximum
value on the correlation plane. The initial sub-windows
offset, (S;, Sj ), is then updated. This procedure is iterated
until the maximum in the correlation plane is located at
(0,0). As a result of the above analysis, the sub-pixel dis-
placement should be confined to the range of £0.5 pixel.

Consider that after the final step of a conventional PIV
algorithm, the two interrogation sub-windows are stored
in arrays fj; and g, where i,j=0, 1,..., N—1. As a result of
the spectral correlation determination, the DFT’s of f;; and
Sip defined as

= > e -2+ )], (@)

m,n=0

N-1 .
_ nj
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where the 1 = v/—1, are also stored. If the cross-correlation
of f;j and g;; is defined as

N-1
hz} = z fmngmfi,nfj (6)
m,n=0

which makes the assumption that sub-window gj; is
periodic, then its DFT is

by = 5 s an(z ) .
~ FG,
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where the superscript “” means the ‘the complex conjugate
of. Hence the cross-correlation plane h;; is calculated as
the inverse Fourier transform of Hj; .

After the final step of conventional dynamic sub-win-
dow PIV is completed, the neighborhood of values to the
maximal correlation value & o may be used to estimate the
sub-pixel location of the correlation plane peak. Assuming
the correlation in the i and j component directions are
uncorrelated, two 1-D sub-pixel estimating functions can
be applied to (hy, n—1 > Hoy, Ho,1) Versus (—1,0,1) in the j
direction, and (hy_; 0, o0, h1,0) versus (—=1,0,1) in the i
direction to estimate the fractional part of the PIP
displacement. Without loss of generality, Gaussian inter-
polation is used as the estimating function in this paper,
specifically

S log(ho,0/ho,1) +log(hon—1/hoo) (8)
* Z[IOg(ho,o/h0,1> - log(hO,N—l/hO.,O)] 7

s — — 108(]’1070/1’1110) + log(thl,O/hO,()) (9)
B4 2[10g<h070/h170) — log(hN_l,o/h()’o)] ’

where s, , sy are the fractional displacements in the x and y
coordinate directions (the j and i image plane directions),
respectively. The fractional displacements are next used as
initial estimates of the distance by which the interrogation
sub-windows are continuously shifted.

According to the ‘shift property’ of the Fourier trans-
form (Bracewell 1998)

F[f(x — a)] = exp(i27nxa)F[f (x)], (10)

where F[- - -] is the Fourier transform operator and x=1/x is
the spatial frequency. Shifting the sub-windows f;; and g;;
in the image space by (- s,/2, — 5,/2) and (s, /2,/s, /2) to
get new images flj and glfj can be achieved in the spatial
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frequency domain. The discrete Fourier transforms of the
shifted images are

Fj; = cjj(—sy/2, —sx/2)Fj, (11)
Gjj = cij(sy/2,5:2) Gy, (12)
where

S0 x) = exp| 2wy + % (13)
Cijly,x) = exp 12T N)/ Nx ,

is the correction (shifting) matrix in Fourier space, and

_ i,j
I’]_{i—N,j—N

Equation (14) reflects the fact that the discrete version
of Eq. (10) must ensure that F:] and G;j are the DFTs of the
shifted images, i.e., Fj; and F| are complex conju-
gates.

The Fourier transform of the shifted cross-correlation
is then calculated again by Eq. (7) and the cross-correla-
tion plane (h;; ) is updated as well, using the inverse FFT.
In practice, it is not necessary to re-calculate the entire
correlation plane, only the five points around the maxi-
mum (i.e., h N-1,0 ho)o, hl,O hO,N—l,hO,l)) need to be updated
since the sub-pixel displacements are confined to the range
0.5 pixels. This will reduce the computational cost
appreciably. Gaussian interpolations (Egs. 8, 9) are ap-
plied again to calculate the new fractional displacements s/,
and 5,/v- Thus the fractional displacements are updated as
Sx = S + 8, and s, = s, + 5. The above process is carried
out iteratively until the newly calculated displacements
satisfy the conditions |s;C ’ <¢and Ws’uf<a, where ¢ is the pre-
defined precision.

when
when

L,j<N/2;

i.j>N/2. (14)

N—i)(N—j)

Y

2.2

Fourier series reconstruction of PIV images

A further examination indicates that updating Hj; after
shifting in Fourier space gives

! gl t* o .
HljiFl]GU *C1]< Sy7 SX)HIJ'

(15)

Taking the inverse Fourier transform of Eq. (15), we get
the updated correlation plane

(16)

Nl m(I+s,) n(J+s)
h;-j = Z HmnexpzZn{ N + N ,

m,n=0

where I, ] are defined by Eq. (14). It is evident from

Eq. (16) that the new algorithm is equivalent to using a
Fourier series reconstruction (or the equivalent Whit-
tacker’s reconstruction) on the discrete correlation plane
to find correlation peak locations to sub-pixel precision. It
also shows that if the inverse Fourier transform were ap-
plied to Egs. (11) and (12), it would result in re-sampled
particle images shifted by fractional displacements, using
the Fourier series reconstruction.

The proposed sub-pixel correlation peak location esti-
mator is different from other traditional peak fitting
techniques in that the peak location is a fitting parameter
in the latter techniques while the proposed technique

determines the peak location iteratively. This new algo-
rithm is theoretically similar to that of (Lourenco and
Krothapalli 1995) but differs in that the prediction of the
sub-pixel peak location is used to accelerate the recon-
struction process thus an increased convergence rate is
expected.

In order to illustrate the algorithm a simple 1-D
Gaussian distributed particle image is considered, i.e.,

—(x— ¢’
202

(17)

where c is the location of the particle center and ¢ is the
characteristic size of the particle such that the e ~> diam-
eter of the particle is d=4o.

The modulus of the continuous Fourier transform of
the Gaussian particle is

p(x) = exp

nka)’

|P(k)| = \/2_7wexp(2f (18)

If the resolution (inverse of the spatial sampling fre-
quency) of the discretely sampled particle image satisfies
the Nyquist sampling criterion, the original particle image
can be fully reconstructed from the discrete samples. Since
the spectrum of the Gaussian distribution is Gaussian, the
modulus does not go to zero at infinitely high frequencies.
Defining oy, (¢ x = (2 no)~" for particle diameter d=4a, as
indicated by Eq. (18)) as the standard deviation of the
Gaussian distribution in the spectral domain, energy be-
yond K >2 ¢  accounts for only 4.5% of the total energy
(same order of magnitude as the noise level in many real
particle image recordings), thus the Nyquist sampling
frequency of Gaussian particle images can be arbitrarily
taken as

(19)

Ky = 40, = —.
no

If we assume that the transfer function of our CCD (or
CMOS) sensor for a Gaussian particle is a delta-function
(neglecting the filtering effect of real sensor geometries),
and the pixel size is A, then the diameter of the particle
image d=40 must be at least 8 A ~ 2.6A in order not to lose
information on the particle intensity distribution. For
correlation based algorithms, the requirement is actually a
bit less restrictive since the characteristic width of the
correlation peak (resulting from the correlation of two or
more Gaussian particles) is /2 times that of the particles,
i.e., the critical particle diameter for correlation peak
location determination is about 1.8A in order to resolve
an unbiased fractional displacement. In the following
analysis, we can assume A=1 (unit length/pixel), such that
d/A = d (pixels), for simplicity.

Figure 1a shows the discrete sampling, reconstruction
and fractional shifting of Gaussian particle images with
different diameters, where the interrogation sub-window
length is N=16 pixels, the particle location is set arbitrarily
at ¢=6.4 pixels and is intended to be shifted by 3.3 pixels.
For d=4 pixels, both its Fourier series reconstruction and
the shifted profile agree very well with the expected values.
For particle sizes smaller than this, under-sampling oc-
curs, resulting in deviated reconstructions. Figure 1c



Fig. 1. Single particle image (1-D) with Gaussian

intensity profile and its Fourier transforms, where
N=16, d is the diameter of the particle and image
intensities are normalized by the maximum particle
image intensity. a bold solid line real particle image

profile, centered at c=6.4 pixels; circles discrete sample
of the particle image; thin solid line Fourier recon-
struction by the discretely sampled particle image; bold
dashed line, real particle image shifted by s=3.3 pixels;
squares discrete particle image intensity reconstructed
from the spectral shifting technique. b Same scheme as
in a, while the particle image is truncated by the border
(¢ =—0.1 pixel). ¢, d Modulus of the DFT of the sampled
particle images in a, b , respectively, solid line
continuous Fourier transform of Gaussian distribution;
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shows the modulus of the corresponding Fourier trans-
forms of particle profiles and the aliasing effect due to
under-sampling. In Fig. 1b, the particle is truncated by the
sampling window (i.e., c=—0.1 pixel). In this case aliasing
always occurs, even when the particle diameter satisfies the
Nyquist sampling criterion (cf. Fig. 1d), since the trunca-
tion introduces spurious energy across the whole spec-
trum.

2.3

Truncation of particle images by the interrogation
sub-window boundary

For the proposed spectral continuous window shifting
algorithm, it is not possible to filter out the reconstruction
errors due to particle truncations, while for other contin-
uous window shifting techniques mentioned in the intro-
duction, the problem is solved by interpolating the raw
image using information outside the interrogation sub-
window. We propose two methods to alleviate the particle
truncation problem in the spectral continuous window
shifting algorithm.

The first option is to ‘remove’ the particles that lie on
the edge of the interrogation window. In order to do this,
each particle image is identified. Particle identification
sub-routines are common components of particle tracking
velocimetry (PTV) algorithms. As an example, we employ
a binary particle image identification technique with a
threshold value based on the local ‘mode’ (most frequent
value) of the image (Cowen and Monismith 1997) to
generate a binary ‘mask’ image. The mask image consists
of ones at locations occupied by a particle and zeros

1 circles DFT of particle image profile with d/A=4;
squares d/A=3, crosses d/A=2

elsewhere. For each interrogation sub-window, image
pixels whose ‘mask’ values are one and also lie on the
border of the interrogation sub-window and their adjacent
pixels with ‘mask’ values of ones are considered as particle
images truncated by the border. These particles are re-
moved by setting their intensity values to the local ‘mode’
of the raw image. Lourenco and Krothapalli (2000) use a
similar approach for the purpose of increasing the accu-
racy of PIV, but with a different particle image detection
algorithm. It should be noted that these particle-finding
methods are relatively simple and require little computa-
tional time compared to the more expensive correlation
calculations.

Alternatively, a second approach to reducing the im-
pact of sub-window truncated particle images is to apply a
weighting function. In the present case the weight function
is chosen as

= |1 (son ) 1= (o) ] o

The profile of this weighting function with N=32 is
shown in Fig. 2. The purpose of weighting is to reduce the
contribution of the particles near the edges to the cross-
correlation, thus reducing the effect of particle image
truncation. Equation (20) is good for this purpose since
the weight and the first order derivatives are identically
zero on the edges. Other weighting functions, such as
triangular, cosine, cosine squared or Gaussian functions,
are also chosen to test. They perform as well as Eq. (20)
does in terms of reducing peak-locking. However,
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Fig. 2. Profile of the weight function defined by Eq. (20)

weighting Eq. (20) is better than others in that more
information of the image is preserved (about 75% of the
area on the sub-image is essentially unchanged by the
weighting). Thus it results in a higher percentage of valid
interrogations and lower random errors. Weighting func-
tions bring additional benefits such as reducing the bias
error that arises from correlation algorithms (Gui et al.
2000) and increasing measurement resolution in flows
with large velocity gradients and small scale structures
(Nogueira et al. 2001b). Figure 3 shows an example of the
two methods applied to a sub-window containing syn-
thetic particle images with imposed background noise le-
vel of 10% and N=32 pixels.

3
Simulation tests of the proposed algorithm with synthetic
particle images

3.1

Generation of synthetic PIV recordings

In order to test the performance of the proposed algorithm
and compare it to other established algorithms,

synthetic particle image pairs were used to simulate a
uniformly translating flow with displacements that vary
from S, =-1.0 to 1.0 pixel, and S, =0. Following Cowen
and Monismith (1997), the particles in the simulations are
modeled as 2-D Gaussian profiles and are distributed
randomly (uniform probability distribution) within the
synthetic images, which are 1024x1024 pixels in size. The
particles in each image are identical in size and intensity.

10 20 30
J J J

10 20 30 10 20 30

Fig. 3. a Original particle images in a 32x32 interrogation sub-
window. b Particles truncated by sub-window edges removed
from sub-image a. ¢ Sub-image a multiplied with the weighting
function, Eq. (20)

The maximum intensity of each Gaussian particle profile is
set to 255 counts.

To simulate the spatial integration nature of a digital
camera, the intensity value of each pixel in the synthetic
image is determined by the integration of the Gaussian
surface of a particle over that pixel area and divided by the
area of each pixel, thus the synthetic image is a box-filtered
version of the true particle intensity distributions, i.e., a
unit fill ratio, according to (Westerweel 1998). If at a given
pixel position, two or more particle profiles overlap, the
intensity value is chosen as the highest value calculated
from the individual particle. The particle image density is
on average 10 particles per 32x32 pixel sub-window. The
most important simulation parameter is the particle size,
which is chosen as d=1, 2, 4 and 8 pixels (¢ =0.25, 0.5, 1 and
2, correspondingly), reflecting the case of under-sampling,
critical-sampling and over-sampling of the particle images.
A second simulation parameter that is varied is the back-
ground noise level. The synthetic images either have no
noise or are superimposed with a Gaussian noise with mean
value 10% of the maximum particle image intensity (i.e., the
distribution of noise is Gaussian with mean of 24 counts
and RMS of 12 counts), representing a very noisy image
acquisition system. The size of interrogation sub-window
used in the simulation is either 32x32 or 64x64 pixels.

3.2

Selection of algorithms for simulation tests

The peak-locking effect can be analyzed by evaluating the
distribution of measurement errors that have a bias part
and a random part (Gui and Wereley 2002). In this paper,
the bias error is defined as

Ey, = M, — Sy, (21)

where M, is the measured horizontal displacement while
S, is the real displacement. The overline indicates an
ensemble average, which is calculated over 30x30=90
measurements with 32x32 pixel sub-window size without
overlap or with 64x64 pixel sub-window size with 50%
overlap. The random error is taken as the root mean
square (RMS) of the measured displacement

—2
E. =/ (My — M) (22)
and the total error
E = .\/E + E2. (23)

Six different sub-pixel peak location finding schemes
are tested and compared in the simulations, they are

A: Three-point 1-D Gaussian curve-fitting (traditional

method without peak-locking reduction)

- B: Continuous image shifting with bi-linear particle
image interpolation

- C: Continuous image shifting with bi-cubic spline par-
ticle image interpolation, with zero second derivatives
on the boundaries (i.e., natural splines)

- D: The proposed algorithm (shifting image in Fourier

space) without ‘particle-truncation-by-border’ correc-

tion



- E: The proposed algorithm with image corrected by
weighting function, Eq. (20)

- F: The proposed algorithm with particles on image
borders removed

3.3

Analysis of error distributions

Figures 4, 5, 6, 7, 8 give the resultant bias and random
error distributions with respect to the specified fractional
displacement for different particle sizes and background
noise levels, using 32x32 pixel interrogation sub-windows.
The pre-defined precision used to terminate the iterative
scheme is ¢=10"* pixels.

As expected, all of the distributions are found to be
anti-symmetric with respect to S, =0.0, thus only the non-
negative part (S, =0.0~1.0) of the distributions are shown
on these figures. For schemes A, D and E, the bias error
distribution was expected to be anti-symmetric with re-
spect to S, =0.5, where the random error should be max-
imum. However, the results show that the distributions are
skewed. The deviation increases as particle size becomes
larger. Further analysis indicates that the deviations are
real and are due to particle truncations at image borders.
In the presented simulations, the initial estimation of PIP
displacement is set to be 0. When S, is slightly higher than
0.5, particle truncation effect, which always tend to bias
the measurement towards zero displacement, will possibly
cause the calculated displacement to be less than 0.5. In
such a case, further discrete sub-window offset is pre-
vented, while it should happen if there were no truncation
effects. For the same reason, if the initial estimation is set
to be S, =1, the error distributions should also be skewed
but in the opposite direction. This is shown in Fig. 6 (as
comparison between A, and A,). If scheme A is modified
such that particles truncated by image borders are
removed (as in scheme F, and denoted as scheme A’), the
anti-symmetric/symmetric properties should be regained.
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peak location finding schemes applied to synthetic images
without background noise
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This is also shown in Fig. 6. Additionally, both bias and
random errors are reduced significantly.

For scheme B and C, the bias error distributions are
neither symmetric nor anti-symmetric with respect to S,
=0.5. This is a result of the central spatial finite difference
scheme used in the present study. For example, if esti-
mated displacement, S, =0.2 pixel (S, is the sum of the
discrete displacement and the sub-pixel displacement), the
sub-windows in the first and second images are shifted
by —0.1 and 0.1 pixels, respectively; however, if S, =0.8
pixel, sub-windows should be shifted by —0.4 and 0.4
pixels, respectively. Therefore, the magnitudes of errors
for S, =0.2 and 0.8 are not necessarily the same. In other
studies where continuous sub-window shifting scheme is
adopted, such as that by Gui and Wereley (2002), a for-
ward difference scheme is generally used which results in
an anti-symmetry with respect to S, =0.5. It should also be
noted that the gradient of the bias error distribution at
Sy =0.0 in schemes B and C is positive while for the other
schemes it is negative (as long as there is a periodic
variation in the bias distribution). According to Gui and
Wereley (2002), this indicates that in most cases, correla-
tion ‘peaks’ in the measured histogram of velocity will be
‘locked’” on mid-pixel displacement for schemes B and C
and on integer pixel displacements for other schemes. This
argument will be verified by the test on real PIV images
shown later in section 4.

A comparison between Figs. 4, 5 indicates that the
background noise level is not important as far as bias error
is concerned. However, the existence of background noise
slightly increases the random errors for all schemes, see
Figs. 7, 8.

For the under-sampling condition (¢ =0.25), all meth-
ods suffer from peak-locking as indicated by the periodic
variation of the bias error distributions in Figs. 4, 5.
However, the bias error of the proposed algorithms (with
or without particle truncation correction, schemes D, E
and F) are much smaller than that of continuous window

shifting techniques (schemes B and C), whose bias errors
are even larger than that of traditional peak-fitting tech-
niques (scheme A).

The continuous window shifting schemes work better
when particle size is relatively larger (¢>10) and bi-cubic
spline interpolation outperforms bi-linear interpolations
since it has higher order accuracy. Unless particle size is
very large(o 20.2), the bi-linear interpolation scheme does
not bring any significant improvement compared to the
traditional peak-fitting method.

Among the three proposed spectral domain continuous
window shifting techniques, scheme F (particles truncated
by borders removed) is the best as expected, while the
weighting method (scheme E) performs only slightly better
than scheme D (no particle truncation corrections). For
the cases that the particle size 6=0.5 and 0=1.0 pixel,
scheme F has the smallest bias error relative to all the
other methods. Figure 9, in which absolute values of bias
errors are plotted on a log scale, indicates that for the
particle size 0=1.0, scheme F is at least an order of mag-
nitude more accurate than any other scheme. Similar re-
sults can also be observed for the case ¢=0.5. More
importantly, the periodic bias error structure essentially
disappears. At minimum the magnitude of this periodic
variation is much smaller than the statistical convergence
error due to limited number of ensembles and hence it is
reasonable to conclude that the peak-locking effect has
been eliminated.

When the particle size 0=2.0 pixels, scheme C performs
as well as scheme F at reducing the bias error. For the case
of no background noise, the mean magnitude of its bias
error distribution is 2.1x10™* pixel, even lower than that of
scheme F, which is 3.5x107* pixel. Moreover, it should be
noted that for ¢=2.0, scheme F has trouble converging:
only 43 and 55% of measurements converge successfully in
the simulations without and with background noise,
respectively. (For comparison, the interrogation success
rate for the other simulation cases are above 98%.) The
poor convergence is due to a significant fraction of par-
ticles being truncated by the interrogation sub-window
boundary, which is not surprising as the ratio /N grows.
The removal of these particles removed the majority of
the particles in the sub-window, which increases the
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Fig. 9. Bias error and total error distributions of different sub-
pixel peak locating schemes applied to synthetic images with 10%
Gaussian noise. Particle size 6=1.0 pixels, interrogation sub-
window 32x32 pixels



uncertainty of the measurement. Obviously, this problem
can be alleviated by using larger interrogation sub-win-
dows. For example, by increasing sub-window size, N, to
64 pixels, the success rate of scheme F is increased to 94%,
and the mean magnitude of the bias error is 5.0x10™* (for
scheme C, it is 3.0x107* pixel).

For all the schemes, random errors have minimum level
when particle size is about 6=0.5~1.0, as shown in Figs. 7,
8. This result is consistent with that of (Westerweel 1998).
In most cases, the random errors from schemes B and C
are smaller than those from the proposed schemes (D, E
and F), especially for larger particle sizes. As an example,
see Fig. 9, which shows that scheme C outperforms scheme
F in that the total error E, of C is a factor of two smaller
that of F, although the bias error of C is an order of
magnitude higher than that of F. This can be explained by
the low-pass filtering nature of the image interpolation in
schemes B and C. In the future, the combination of the
proposed scheme F with an optimally selected low-pass
filter should allow the random errors to be decreased
accordingly.

3.4

Summary and discussions

Through the simulation tests on synthetic particle images,
it has been demonstrated that how different factors affect
the uncertainties of sub-pixel estimation of the PIP dis-
placement. As shown in Fig. 4, when the particle size in-
creases from ¢=0.25 to 0=0.5, the magnitude of both the
bias error and the random error decrease for the tradi-
tional peak finding method (scheme A). This variation
reflects the effects of particle image under-sampling. Then,
with the further increases of particle size, both of the er-
rors for scheme A rise, indicating the increasing domi-
nance of the particle truncation errors with the decrease of
N/o.

For small particle size (for instance, 6=0.25 or 0.5 in
the simulations), the continuous window offset with
image interpolation (schemes B and C) perform even
worse than scheme A. This is explained by the under-
and critical-sampling of the particle images, as image
interpolation that includes low-pass filtering effect (such
as the bi-linear and bi-cubic spline interpolation) is
not appropriate for reducing the bias error. For over-
sampled particle images, their ‘cut-off’ spatial frequency
is lower (with respect to the sampling spatial frequency,
i.e., the inverse of the image resolution), hence the low-
pass filter does not negatively impact the accuracy of
peak estimation significantly. Moreover, continuous
window shifting with interpolation is very effective at
reducing the bias errors due to the cropping of larger
particles by the edges of the sub-windows, since the
information outside of the sub-window is used for con-
tinuous offset.

As long as the particle images are sampled with fre-
quencies above the Nyquist criterion, sub-window shift-
ing in the spectral domain is the best method of
reconstructing the sub-pixel particle image profiles;
hence the best in terms of locating the sub-pixel PIP
displacement. However, the particle truncation problem
introduces strong aliasing into the spectra of the particle

images. Without removing truncated particles, this
method (scheme D) is not as good as the image-space
window offset technique (especially, scheme C) for small
N/o.

Applying weighting functions to sub-windows helps to
reduce the truncation effect at sub-window borders, but
truncation effects can not be completely eliminated. Al-
though a weighting function can be used to set the image
intensity at borders to zero, it necessarily increases the
gradients of the profiles of particles near the borders, or
wherever the signal attenuation is occurring. This has a
similar effect to that of particle truncations, albeit not
quite as severe. Additionally, in the present case, weighting
functions are applied to both sub-windows prior to sub-
pixel offset, which enhances bias towards integer pixels
displacement.

In theory, the ideal solution to sub-pixel accuracy is
scheme F. However, its limitations are also obvious: for
PIV recordings with high particle density and larger par-
ticle size, the scheme causes higher probability of failed
interrogations. Increasing the sub-window size can alle-
viate this problem, but the ‘sample volume’ is larger as
well, which is not favorable for turbulent flow measure-
ments. Also, the effectiveness of scheme F depends heavily
on the robustness of particle identification, removal and
refilling algorithms, especially in unfavorable imaging
conditions such as non-uniform background noise and
low signal-to-noise ratio.

3.5

Efficiency of the algorithm

Since all peak-locking reduction methods are iterative in
nature, it is important to evaluate their computational load
and rate of convergence, which are obviously related to the
required precision. Generally, the calculation converges
when the absolute value of the difference between results
from two successive evaluations is smaller than a given
precision. However, in peak-locking reduction algorithms,
the ultimate goal is to set the image displacement as close
as possible to zero. Hence the convergence condition is
that the absolute values of sub-pixel displacements in both
the x and y directions are smaller than the given precision
value, ¢, as described in section 1.

In the above simulations on synthetic images, the CPU
time for each PIV image pair analysis was also recorded.
Figure 10 shows the resultant computation times for the
different schemes on the 10% noise added synthetic image
pairs with particle size 0=1.0 pixel and particle displace-
ments S, =0.5 pixels. For this particular case, all schemes
converge to a relatively high precision (¢ ranges from
7x107% to 3x10™° pixels). Computation time for all
schemes increases linearly with the log of the required
precision. However, the rate of increased cost for the
proposed algorithms (scheme D, E and F) is much smaller
than that of continuous window shifting techniques
(schemes B and C). Schemes D and E increase computa-
tion time by less than 50%, compared to conventional PIV.
Scheme F takes slightly more time. The increased overhead
is largely due to computations in particle identification,
and it is insignificant considering the great increase of
accuracy that it brings.
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Fig. 10. CPU time for 900 PIV interrogations with different peak-
locking reduction methods normalized by the CPU time of the
conventional PIV algorithm (scheme A), where interrogation sub-
window length scale is N=32 pixels, particle size is 6=1.0 pixel,
displacements are S, =0.5 pixels, S, =0.0 and images have 10%
background noise

Similarly, the number of iterations needed increases
linearly with loge (cf. Fig. 11). The proposed algorithms
converge faster than image space based continuous win-
dow shifting schemes, by a factor of approximately 50%
for this particular case. It should also be noted that al-
though the CPU time needed for scheme C (bi-cubic
interpolation) is more than scheme B (bi-linear interpo-
lation), it converges faster and is much more accurate in
all cases shown in this paper.

4

Algorithm test with real particle images

For experimentally collected PIV images it is more chal-
lenging to evaluate peak-locking reduction algorithms
relative to the case of synthetic images, where the velocity
field is known a priori. Usually the anti-aliasing abilities
are evaluated through the probability distribution function
(PDF) of the measured velocities, namely, to see if the
PDF is smooth or if it is characterized by ‘peaks’ at the
equivalent velocities of integer pixel displacements. This

7
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Fig. 11. Average number of iterations for 900 PIV interroga-
tions with different peak-locking reduction methods, where
interrogation sub-window length scale is N=32 pixels, particle
size is g=1.0 pixel, displacements are S,=0 pixels, $,=0.0 and
images have 10% background noise

method only gives qualitative verification as the true PDF
is not known.

In the present paper, PIV images recorded in two high
Re grid turbulence flows are selected as test cases. This
canonical flow type is chosen as it is characterized by
homogeneous (at a given downstream distance from the
grid) and isotropic turbulence. The PDFs of all velocity
components are usually observed to be Gaussian distrib-
uted (Batchelor 1953). Both experiments were conducted
in the DeFrees Hydraulics Laboratory at Cornell Univer-
sity. Case one was carried out in an open channel turbu-
lent water flow in a 2.0-m-wide circulating type flume
running with 0.3 m water depth. The flow is driven by two
centrifugal pumps and it passes through a series of passive
grids before entering the test section. The detailed infor-
mation about this facility and its flows can be found in
(Liao and Cowen 2002). PIV images were collected on a
horizontal plane 0.15 m above the bed in the free stream
portion of the flow (where the thickness of the slowly
growing boundary layer is about =9.0 cm), with mean
streamwise velocity Uy=22.89 cm/s and turbulence inten-

sity is Vu? = 1.08 cm/s. The PIV images have spatial
resolution of 1024x1024 pixels with a field-of-view of
52.3x52.3 cm. Spectral analysis from the PIV measure-
ments indicate that the turbulence at this station is
homogeneous and isotropic with Taylor’s micro-scale
Reynolds number R; =139.

Case two is a measurement of grid turbulence in a wind
tunnel with cross sectional area of 1.0x1.0 m. In this case,
air is drawn in at the upstream end of a 20-m-long test
section by a downstream exhaust fan. Air flows through an
active grid consisting of an array of moving flaps that can
enhance the turbulence level significantly (Mydlarski and
Warhaft 1996). The mean streamwise speed at the mea-
surement station, centered 5.5 m downstream from the
grid, 0.50 m above the facility floor, and at the lateral mid-
point, is Uy=2.09 m/s, the turbulence intensity is

Vu? = 0.19 m/s and R, =750. The PIV images again have
spatial resolution of 1024x1024 pixels with a field-of-view
of 0.13x0.13 m.

The major purpose of using the two different flows is
that they have different particle image size distributions.
Spherical hollow glass spheres (manufactured by Potters
Industries Inc.) with mean diameter 11.7 um were used as
the tracer particles in the first case while in case two the
tracers were small water droplets produced by an air
pressure driven water jet spray just downstream of the
active grid. Examples of the resultant particle images are
shown in Fig. 12, which shows that particle images in case
one are relatively small and more uniformly distributed
than in case two. Note that very large particles can be
found in case two, while they are absent from case 1.

Using the particle detection algorithm described in
section 3, individual particles and their intensity distri-
butions can be identified thus more quantitative estimates
of size distribution can be made. The diameter of a particle
image is defined as

4 (ax + a),)

dp = 40 = 2 ;

(24)



Case two

Case one

Fig. 12. Typical interrogation sub-window, with size N=64 pixels,
taken from a PIV image from each of the two test cases

where o, and o, are the second central moments of the
particle image intensity distributions in the x and y
directions, respectively. Figure 13 shows the histograms of
particle image size distribution (over 1,000 particles) for
the two test cases. The average particle size in case one is
about ( 0 )=0.6 pixel, which is just at the critical-sampling
condition. In case two, { o )=0.9 pixel and the distribution
is much wider. In particular, there exists a significant
number of very large particles with size 0=2~2.5 pixels.

The aforementioned six schemes are applied to the two
test cases. For both cases, the interrogation sub-window
size is N=64 pixels with a 50% overlap. 200 image pairs are
recorded in a period when the flow can be considered as
statistically steady and homogeneous over the measure-
ment area. Thus there are a total of 30x30x200=180,000
PIV interrogations for each case, which are used to cal-
culate the PDF of the velocity components.

Figures 14 and 15 are the resultant PDFs of the
streamwise velocity component, u, for test cases one and
two, respectively. A Gaussian PDF, with the same second
moment as that of the measured PDF, is also plotted in the
figures for comparison. The PDFs are plotted on a semi-log
scale as it is easier to identify ‘peaks’ relative to a linear
ordinate.

For both test cases, the traditional PIV peak locating
algorithm (scheme A) results in serious peak-locking
errors. Strong ‘peaks’ are observed at integer pixel dis-
placements. In case one, the average particle size just
satisfies the critical-sampling criteria, thus all three algo-
rithms using spectral continuous window shifting
(schemes D, E and F) result in ‘good’ PDFs in that the
‘peaks’ are visually gone and they agree well with the
expected Gaussian distribution. Although scheme F is

Case one Case two
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Fig. 13. Histogram of the particle image length scale from each of
the two test cases
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Displacement Sx (pixels)

Fig. 14. PDFs of the PIV measured streamwise velocity, u, with
different anti-aliasing schemes for test case one, the wide open
channel flow. Bold lines, measured PDF; thin lines, Gaussian
distributions

expected to be superior to schemes D and E, it is hard to
discern a difference in this case. Continuous window
shifting in image space (schemes B and C) reduces the
aliasing appreciably in this case, but ‘peaks’ are still
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Fig. 15. PDFs of the PIV measured streamwise velocity, u, with
different anti-aliasing schemes for test case two, the wind tunnel
air flow. Bold lines measured PDF; thin lines Gaussian distribu-
tions

207




208

obvious in scheme B and apparent in scheme C under
careful inspection. ‘Peaks’ are locked at mid-pixel dis-
placement positions for the two cases. This observation
agrees with the results from the simulations in section 3
where the gradient of the bias error distribution is positive
at integer pixel displacements. Results from case one are
comparable with the error distributions found in the
simulation of particle size ¢=0.5 shown in Fig. 5. For this
particle size, the continuous window shifting in image
space (especially with bi-linear interpolation) technique is
less effective than the proposed algorithms at reducing
peak-locking.

In case two, the average particle size becomes larger.
Continuous window shifting in image space based algo-
rithms perform as well as the spectral domain continuous
window shifting methods. In this test case, all the anti-
aliasing methods work effectively such that no ‘peaks’ are
apparent in the PDFs. This result can also be associated
with the results from the simulations where the particle
size is 0=1.0 in Fig. 5.

5

Conclusions

Error sources that lead to peak-locking, or integer pixel
aliasing effects, in PIV analysis have been reviewed. A
new spectral domain image shifting technique is pro-
posed to reduce the bias error in the determination of
the fractional particle image pattern (PIP) displacement.
The proposed new algorithm is based on the theory of
discrete signal sampling thus it utilizes all of the infor-
mation available to reach the highest sub-pixel accuracy.
It is equivalent to a continuous window shifting tech-
nique in image space with interpolation based on Fourier
series reconstruction of the discretely sampled particle
images, but is more computationally efficient. Combined
with the technique of removing particle images that are
truncated by image borders, the proposed technique is
demonstrated to eliminate peak-locking errors through
tests with both synthetic and real PIV images, as long as
the Nyquist particle image sampling criteria is satisfied.
Compared with the image space continuous window
shifting techniques, the new algorithm is much more
computationally efficient and converges more rapidly.
Also the proposed algorithm is more robust to smaller
particle image sizes. For large particles the new algo-
rithm still performs as well as the image space contin-
uous window offset in minimizing the bias error, but the
random error is larger. This should be solvable if the
new algorithm is modified by applying an optimally
chosen low pass filter on PIV images or the correlation
plane.
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