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Abstract The isolated singular points (nodes, saddles) of a
continuous vector field (e.g., velocity, shear stress, pres-
sure gradient, vorticity, etc.) that are overlaid on a given
surface must be compatible with the Euler characteristic of
that surface, Xsurface. All surfaces can be fashioned from a
sphere plus handles plus holes, and Xsurface=2)Sholes)2
Shandles=Snodes)Ssaddles. This establishes an a priori
constraint for the nodes and saddles that can be tested
against the observed vector field to determine whether the
experimental (or computational) observations are com-
patible with the known constraint. Numerous examples,
including a clarification of, and a correction to, published
results are given.

1
Introduction
Computed and experimentally observed velocity fields
may involve numerous locations on a given surface, either
one that is in close proximity to a physical surface or one
interior to the flow field, where the velocity magnitude is
zero and the direction is, therefore, undefined. A consid-
erable body of literature related to these isolated singular
points and their contribution to the analysis of such flow
fields exists.

Perry and Chong (1987) categorize the singular points
on the basis of phase-plane methods. (This reference will
be identified as PC in the following discussion). The reader
is referred to that presentation for their characterization of

the various types of singular points. As noted below, a
simpler representation will suffice for the present purpose.
Specifically, the stable nodes, node-focus, stable-foci, cen-
ter, unstable-foci, star node, and unstable nodes of that
reference will be identified as nodes herein. This designa-
tion (i.e., an unmodified node) follows from the opera-
tional method of identification presented below. The term
saddle is, however, used in common with PC (1987).

In addition to the representation of individual singular
points and their stability, which has been the primary
focus of PC (1987) and the majority of the related earlier
communications, it is of considerable interest and utility
to provide an a priori identification of the topological rule
that must be satisfied by the collection of singular points
on a given surface. More precisely, we will herein address
the ‘‘isolated zeros of a tangent vector field on a smooth
manifold,’’ where the manifold represents the fluid dy-
namic surface of interest and isolated distinguishes the
points of interest from a separation line or attachment
line. These elements are considered in detail below. The
topological rule that is the central issue of this commu-
nication is formally known as the Poincare-Hopf theorem.
Bredon (1993) and Milnor (1997) are recommended ref-
erences that provide the formal bases for the description
provided herein.

Many authors, including Tobak and Peake (1982) and
Ruderich and Fernholz (1986), who address such consid-
erations, utilize the paper by Hunt et al. (1978) as their
primary reference. That seminal paper will be referred to
as HAPW (after the authors) in the following discussion.
For convenience, the algorithm (to be developed) that al-
lows an a priori specification of the relative number of
nodes and saddles on a given surface in a flow field will be
referred to as the Rule in the present communication.

HAPW (1978) provides guidance in the utilization of
the Rule for flows over surface-mounted obstacles, inclu-
sive of ones with a ‘‘passage between the obstruction and
the host surface.’’ The artifact of ‘‘an extension of the
surface of interest’’ to create an artificial sphere is utilized
in that reference. The region of interest is then considered
to be a part of this composite surface. They also state the
consequences of the Rule for other flow geometries.

The present exposition provides an alternative ap-
proach to that of HAPW (1978) for the identification of the
constraints that are placed upon a collection of isolated
singular points. It also provides an alternative strategy to
identify the surface for which the analysis is to be applied.

The surfaces of interest may be entirely within the
boundaries of a flow field, they may exist on a portion of
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the bounding physical surface, or they may totally reside
on the bounding surface. In its most elementary form, the
Rule states that a continuous vector field, overlaid on a
sphere, will exhibit two nodes if the most simple pattern is
present. This result is given the expression, ‘‘the hairy
sphere theorem,’’ as the representation of the simplest
pattern into which the hairs (from root-to-tip as repre-
sentatives of the vectors in the continuous vector field) can
be smoothly arranged on the surface of the sphere. As
emphasized in the following examples, the hairs may re-
side on either the exterior or interior of the sphere. Also,
as will be evident below, a sphere means any surface that
could be formed by the continuous deformation of either
the inner or the outer surface of an inflated ball.

The Rule, to be described, applies equally to any vector
field. Fluid mechanical examples include the (obvious)
velocity field, which may involve its instantaneous, phase
or conditionally averaged, or time-averaged representa-
tion. The streamlines in each of these fields are a useful
technique to characterize their continuous nature. The
vorticity field, as well as the associated vorticity filaments,
provide a direct analogy to the velocity and the associated
streamline fields. The pressure gradient can also be used as
a whole-field variable of interest. The surface shear stress
field is of particular importance in many experimental
investigations and it bears a simple relationship to the
velocity field for a linearly viscous fluid, as considered in
detail below (Sect. 2.1).

As emphasized by HAPW (1978), given a body of
experimental observations, it is often the case that some of
the singular points are distinctly evident, whereas others
are more difficult to discern from the available observa-
tions. Similarly, in a numerical simulation or an experi-
ment, one portion of the flow may converge to a stable
state sooner than another portion, and this behavior can
lead to an incorrect assessment of the complete flow field.

It is the premise of this communication that a gener-
alized procedure which can be confidently employed to
assess the self-consistency of experimental or computa-
tional vector field results will be a useful addition to the
literature on topological considerations in fluid dynamics.
The identification of the separate surfaces and the appli-
cation of the relevant expression of the Rule is particularly
valuable in these cases.

Hence, the objective of the present communication is to
provide, in the spirit of HAPW (1978), but with different
mechanics, a methodology that can be followed to establish
the specific results of the Rule for a given surface in a given
flow field. As will be evident in this exposition, the iden-
tification of multiple surfaces in a given flow field is often
required to confidently identify the separate singular
points in that flow field.

The individual sections of this communication are to
serve the stated objective. Section 2 identifies the attri-
butes of the vector field that will serve as the bases of the
present analysis. Section 3 presents the surfaces, and their
topological identifications, upon which the subject vector
field is established. Section 4 considers surface-mounted
obstacles using the current formulation and that of HAPW
(1978). Section 5 presents examples from the open litera-
ture, as well as examples that have been created for the

present communication, which demonstrate the principles
of Sects. 2 and 3. A summary is provided in Sect. 6.

2
The vector field and its singular points

2.1
Vector fields and the associated surfaces
For convenience, and because the number of applicable
cases is large enough to warrant the restrictions, a single-
phase Newtonian fluid will be considered for the present
analysis of the velocity field. (The motivation for these
restrictions will be evident in Eq. 1.) The subject vector
fields are those that exist in the neighborhood of physical
surfaces or that are projected onto a designated surface in
the interior of a flow field. These two surfaces are referred
to as no slip and free slip, respectively, by PC (1987), and
this terminology is adopted herein. As noted in the
examples below, a given surface may incorporate both
attributes. The corresponding terms body fitted and col-
lapsed are also descriptive of the surfaces that are com-
patible with the present methodology. These terms will be
respectively used interchangeably with those of PC (1987).

As previously characterized by numerous authors, e.g.,
Lighthill (1963), HAPW (1978), and PC (1987), the subject
vector field is defined by the following operations in the
neighborhood of a physical surface. Here, n is the outward
drawn normal from the physical surface, l is the fluid
viscosity, and~sw is the vector shear stress l@~V@n

i
n¼0

at the

surface. These symbols are graphically represented in
Fig. 1. Note that~sw � ŝ ¼ 0 introduces ŝ as the direction of
the streamlines in the neighborhood of the surface. The
vector field of interest is, then, the velocity at the small
distance (dn) ‘‘above’’ the surface, as defined by:

~V dnð Þ ¼ @~V

@n

#

n¼0

dn

( )
ð1Þ

‘‘Small distance’’ can be given substance by noting that
dnð Þus

v

h i
� 1 or

dn� v

@V=@nð Þn¼0

� �1=2

ð2Þ

where v is the kinematic viscosity of the fluid.
Either the condition of an incompressible flow, Dq/D

t=0, or a steady flow, @q=@t ¼ 0; plus the no penetration
condition at a solid surface (i.e., no suction or blowing)
ensures that ~V dnð Þ is tangential to the adjacent surface,
except in the neighborhood for which sw=0. Specifically,
from:

Dq
Dt
þ qr � ~V ¼ 0

and for ~V n ¼ 0ð Þ ¼ 0; the indicated constraints result in
the condition r � ~V ¼ 0 at n ¼ 0: Hence, the component
of the velocity normal to the wall, Vn(dn), is second order
in dn as:

Vn dnð Þ ¼ Vn 0ð Þ þ @Vn

@n dnþ @2Vn

@n2

i
0

dn2

2 þ . . .

¼ 0ð Þ ¼ 0ð Þ
ð3Þ
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Since the velocity component tangential to the surface (Vs)
is, in general, first order in dn, a singular point in the
velocity field at dn will only occur above a location of zero
shear stress where:

Vs dnð Þ ¼ Vs 0ð Þ þ @Vs

@n
dnþ @

2Vs

@n2

dn2

2
þ . . .

¼ 0þ sw

l

� �
dnþ @2Vs

@n2

� �
dn2

2þ . . .
ð4Þ

Hence, as stated above, the subject velocity field ~V dnð Þ;
will exhibit a zero value above a location on a physical
surface at which sw=0. This condition may exist at an
isolated point (the subject of the present considerations)
or as one point along a continuous curve that satisfies
sw=0. The stagnation line on a torus that is oriented with
its axis parallel to the approach flow is an example of the

latter condition; see Fig. 2a. (The forward portion of the
torus is of interest for this immediate example. If the axis
of the torus is parallel to the approach flow, then the closed
ring of stagnation points will exist. The aft portion of the
flow will, for small and larger Reynolds numbers, separate
in possibly complex patterns. If the aft region involves
anything other than an axisymmetric flow pattern, the
isolated nodes and saddles would have to be equal in
number in order to satisfy the X=0 condition.) The con-
dition that ~V dnð Þ ¼ 0 along a continuous curve has been
identified as a node-saddle by PC (1987). See Fig. 5, case 1
of that reference for a graphical definition of a
node-saddle.

The topological character of the flow field shown in
Fig. 2a can be significantly altered by executing a ‘‘saw
cut’’ through one portion of the (solid) torus; the altered
geometry is shown in Fig. 2b. The upstream flow now

Fig. 2a, b. Two examples of
surface identification and their
relationship to a hydrodynamic
flow field. a A torus with its
axis parallel to the approach
flow—a condition with no iso-
lated singular points. b A
sphere (created by the saw cut
through the solid torus) with
one attachment node shown.
The balance of the singular
points must yield one net node

Fig. 1. Relationship of the wall shear stress
(~sw) to the subject velocity field ~V dnð Þ
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stagnates at one point instead of along a continuous and
circular collection of ‘‘points.’’ (Note that the finite size of
a fluid dynamic particle disallows the substitution of the
words ‘‘an infinity of points’’ for ‘‘collection of points’’ if
one considers the fluid to be the substance that could be
used in an experiment and not the ‘‘infinitely subdividable
substance of the continuum approximation.’’) The three-
dimensional flow near the saw cut can be expected to be
rather complex. One can, however, be assured (Sect. 3.2)
that the singular points will result in the addition of one
net node to the node at the stagnation point for this newly
constructed sphere. (‘‘Net node’’ refers to the condition
where K nodes and K)1 saddles may be added to the
topology of the subject vector field. This is clarified in
Sect. 3.)

Surfaces that are partially or completely in the interior
of the flow will, as noted above, also be considered. In
these cases, the relevant vector field is that which is pro-
jected onto the subject surface. In such a case, a singular
point in the subject plane need not be characterized by
~V ¼ 0; it is only necessary that the projected ~V be zero. An
instructive example is provided by a stirred cup, for which
the subject plane is mid-way between the bottom of the
cup and the free surface; see Fig. 3. The text following
Eq. 7 clarifies the appropriate surface for this example.
The secondary flow (as made evident by tea leaves or other
solid material on the bottom of the cup) shows the pres-
ence of a radial inflow at this bottom surface with the

concomitant vertically upward movement of fluid at the
center of the ‘‘vortex.’’ The resulting secondary flow is
shown schematically in Fig. 3. Hence, u=v=0 (the pro-
jected velocity) at the central point in the subject plane
albeit ~V ¼ k̂w is not zero at the same location.

2.2
Isolated singular points
An isolated singular point can be characterized by its
Poincare index; the possible values are +1 and )1. The
former characterizes a node; the latter describes a saddle.
Additional information regarding Poincare indices can be
found in Hurewicz (1958) and Davis (1962)1. The opera-
tional steps to identify the index for a candidate singular
point also provide a useful ‘‘tool’’ for flow field analyses.
These steps are shown in Fig. 4a, which makes use of the
unstable focus as defined by PC (1987). The steps are de-
scribed as:

1. Place a circle around the candidate singular point
2. Place the base of a unit vector on the circle in the

direction of the local member of the vector field at that
point

3. Cause the base of the unit vector to revolve, on the
circle, clockwise around the candidate singular point

Fig. 3a, b. A stirred cup of
liquid as an example of a
singular point in a projected
vector field. a The mid-height
plane and the collapsed sphere.
Note that the tea leaves indicate
the presence of the secondary
flow. b The velocity field in the
plane of the collapsed sphere.
The centered nodal points exist
on the upper and the lower
surfaces of the collapsed sphere

1 These references were kindly supplied by a reviewer.
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such that the vector is tangential to the local vector field
at each point on the circumference of the circle

4. Following the above revolution, ascertain whether the
unit vector has rotated 2p radians about its base during
the translation of the vector’s base around the circle

The following outcomes of this operation, and their
interpretations, are (outcome; inference):

1. The vector has rotated 2p radians in the clockwise
direction about its base point; a (net) node is enclosed
within the circle

2. The vector has not rotated about its base point; there is
no net singular point within the circle

3. The vector has rotated 2p radians in the counter-
clockwise direction about its base point; a (net) saddle
is enclosed within the circle

It is apparent in Fig. 4a that the base has rotated 2p
radians in the positive or clockwise direction. Hence, the
enclosed singular point is a node. These operations, ap-
plied to the other foci and nodes of PC (1987) also yield an
index of +1, which leads to the undifferentiated term,
‘‘node,’’ in the present communication. If the same oper-
ations are performed for a ‘‘saddle,’’ it is evident that the
unit vector will rotate 2p radians in the counterclockwise
direction; see Fig. 4b. This counterclockwise rotation
identifies the enclosed singular point as a saddle with an
index of )1.

Figure 5, taken from Perry and Chong (1994), provides
a relevant example of the utility of this ‘‘tool’’ for flow field
analyses. Specifically, the two interior circles reveal the

presence of a node (upper left) and a saddle (lower right).
No net rotation of the unit vector is observed as it revolves
about the two inner circles on the path described by the
encompassing circle.

3
Characteristics of surfaces

3.1
A sphere plus holes plus handles
Elementary considerations from topology show that any
given surface can be formed by the addition of 0, 1,..., N
handles on a sphere and/or ‘‘punching’’ 0, 1,..., M holes
through its surface. (That is, an integer number of handles
and holes.) It is important to recognize that the surface of
interest may be formed from the interior or the exterior of
the sphere and, of course, that the sphere is totally ‘‘mal-
leable,’’ which permits it to be deformed into any arbitrary
shape that preserves the definition of a sphere2.

Examples that will serve the interests of the later dis-
cussion are presented here to clarify the formation of such
surfaces. These are designated as ‘‘six exemplar surfaces’’:

1. A sphere—an archer’s arrow (Fig. 6) or the cut torus
of Fig. 2b

2. A sphere plus one hole—an inlet valve of an IC
engine (Fig. 7)

3. A sphere plus one handle—the torus of Fig. 2a

Fig. 4. a A representative node (unstable
focus) and b a saddle

2 A formal definition of a sphere is provided in the Appendix.
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4. A sphere plus two holes—the flow past a surface-
mounted obstruction (Fig. 11a)

5. A sphere plus three holes—the experiment of Ruderich
and Fernholz (1986); see Fig. 8a

6. A sphere plus two holes plus one handle—a wind
tunnel with a full-span model or the flow past a surface-
mounted obstacle with a passageway (Fig. 11b). (Note
that if the downstream surface of Fig. 8a were posi-
tioned downstream of the cross-member’s trailing edge,
then the correct surface would be a sphere plus two
holes and a handle. This is the condition shown in
Fig. 8b.)

An important constraint made explicit by Bredon
(1993) and Milnor (1997) is that, if a hole is present in the
selected surface, then the vector field must either be direc-
ted uniformly inward—or outward—at the exposed edge.
This constraint will be clarified (Fig. 10) following the

identification of the Euler characteristic and its relation-
ship to the sum of the indices for a given surface.

3.2
The Euler characteristic of a surface
The Euler characteristic (X) of a surface is a property that
can be immediately inferred from the formation process.
Specifically, the C value for a given surface is:

Xsurface ¼ Xsphere � 2Rhandles� Rholes ð5aÞ

which permits the C values of the above examples to be
designated as shown in Table 1, given the condition that
Csphere=2. (The Csphere value is clarified below).

The significance of the Euler characteristic for the
present communication is its relationship to the Rule:

Xsurface ¼ R
indices of the vector field

singular points on the surface

� �

¼ RN � RS

ð6Þ

This relationship can be found in numerous sources,
including Bredon (1993) and Milnor (1997). The C value
for a sphere can be identified from Eq. 6 and the above
noted hairy sphere theorem. It is considered to be
apparent that the least complex arrangement of the hairs
(the vector field) on a sphere (or, for clarity, a round ball)
is to comb them from the ‘‘crown’’ to a ‘‘collection point’’
that is considered to exist at a distance of (for example) D
(i.e., the sphere’s diameter) from the crown. Both of these
points represent a node (by application of the revolving
vector test as clarified in Fig. 4). Hence, a sphere (no

Fig. 6. An archer’s arrow: a representative
topological sphere

Fig. 7. The flow past an inlet valve of an IC engine: sphere plus
one hole geometric surface

Fig. 5. Singular point identifications using
the identification technique of Fig. 4
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handles, no holes in Eq. 5a) is characterized by two nodes
(SN=2) and Eq. 5a can be rewritten as:

Xsurface ¼ 2� 2Rhandles� Rholes ð5bÞ

Note that Eq. 6 is also stated as Eq. 2.12 by HAPW
(1978). However, as made evident below, the present
communication utilizes this result in a manner that is
somewhat different from that earlier communication.

HAPW introduce a most useful concept for the com-
plete topological description of a flow field; specifically,
they describe ‘‘... two-dimensional plane sections of the
flow...’’ and state the appropriate form of the Rule for such
surfaces. This concept can be set in the present context by
noting that such a surface can be envisioned as the result
of:

1. Starting with a sphere that touches the spanwise
edges of a ‘‘planar’’ section of interest, and

2. Keeping these edges fixed as the sphere is ‘‘evacuated’’
and ‘‘collapses’’ to a ‘‘planar’’ surface with the
desired boundaries at the lateral edges

The lateral edges, at which the velocity is required to be
tangential to the boundary, will be referred to as seams. In
keeping with a constraint stated above, an exposed edge
(i.e., a hole for the collapsed surface) will involve only

inward or only outward directed vectors with respect to
the collapsed surface.

The collapsed sphere can be modified by the addition of
handles and holes as above. The Rule does not, in prin-
ciple, change with these additions; however, it is necessary
to recognize that any singular point on a seam will appear
once on the collapsed surface, whereas singular points
interior to the seams will appear on two surfaces and must,
therefore, be counted twice. Following HAPW (1978), the
designation 1/2 nodes (N¢) and 1/2 saddles (S¢) describe
the singular points on the seams whereas full nodes (N)
and saddles (S) appear in the interior of the collapsed
surface. Hence, Eq. 6 for a collapsed sphere is given the
form noted in Eq. 7, namely:

Xsurface ¼ 2RN þ RN 0 � 2RS� RS0 ð7Þ

The mid-height (H/2) location of the stirred cup, Fig. 3,
provides an immediate example. The selected surface is a
collapsed sphere that forms a disc of negligible thickness
and a diameter of D)2dn, where D is the diameter of the
cup and dn of Fig. 3, like dn of Fig. 1, is a small distance
into the flow. This small displacement allows the vector
field that covers the surface (i.e., the vector velocity that is
projected onto the surface) to be uniformly identified as
the velocity components in the x–y plane. The velocity at

Fig. 8a, b. The experiment of Ruderich and
Fernholz (1986) with two no-slip surfaces
to represent their geometry. a A sphere
plus three holes. b A sphere plus two holes
plus one handle

Table 1 C values for the exemplar surfaces

Example number 1 2 3 4 5 6

Figure number of the example surface 6, 2b 7 2a 11a 8a 8b, 11b
Csurface +2 +1 0 0 )1 )2
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the perimeter of the disc, i.e., the seam, is tangential to the
surface, which fulfills the stated constraint. The centered
node is the only singular point and it satisfies Eq. 7, since
Xsurface=2 for this example. If the stirring spoon were still
in the cup, the collapsed surface would be a sphere with a
handle. Note that the handle extends across the interior
surface of the collapsed sphere. For this case, C=0, which
could be satisfied as shown in Fig. 9a, b, c, which sche-
matically exhibit three Reynolds number conditions; low,
intermediate, and a high Reynolds number, respectively,
developing flow for the flow past the spoon handle.

3.3
Considerations associated with the presence of holes
in a selected surface
Figure 10 has been prepared to demonstrate the con-
straint: either inward or outward pointing vectors at the
exposed edge of a hole. Namely, as shown in Fig. 10, the
surface of a circular disc can be created by adding one hole
to a sphere and then ‘‘flattening’’ the remaining portion of
the sphere to a planar disc. (It is important to note that
such a disc, X=1, is not the same as the ‘‘evacuated sphere’’
at the mid-height of the stirred cup, X=2, as considered in

Fig. 9a–c. The stirred cup with the spoon
as handle. a Low Re. b Intermediate Re. c
High Re

Fig. 10a–c. A disc on the floor of a wind
tunnel. a Rectilinear flow (Uo). b The flow
induced by spinning the disc (Uo=0). c The
flow over the disc from an off-center,
impinging jet (Uo=0)

890



Fig. 3). For illustration, consider this disc to be placed on
the floor of a wind tunnel. It is known a priori that the disc
will contain one node on its interior if it satisfies the
established constraints of inward or outward directed
vectors at its periphery.

Figure 10a shows the consequence of violating the
uniform inward—or outward—constraint. The uniform
flow of Fig. 10a exhibits no singular point on the disc.

In contrast, and with no tunnel flow, Fig. 10b—a
spinning disc—or an axisymmetric jet directed onto the
disc as shown in Fig. 10c, satisfy the constraint.

A further example of the ‘‘inward/outward vector field
at a hole’’ constraint is provided by a modification to the
example of the archer’s arrow; see Fig. 6. It is easily rec-
ognized that the details of the forward region are inde-
pendent from the possible complexities of the aft region. It
is also apparent that a contour around the central portion
of the arrow can be selected such that ~V is outwardly
directed at the exposed edge of the forward surface—or
inwardly directed for the downstream portion of the ar-
row. For this condition and for a no-slip or a body fitted
surface, the forward and the aft regions are separately
characterized as a sphere plus one hole. A zero yaw/pitch
condition will clearly lead to one stagnation (i.e., nodal)
point at the forward nose. A non-zero yaw or pitch con-
dition will involve an upwind node and some collection of
nodes and saddles on the leeward side. If a sock-like
surface is placed over the leading section of the arrow, and
if its downstream edge satisfies the outward directed
velocity condition, then X for this surface is +1. Hence, the
leeward side collection of singular points must sum to
zero. This latter case has been investigated by numerous
authors, given its importance in the aerodynamics of
missiles and aircraft (e.g., Tobak and Peake 1979, 1982).

4
An arbitrary constraint and Hunt et al. (1978) revisited
The surface selection process described above has, as a
concomitant feature, an alternative description of the
surface-mounted obstacles investigated by HAPW (1978).
Figures of that reference show the obstacle, and the
boundary layer plate to which it is attached, as part of a
hypothetical sphere. The corresponding attachment and
separation nodes satisfy the C=2 condition for the hypo-
thetical sphere, which results in a net of zero indices for
the region of interest. The present alternative is to con-
struct a surface for the evaluation of the region of interest.
Consider that a malleable sphere is pressed onto the region
of interest such that it conforms to the object and the base
plate, and that its top surface exists well above the surface-
mounted obstruction. Then, ‘‘punch’’ an upstream and a
downstream hole in this sphere; see Fig. 11a. (The relevant
surface of the sphere is its interior in this example.) With
the sphere’s upper, forward, and aft surfaces sufficiently
far from the obstruction, it is recognized that the velocity
vectors are inward at the upstream hole and outward at the
downstream hole. Hence, the region of interest will exhibit
no net singular points—in agreement with HAPW
(1978)—without invoking a hypothetical body.

It is noteworthy that a detailed study of a surface-
mounted cube has been carried out by Martinuzzi and

Tropea (1993). The surface streaking images from that
study give an insight into the complex flow pattern that
must, in the aggregate, yield the same number of nodes as
saddles for the body fitted surface.

HAPW (1978) have also provided an example of an
obstruction with a passageway that is, in the current
context, recognized as a sphere plus two holes plus a
handle. The sphere is the same as that described for the
surface-mounted obstruction. The obstruction is again
attached to the interior surface of the above sphere; see
Fig. 11b.

HAPW (1978) further consider the juncture of two
pipes and use an image system to deduce the result:
C2-pipe juncture=)1. The present technique would address

this flow by first distorting a sphere into the shape of the y
branch with the two-approach and the one-departure legs
of sufficient length such that, when the inlet and exit
openings are ‘‘punched’’ through the surface, the
velocity is everywhere inward (upstream) and outward
(downstream). Given Csurface=Csphere)3 holes, the result is
the same (Csurface=)1) as that of HAPW without invoking
an image system.

For completeness, it is noted that what is referred to
here as a collapsed surface was also examined by HAPW
(1978) in their study of the flow over a solid obstacle and
the one with a passageway. For the present purpose, these
would be a sphere plus two holes and a sphere plus two
holes and an interior handle, respectively. The collapsed
surface is selected such that the velocity vector is aligned
with seams as well as meeting the inward/outward con-
straints. These surfaces can be envisioned by allowing the
lateral portions of the Fig. 11a, b surfaces to be collapsed
to the centerline of the obstruction.

5
Illustrative examples
The examples in this section are presented to further
clarify the above concepts, as well as to provide informa-
tion about the selected flow fields. These examples, like
those of Sect. 3, are for a sphere plus its modifications.

5.1
A levitated sphere
Figure 12 shows a sphere that is levitated and rotated by
the action of an inclined jet. The indicated stagnation
points of the entrainment flow (see Fig. 12a) can be made
evident by dye-in-water or smoke-in-air as the visualiza-
tion agent. An alternative representation, Fig. 12b, is
provided by the centerplane of the jet; this is a sphere with
two holes. The lower seam of this collapsed sphere is
formed by the lowest time mean streamline from the
delivery jet for the surface whose upper boundary is
indicated by I. The upper time mean streamline from the
top of the jet forms the other seam in the cases shown. A
point of interest is that the jet fluid (in its time mean
representation) does not touch the sphere. The surface
shown by II shares the upper boundary with I; however, its
lower surface is a seam that has a centered segment as the
seam that touches the lower portion of the levitated
sphere. Collapsed surface II is also formed by a sphere
with two holes.
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5.2
Free convection in a Hele-Shaw cell
A second example of a sphere is provided by the free
convection flow within a Hele-Shaw cell. The resulting flow
field was investigated by Zimmermann et al. (1986). This
unpublished study utilized similar experimental tech-
niques as used by Koster and Mueller (1982 and 1984) For
convenience, this paper will be referred to as ZEM (1986).
Their geometry is shown in Fig. 13a; it is characterized by
the relatively large L·L front and back vertical walls sep-
arated by four narrow (width W) walls of area W·L. The
magnitudes of these lengths were L=40 mm and W=3 mm
(W/L=0.075) in the ZEM (1986) experiment. The interior
fluid was heated through the lower surface (W·L) and
cooled at the top surface (W·L); Re=1.5·106. Interfero-
metric observations reveal a dominant circulation pattern
in the upper and central regions, with complementary
circulation motions in the lower corner regions, as shown
in Fig. 13b.

The ZEM (1986) flow is considered to be an instructive
example problem because of the requirement to add
additional singular points (beyond those required by the
hairy sphere theorem) and because the experimental
observations are, at present, not sufficient to clarify the
complete flow pattern. That is, the topological inferences,
given below, form a prediction that can guide subsequent
experimental efforts. If the observed pattern is different
from that hypothesized below, it can be usefully checked
by ensuring that it satisfies the constraints that are also
satisfied by the hypothesized field.

An undeformed sphere (d A=R2dhd/ for 0 £ h<2p
and 0 £ / £ p) can be envisioned as a reference case. If
the lower region (e.g., 0.9p £ / £ p and 0 £ /<2p) were
uniformly heated, whereas a similar cap (0 £ / £ 0.1p,
0 £ h<2p) were cooled, then an interior circulation
pattern with a vertically rising flow at the center of the
sphere would be observed. The lower separation point
and the upper attachment point would form the two

Fig. 11a, b. A surface-mounted obstruc-
tion; a representative geometry from Hunt
et al. (1978). a A solid obstruction; see
Martinuzzi and Tropea (1993). b An
obstruction plus passageway
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nodes that are required to satisfy the following condi-
tion:

Xsurface ¼ Xsphere ¼ RN � RS ¼ 2

A collapsed surface, in the form of a circular disc
(0 £ r £ R, 0 £ /<p, and h=ho, ho+p), will also have an
Euler characteristic of 2; namely:

Xdisc ¼ 2RN þ RN 0 � 2RS� RS0 ¼ 2

(Note that: (1) the velocity field satisfies the condition that
the vectors are parallel to the seam for this collapsed
surface, and (2) the disc has a small (<<<R) but finite
thickness, except at the seam.) The two nodes in the col-
lapsed surface for ho and ho+p and centered at (/=p/2,
r�R/2), and the two 1/2 saddles at /=0 and p satisfy the
above constraint.

With this background, the large vortex motions, II, III
from ZEM (1986), as shown in the present Fig. 13b, are of
the kind expected for the above sphere; similarly, these
would be consistent with the /=0 and p attachment and
separation points, respectively. These expected features
are shown in the collapsed surface, the z=0 plane, of
Fig. 13b as the 1/2 saddles (A, B). This figure also shows
two features that are required by the basic flow pattern
reported by ZEM (1986), namely, the attachment 1/2
saddles at F1 and F2 and the separation points (again, 1/2
saddles) at E1 and E2.

The Euler characteristic for the collapsed sphere in the
z=0 plane, Xsurface=2, is satisfied for this surface as 4N and
6S¢, or:

2RN þ RN 0 � 2RS� RS0 ¼ 2
2 4ð Þ þ 0� 0� 6 ¼ 2

Additionally, a collapsed sphere in the y=0 plane, see
Fig. 13c, satisfies this constraint as:

2RN þ RN 0 � 2RS� RS0 ¼ 2
2 2ð Þ þ 0� 0� 2 ¼ 2

Further insight into the flow field of the Hele-Shaw cell
can be gained by considering the vorticity filaments
associated with the circulations (G) of the nodes that are
evident in Fig. 13b. The 1/2 planes: A-D-C-B and A-G-E-H-
F-B, will be used for these considerations. (The left-hand
side: 1, or the right-hand side: 2, could be used for this
discussion. Side 1 will be utilized in the following.) Also,
the solenoidal condition, r � ~x ¼ 0; with its consequence
that vorticity filaments (lines in the flow that are every-
where tangential to ~x), must either form closed loops or
terminate at a ‘‘physical surface,’’ will be utilized in these
considerations.

The contour ka=A fi D fi C fi B fi A (Fig. 13c) can
be used to define Ga as:

Ca ¼
Z A

B

udx

Using Fig. 13b, a second contour, kb=A fi G fi E fi
F fi B fi A and a third contour, kc=A fi G fi E fi
H fi F fi B fi A, can be defined with the results:

Cb ¼ þ
Z A

B

udxþ
Z Fk

Ek

~V � d~s

and:

Cc ¼ þ
Z A

B

udx ¼ Ca

It is evident that Gb>Ga since the E fi F portion
introduces a positive contribution to the circulation.

The ‘‘bulk of the vorticity’’ in region I will exhibit a
negative xz value given the condition that, for the contour
kd=E fi H fi F fi E:

Fig. 12. A levitated sphere
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Fig. 13a–d. The free convection experi-
ment of ZEM (1986). a The experiment. b
The observed flow pattern for
Ra=bgDtL3mk between 1.27 and 1.95·106. c
Identification of the singular points (A, B,
E, F) in the z=0 and y=0 planes. d E and F
as a saddle and node, respectively, in the
body fitted surface
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Cd ¼
Z

kd

~V � d~s ¼
Z

Ad

~x � n̂dA\0

This observation, and the constraint, Gb>Ga, leads to the
inference that a fraction of the vorticity in II forms closed
loops with the vorticity filaments that penetrate I. In effect,
sufficient vorticity in II is offset by the vorticity in I that
Gc=Ga. Alternatively, and returning to the original con-
figuration wherein the spherical domain was heated below
and cooled above, removing the ‘‘cancelled’’ vorticity in I
leaves the balance of the vorticity in II that forms closed
loops around the central axis of the Hele-Shaw cell. For
completeness, in this description, it is noted that any
contour that lies completely at the boundary surface will
bound a ‘‘net zero’’ vorticity flux through its enclosed area.
Specifically, this observation applies to A fi D1 fi C1 fi
B fi C2 fi D2 fi A and A fi G1 fi E1 fi H1 fi F1 fi
B fi F2 fi H2 fi E2 fi G2 fi A.

With the ‘‘picture’’ in mind of the vorticity filaments
that contribute to Ga at the y=0 plane as those that also
penetrate region II above the E fi F contour, it is con-
jectured that there will be no further singular points of the
velocity field beyond those identified above.

The body fitted interior surface of the Hele-Shaw
cell is obviously a topological sphere and the attach-
ment node at A and the separation node at B would be
sufficient to represent the X=2 condition. The above
considerations show that singular points E1, E2 and F1, F2

need to be added to the description as shown in Fig. 13c.
Since two saddles (E1, E2) and two nodes (F1, F2) are ad-
ded, the Rule is obviously satisfied for this body fitted
surface.

5.3
A wind tunnel/centered obstruction flow field

5.3.1
An interpretation of the flow field from the perspective
of the rule
The flow field selected by Ruderich and Fernholz (1986)
for a detailed examination (hereafter RF) was used (above)
as an example of a sphere with three holes (Fig. 8a) and as
an example of a sphere with two holes and a handle
(Fig. 8b). It is relevant to note that the central thrust of RF
was to examine the turbulent boundary layer downstream
of reattachment. The present focus, the observed singular
points, was a secondary issue in their study.

The body fitted surface (S0) of Fig. 8a is described by its
Euler characteristic as:

XS0
¼ Xsphere � 3 holes ¼ 2� 3 ¼ �1

Other, collapsed surfaces will also be of considerable value
in the interpretations of the singular points in this flow
field. Specifically, consider the collapsed sphere that is
positioned at y=0, with lateral sides at z=±W/2, that ter-
minates in a seam at (x=0, y=0). This surface, S1, is shown
in Fig. 14a. The velocity field at the upstream hole (at x/
W=)10) satisfies the constraint that it is everywhere in-
ward at the exposed edge. The convention that ()’ refers to
a half node or a half saddle is not used in Figure 14. The

symbols: ()’ and ()’’ are used to specify singular points in
the surfaces shown in Figures 14b and 14c respectively.

A second collapsed surface of interest (S2) is the cen-
terplane (z=0) surface with seams along the top of the
tunnel, just above the approach centerline, the forward
surface of the bluff plate, and the top of the splitter plate,
see Fig. 14b. The entrance hole, like that of surface S1, is
located far enough upstream to involve purely streamwise
flow; the exit hole is similarly far enough downstream
from the time-mean reattachment point on the splitter
plate that its farther extension would not involve addi-
tional singular points. (The downstream hole is, however,
bounded by the top of the channel and the splitter plate).

The topological rules for S1 and S2 are also known from
their definitions:

XS1
¼ Xsphere � hole ¼ 2� 1 ¼ 1

and:

XS2
¼ Xsphere � 2 holes ¼ 2� 2 ¼ 0

A new experiment, executed in the author’s laboratory and
described below, has identified six upstream singular
points for z= ±W/2, as shown in Fig. 14a. These singular
points are similar to those provided by RF (1986). A fourth
singular point, the downstream (but x<0) Na of Fig. 6 in
RF, was not observed. It is instructive to observe that three
half-saddles ()3) and two nodes (+4) contribute a net of
+1 on each side of the channel for surface S1. The required
C=+1 for the S1 surface is then achieved by the
contribution of )1 from the centered half-saddle (S¢4).
Note that ‘‘how to achieve this balance, as well as a smooth
vector field,’’ would not be apparent if the fourth side wall
singular point of RF were added to Fig. 14a.

The centered plane (i.e., the collapsed sphere of surface
S2) of Fig. 14b is distinctive in that the forward singular
point (at x=y=z=0) is not on the surface S2. The seam, that
is, everywhere tangential to the velocity, connects to points
at x=)dx=)hF·10)3 ‘‘on’’ the face of the bluff plate. Hence,
this seam is above the centered singular point on the face
of the bluff plate. The present singular points of Fig. 14b
were also identified by RF, except for S¢2 on the
downstream surface of the fence. An evaluation of the Rule
for Fig. 14b:

X ¼ 0 ¼ 2RN þ RN 0 � 2RS� RS0 ;
4ð Þ 0ð Þ 0ð Þ 4ð Þ

shows that the present collection of singular points meets
the required condition. (The RF pattern would not satisfy
the Rule for surface S2.)

Ruderich and Fernholz (1986) provide a photographic
record of the surface shear stress pattern on the splitter
plate (their Fig. 4a). The singular points along the cen-
terline S¢3 and the inferred N¢1 of Fig. 14b are clearly
supported by this image. S¢4 and N¢2 are logically, albeit
less obviously, inferred from their Fig. 4a.

Ruderich and Fernholz (1986) prepared a summary
representation of the singular points on the splitter plate
and the side wall, given the image of their Figs. 4a and 5.
This was provided in their Fig. 6. The present author’s
difficulty in further reconciling the kinematics of the
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Fig. 14a–c. The experiment of Ruderich and Fernholz (1986). a
The forward collapsed sphere at y=0, surface S1 of the RF
experiment [)10hF<x £ 0, y=0, )W/2 £ z £ W/2]. b A collapsed
sphere bordering the centerline and the tunnel roof, surface S2 of

the RF experiment [)10hF<x £ 0, y=hF·10)3, z=0; dn=hF·10)3

‘‘above’’ the surface for hF·10)3 £ x £ 17hF]. c The singular
points for the body fitted surface S0: sphere plus 3 holes as
inferred from the new surface streaking observations
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indicated flow field (Fig. 6 of RF) with both a seemingly
logical near wall velocity (i.e., a surface shear stress) pat-
tern as well as the necessary condition provided by the
Rule, prompted a recreation of the RF experiment with the
same aspect ratio (W/hF) and Reynolds number based
upon hF. (The blockage in the present study was 6.7%
compared with 4.4% for the RF investigation.) Since there
are no singular points well above and below the splitter
plate, and since the blockage is small in both studies, it is
unlikely that this difference between the investigations will
play a role in the differences between the reported obser-
vations in RF and the present distribution of singular
points.

The identified singular points from the new study are
shown in Fig. 14c for the surface S0. (The substantial dif-
ferences as well as some similarities to Fig. 6 of RF will not
be listed since they will be easily recognized from a side-
by-side comparison.) The laterally displaced singular
points for the x>0 region of the S0 surface were somewhat
difficult to discern for the region downstream of the pro-
nounced spiral node and near the corner defined by the
side wall and the fence. However, the correct mixture of
the carrier liquid (kerosene) and the marking agent pro-
vided well defined results.

The ‘‘hairs’’ that would overlay the surface So of Fig. 8a
would create a smooth vector field and the associated
singular points satisfy the Rule; XS0

¼ 2� 3 ¼ �1. The
singular points for this S0 surface, as identified in the new
experiment, are shown in Fig. 14c. For reference, the sin-
gular points in each portion of Fig. 14c are tallied in Ta-
ble 2. The singular point, N¢¢1 of this S0 surface is the same
singular point as S4 of the surface S1, as shown in Fig. 14a.

5.3.2
Commentary on the Ruderich and Fernholz (1986) experi-
mental observations and the current interpretations
The Ruderich and Fernholz (1986) geometry provides a
welcome test case for the efficacy of the present method.
Specifically:

1. The singular points that have been identified play dis-
tinctly different roles depending upon the surface
selection. The forward stagnation point, x=y=z=0, is a
particularly instructive example. It is a node in S0, it is a
half-saddle in S1, and it was excluded in S2. If a new
collapsed surface were defined that extended S2 both
above and below the splitter plate to create (the new
collapsed surface) S2*, then the x=y=z=0 location
would have become a half-saddle in a collapsed surface
described by a sphere plus three holes.

2. The presence of the singular point on the downstream
face of the fence can be argued for by the criterion of a
smooth vector field and it is required to satisfy the Rule
for S0 and S2. It was, however, not identified by RF
(1986).

3. If S0 had been extended past the splitter plate, as shown
in Fig. 8b, the geometry would have been changed to a
sphere plus two holes and a handle. The Rule would
have been changed from X=)1 to x=)2. This would be
satisfied by a ‘‘net saddle’’ at the centerline of the
splitter plate’s trailing edge.

6
Summary
The basic elements of a surface selection strategy and the
resulting Rule that identifies the constraints that are placed
upon the singular points contained on the selected surface
have been presented. These elements, although elementary
in the context of topology, are not in widespread use in
fluid mechanics publications. The author has, for this
reason, attempted to provide an instructive text from
which other researchers can adopt and apply these meth-
ods for the analysis of their experiments (and possibly of
their computations).

These considerations are quite general and they can be
applied to any vector field.

Example flow fields are presented and analyzed with
these techniques. The significant benefit of using more
than one surface to analyze a given flow field is apparent in
these examples. A given singular point will represent dif-
ferent characteristics (N, N¢, S, S¢) with different surfaces
that include that point. The mutual agreement between
multiple surfaces will, in general, help to ensure the correct
interpretation of the complete flow field.

7
Appendix
The following definition was provided to the author by
Professor J.D. McCarthy. It is repeated here for mathe-
matical completeness in relation to the centrally important
understanding of a sphere in this communication.

An appropriate definition, in the context of the present
communication, which is focused on three-dimensional
Euclidean space, R3, can be expressed as follows. A sphere
can be understood as that of a smooth two-dimensional
submanifold S of R3 diffeomorphic to the standard two-
dimensional sphere S2 in R3 (i.e., the set of all points in R3

at a distance of 1 from the origin (0, 0, 0) of R3):

1. A subset S of R3

2. With a smoothly varying two-dimensional tangent
space at each point p of S

3. Admitting a smooth map F: S2 fi S with a smooth
inverse map G: S fi S2
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