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Visualization of shock-wave formation processes during shock reflection

at obstacles with multiple steps
Susumu Kobayashi, Takashi Adachi

Abstract According to standard textbooks on compress-
ible fluid dynamics, a shock wave is formed by an accu-
mulation of compression waves. However, the process by
which an accumulated compression wave grows into a
shock wave has never been visualized. In the present pa-
per, the authors tried to visualize this process using a
model wedge with multiple steps. This model is useful for
generating a series of compression waves and can simulate
a compression process that occurs in a shock tube. By
estimating the triple-point trajectory angle, we demon-
strated visually that an accumulated compression wave
grows into a shock wave. Further reflection experiments
over a rough-surface wedge confirmed the tendency for the
triple point trajectory angle y to reach the asymptotic
value y, in the end.

Keywords Shock wave formation, Compression wave,
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1

Introduction

Standard textbooks on compressible fluid dynamics ex-
plain that a shock wave is formed by an accumulation of
overtaking compression waves. The physical mechanism is
as follows. When gas is compressed, its density, pressure,
and temperature generally increase isentropically,
increasing its sound speed and thus the propagation speed
of the compression wave. As a result, the speed of com-
pression waves, which propagate into a gas already com-
pressed by precursory waves, exceed that of the precursory
waves, and so the compression waves generated later
tend to overtake the precursory ones. In a shock tube,
this overtaking process occurs continuously since the
accelerating contact surface generates compression
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waves continuously, and the pressure profile at the wave-
front steepens to form a shock wave. In other words, it
takes some distance to form a shock wave. Actually, in a
shock tube, the driven section length must be over some
fifty times the tube diameter to obtain a well-developed
shock wave. The pressure profiles of underdeveloped
shock waves have been measured, but, to the authors’
knowledge, no attempt has been made to visualize

the process over which a compression wave grows into

a shock wave. In the present paper, we attempt to
visualize the shock wave formation process. For this pur-
pose, we devised and applied a method of multiple

steps.

An early example of this method lies in a series of
experiments carried out by the authors (Adachi et al.
1992). In those experiments, we investigated the shock
reflection over multi-guttered wedges to simulate the
reflection phenomena over porous media. When the
shock wave is incident obliquely on the multi-guttered
wedge, a series of compression and rarefaction waves
appear, and it is very helpful to interpret the phenome-
non physically from the viewpoint of waves. However,
with the multi-guttered wedge, the visualized waves were
generally complicated because unnecessary rarefaction
waves were generated. Considering this drawback, we
replaced the multi-guttered wedge by a step-like wedge,
which dramatically reduces major rarefaction waves
(although it does not eliminate them completely). This
method was first applied by Suzuki et al. (1997), in a test
to visually clarify the reflected-wave formation process
over both concave and convex circular cylindrical
wedges. We successfully visualized the formation mech-
anism of the peculiar reflected wave over a concave
wedge as the accumulation of compression waves
generated from each step. Later, the same method was
applied to the so-called von Neumann reflection of weak
shock waves (Kobayashi et al. 1997, 2000a), in which the
compressive disturbances generated from a step-like
wedge tend to accumulate near the first triple point
defined by the intersection of the first disturbance and
the incident shock wave front. This result led to an
important inference that the flow field around the first
triple point might vary as the incident shock proceeds,
and that the self-similarity law usually postulated in
oblique shock reflection phenomena does not hold. This
has been further extended to the ordinary Mach
reflection of weak shock waves, and it turns out that non-
self-similarity is essential for understanding the so-called
von Neumann paradox (Kobayashi et al. 1999).
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Glancing incidence theory

When a plane shock wave propagates over a wedge with a
minute (infinitesimal) inclination angle, a weak distur-
bance issues from the apex of the wedge. This disturbance
is so weak that it can be considered to be acoustic. The
disturbance propagates at a sound speed relative to the
flow behind the incident shock wave (see Fig. 1a). Let the
incident shock Mach number be M; and the flow velocity
behind the shock wave be u;, then

u; 2 1
- = Mi_i )
a kK-+1 M;

where g, denotes the sound speed ahead of the incident

shock, and « the specific heat ratio of the medium. When the
shock is propagating at speed Us, the incident shock Mach
number M; is defined by Us/a,. The ratio of the sound speed
behind the shock to that ahead of the shock is then given by

Z_(l): (K + 1)71Mi71\/[2KMi2 - (K — 1)} [(K — ])Ml2 + 2]

From the simple geometrical relation shown in Fig. 1b,
we have the well-known formula for glancing incidence
angle:

af—(Us—u])2
US

o [e=nM242) (M2-1)
- Mi 2 (r+1)

tan y, =

If the wall is not receding but facing the shock front, as
shown in Fig. 2a, a head-on collision occurs on the wall,
and the disturbance that propagates upstream is stronger
than that which propagates downstream. The disturbance
strength therefore decreases spatially from the reflected
shock wave to the approximate acoustic wave at the triple
point.

3

Triple-point trajectory angle

Oblique reflection occurs when a plane shock wave
propagates over a wedge whose slope is 0,, with respect to
the shock propagation direction. The reflection configu-
ration is roughly either regular or Mach reflection
depending on the combination of incident shock Mach
number M; and reflecting wedge angle 0,,, when the
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Fig. 1. a A plane shock wave propagating over a step-like wedge;
b velocity vector diagram

thermodynamic properties of the medium, such as the
specific heat ratio x, are fixed. Although it was found re-
cently that this long-believed statement turns out to be
false when the reflecting wedge angle is only slightly below
the transition wedge angle 0,, (Henderson et al. 1997, 2001;
Kobayashi et al. 2000b), we do not go into details here.

The Mach reflection is composed of three shock waves:
the incident shock, the reflected shock, and the Mach stem,
and one contact discontinuity called the slipstream. These
three shock waves intersect at a point called the triple
point, and the slipstream issues from there. The triple
point moves along a straight line through the wedge tip
(except for the special cases mentioned above). For con-
venience of comparison with the glancing incidence angle
Xg we define the triple-point trajectory angle y; as the
slope of the straight line connecting the wedge tip and the
triple point (conventionally, it is defined by y-0, the
angle made by the triple point trajectory and the wedge
surface, in shock-wave literature). Table 1 compares ,
and y.. The experimental data for y, are taken from the
authors’ own experiment and some of them, but not y;
itself, have already been cited in Kobayashi et al. (1999).
The difference between the values is 2° to 3° for M;=1.20 to
1.40, and this is discernible by experiment.

When the disturbance at the triple point is intensified,
the disturbance propagates faster than the sound speed,
which in turn increases in the triple point trajectory angle
- In the present study, we focus on this angle and use it to
estimate the wave development from sound (y=y,) to a
finite-compression wave, then to shock wave (y=ys).

(2) =

(b) #60 sandpaper is pasted on the surface

Fig. 2. a Step-like wedge; b rough-surface wedge

Table 1. Comparison of triple-point trajectory angle and glancing
incidence angle

Incident shock Mach numberM; 1.20 1.30 1.40
Glancing incidence angley, [deg] 25.51 27.43 28.30
Triple-point trajectory angley, 28.08 30.27 31.32

over a 20° wedge [deg]

295




296

4
Experimental

4.1

Method

The shock tube used in the present study is composed of a
driver section (79 mm in diameter and 1200 mm long) and
a driven section (3900 mm long with a rectangular cross-
section of 65 mm x 30 mm). At the end of the driven
section is a test section with a 62 mm X 94 mm optical
viewing window on each side. Detailed descriptions of the
shock tube and experimental setup are given in our pre-
vious papers (for example, Suzuki et al. 1997).

A shadowgraph method was employed to visualize the
wave configuration. The light source was a xenon flash
lamp with a 180 ns pulse width (nanopulse light NPL-5
and its power supply NP-1A, Sugawara Laboratories, Inc.).
The flash lamp was triggered by the output of a pressure
gauge (6014, Kistler) nearer to the test section via a digital
delay circuit (digital retarder RE-306, Sugawara Labora-
tories, Inc.). The wave configuration at any desired instant
could be photographed by regulating the delay time.

The working gas was air, and the driven section was set
at room temperature and atmospheric pressure for each
experiment run. The models were step-like wedges with an
equivalent slope of 20° and a step width w=2.5 mm and
1.0 mm (Fig. 2a). As a limiting case of step-like wedge
when the step width w — 0, a rough-surface wedge was
used for comparison (Fig. 2b). A piece of #60 sandpaper
was pasted on the wedge surface to give surface roughness.
The incident shock Mach number M; was 1.20, 1.30 and
1.40. The errors involved in M; were +0.005.

4.2

Measurement

Figure 3 defines the coordinate system. The tip of the first
step is taken as the origin O, and the x-axis is in the
direction of the incident shock wave propagation. The y-
axis is taken perpendicular to the x-axis.

For the step-like wedge, a compression wave issues at
each step, and each compression wave intersects with the
incident shock wave. In this case, we regard only the
“first” triple point defined by the intersection of the first
compression wave and the incident shock. As shown later,
the slope of the straight line connecting the wedge tip O

O

Fig. 3. Definition of coordinate system

and the first triple point T varies as the incident shock
proceeds. As a result, angle ¥,

7= tan_u;/,

which is defined as the angle made by this straight line and
the x-axis, does not represent the physically exact (local)
trajectory angle defined as the slope of the tangent to the
trajectory. However, we can only measure one set of triple
point coordinates for each experiment run, and the results
show some scatter due to the error primarily related to the
incident shock Mach number. Consequently, the evalua-
tion of the real triple point trajectory angle based on the
measured coordinates will necessarily involve some error
that cannot be neglected. This error is larger than that for
the overall value y estimated by the straight line OT.
Therefore, we evaluated the trajectory angle by the overall
value y rather than the slope of the local tangent.

In reality, the visualized waves have some finite thick-
ness, and so the position of the first triple point involves
some ambiguity. In the present measurement, we selected
the intersection of the high-pressure side of the incident
shock and the (slightly) high-pressure side of the first
compression wave as the position of the first triple point.
This means y is generally underestimated. However, when
the visualized incident shock wave is too thick, y will be
overestimated. This will be mentioned later.

5
Results and discussion

5.1

Shock reflection over a step-like wedge

Figure 4 shows the shock reflection over a step-like wedge
for M;=1.40 and w=2.5 mm. A cylindrical compression
wave issues from each step. Close observation of the re-
flected wave reveals that several compression waves actu-
ally accumulate near the triple point. The slipstream from
the first triple point is faintly visualized. This means that

Fig. 4. Visualized wave structure over the step-like wedge
(M;=1.40, 0,,=20°, w=2.5 mm, x=53.1 mm)



the strength of the reflected wave is intensified by accu-
mulation, and density and temperature gaps are formed
between the two regions bounded by the slipstream. The
accumulated reflected wave is therefore already a weak
shock wave. Vortices, whose dimensions are the step
height s, are generated from the step corners. Energy
dissipation due to the vortex generation will diminish

as s decreases.

Figure 5 presents the triple point trajectory for two
kinds of step-like wedges, made dimensionless by their
step width w. These data show that the first triple point
moves approximately along each corresponding straight
line through the leading edge. The effect of step width on
the energy dissipation due to the vortex generation is not
distinct.

Figure 6 presents the overall triple point trajectory
angle. On the whole, y increases rapidly in the early stage
(x/w<10), but soon its change becomes very gradual. Some
data are already large in the early stage because the vi-
sualized incident shock wave was too thick, and, as a re-
sult, y was overestimated. Theoretically, y cannot be lower
than the glancing incidence angle y,, since the wave
propagation speed is not less than the sonic speed. How-
ever, some data are lower than the glancing incidence
angle for the reason mentioned in the previous section
(that y was underestimated). Within the range of the
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Fig. 5. Nondimensionalized triple point trajectory for two kinds
of step-like wedge
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Fig. 6. Variation of overall triple point trajectory angle for two
kinds of step-like wedge

present experiment, y does not reach the value for oblique
shock wave y, (Table 1). However, it is expected to ap-
proach y, as x/w increases, except for the error due to
underestimation.

5.2

Shock reflection over a rough-surface wedge

If we consider the situation of w<<1, we have a rough-
surface wedge (Fig. 2b). The roughness, which corre-
sponds to w in the step-like wedge, is 1 inch/

60 =~ 0.42 mm. Figure 7 shows the reflected wave struc-
ture over the rough-surface wedge for M;=1.40. The
compression wavelets that cover the region behind the
accumulated reflected wave exhibit a surprisingly
regular pattern considering the irregularity of the wedge
surface.

Figure 8 presents the triple point trajectory in dimen-
sionless coordinates. The data corresponding to each
incident shock Mach number show that the triple point
moves along a straight line through the leading edge. The
slopes of the least-squares approximation line for Mach
number data are 0.5355 (28.16°), 0.5781 (30.03°), and
0.6033 (31.10°). They are quite near the triple point
trajectory angle y for oblique shock reflection
(Table 1).
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Fig. 7. Visualized reflected wave structure over the rough-surface
wedge (M;=1.40, 0,,=20°, #=60, x=71.5 mm)
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Fig. 8. Nondimensionalized triple point trajectory for rough-
surface wedge




298

40

0 | M G o ety oG ©

20
N
10
0
0 50 100 150 20C
X lw

Fig. 9. Variation of overall triple point trajectory angle for rough-
surface wedge

Figure 9 presents the variation of the overall triple-
point trajectory angle. In the rough-surface case, the angle
is large in the early stage for the same reason as in the
step-like wedge case, decreases monotonically toward the
oblique shock value y,, and then remains almost constant.
In contrast to the step-like wedge case, the present case has
no “first” triple point. We therefore define the location of
the triple point as the intersection of the high-pressure
side of the incident shock wave and the low-pressure side
of the reflected shock wave. Angle y, thus defined, is
considered slightly overestimated. In particular, this
overestimation is large at x/w<20 where the visualized
incident shock front is thick. For M;=1.20, angle y de-
creases almost monotonically over the whole range, dem-
onstrating the opposite tendency to the step-like wedge
case. It may be regarded that y has reached the asymptotic
value (y,) at x/w>100 and that the reflected wave formed
by the accumulation of compression wavelets has devel-
oped into a shock wave.

6

Conclusions

We conducted a series of experiments using a step-like
wedge in order to visualize the shock wave formation
process. To estimate the shock formation, we measured
the overall triple-point trajectory angle y defined by the
slope of the straight line connecting the wedge tip and the
triple point. y increased from the glancing incidence value
g toward the oblique shock value y,. We also conducted
an experiment with a rough-surface wedge as the limiting
case of a step-like wedge. Qualitatively, we obtained sim-
ilar results in that the angle y approaches y, although x
was closer to y, than in the step-like wedge cases. The step-
like wedge turns out to be a useful device for generating a
series of weak compression waves.
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