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Abstract This paper deals with errors occurring in two-
dimensional cross-correlation particle image velocimetry
(PIV) algorithms (with window shifting), when high ve-
locity gradients are present. A first bias error is due to the
difference between the Lagrangian displacement of a par-
ticle and the real velocity. This error is calculated theo-
retically as a function of the velocity gradients, and is
shown to reach values up to 1 pixel if only one window is
translated. However, it becomes negligible when both
windows are shifted in a symmetric way. A second error
source is linked to the image pattern deformation, which
decreases the height of the correlation peaks. In order to
reduce this effect, the windows are deformed according to
the velocity gradients in an iterative process. The problem
of finding a sufficiently reliable starting point for the
iteration is solved by applying a Gaussian filter to the
images for the first correlation. Tests of a PIV algorithm
based on these techniques are performed, showing their
efficiency, and allowing the determination of an optimum
time separation between images for a given velocity field.
An application of the new algorithm to experimental
particle images containing concentrated vortices is shown.

1
Introduction
Over the last decade, particle image velocimetry (PIV) has
become a powerful and widely used technique for mea-
suring instantaneous velocity fields in a plane. For this, the
flow is seeded with reflecting micro-particles, whose dis-
placement over a small period is measured and used to
calculate the local velocity.

The particle displacement is normally obtained by a
correlation technique, either by auto-correlation of a
doubly (or multiply) exposed single particle image or by
cross correlation between two successive single-exposure
images. In this paper, we focus on the latter technique,
although some results are also valid for the former. With
the two-image method, the mean displacement in a given

subpart of the images (the correlation window) is given by
the location of the maximum of the cross-correlation
function between the pixel intensities in the box.

With the strong increase in computer power in recent
years, and the availability of high-resolution digital cam-
eras, image acquisition and correlation computation for
PIV purposes have become very easy to implement,
compared with the recordings on photographic film and
complex optical correlations used in the early days of PIV
(see, e.g. Adrian 1991). In a majority of applications today,
the PIV process is entirely digital. In this situation, where
PIV has become a common tool, more efforts are now
directed towards the precise analysis of the accuracy of
this method in different situations, and towards reducing
possible errors. In this respect, the algorithm used to ob-
tain the velocity field from the digital particle images has
received special attention. It is also the object of the
present paper, i.e. we shall not consider errors linked to
optical effects or the image acquisition procedure, but
assume that the images correctly represent the true par-
ticle positions at the corresponding instants in time.

A number of studies (e.g. Willert and Gharib 1991;
Weesterweel 1993; Fincham and Spedding 1997; Raffel et al.
1998) have analysed the errors in the velocities calculated
by PIV algorithms, and their variation with different
parameters: particle image density, diameter of the parti-
cles, size of the correlation window, noise in the images,
and displacement amplitude. In general, the correlation
methods were found to be very accurate for nearly uniform
flows. However, the accuracy is drastically reduced in the
presence of high velocity gradients, which are found, for
example, in turbulent flows, in boundary layers or in the
cores of concentrated vortices.

One error is caused by the corresponding deformation
of the particle patterns between successive images, leading
to lower and broader correlation peaks. A solution to this
problem was proposed by Huang et al. (1993a, 1993b):
deformation of the correlation windows according to the
velocity gradients, in an iterative process. Jambunathan
et al. (1995) generalized this method for flows with length
scales smaller than the correlation box size, by deforming
the window according to the displacement of each pixel of
the window. The problem of instabilities, which were ob-
served in such an iterative processes, was recently solved
by Nogueira et al. (1999). These techniques of window
deformation are beginning to be commonly used, and
error tests have been carried out by Fincham and Delerce
(2000) and Scarano and Riethmuller (2000). In all these
approaches, the calculation of the first correlation poses a
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major difficulty, since the velocity gradients are still un-
known. Lin and Perlin (1998) proposed a method of
achieving this first step, through a complex algorithm that
reduces the size of the windows.

The deformation of the particle patterns causes similar
difficulties in particle tracking velocimetry algorithms. A
discussion can be found in Ishikawa et al. (2000), who also
propose a solution involving the velocity gradient tensor.

An additional problem arising at high velocity gradients
has been pointed out only recently by Wereley and Mein-
hart (2001). In PIV, a velocity is calculated using the dis-
placement of particles during a short time interval, i.e. one
obtains an average velocity of the particle on its trajectory
between the two recorded positions. If the velocity is not
constant along this trajectory, which is the case when the
gradients are high, this average value can be substantially
different from the one at the beginning of the trajectory (the
particle position in the first image), which is the point the
calculated velocity is usually assigned to. It will be shown
below that the resulting error in the velocity field can be an
order of magnitude higher than the generally admitted
uncertainty of PIV measurements in nearly uniform flows.

In the following, we intend to analyse quantitatively
these two problems arising at high velocity gradients, and
to find ways of reducing the associated errors.

2
Lagrangian displacement and window shifting

2.1
Background
In cross-correlation PIV, the velocity field of a fluid
(projected onto a plane) is deduced from the two-dimen-
sional displacement Dr of small tracer particles, whose
images were recorded at two times, separated by Dt.
Assuming that Dt is ‘‘sufficiently’’ small, the particle/fluid
velocity v is derived from the approximate relation

Dr � mDt ð1Þ

(This approach does not take into account possible dif-
ferences between the particle and the fluid velocities, a
point which will not be addressed here.) Equation (1)
represents the first term of a Taylor series expansion of the
velocity field, which, in general, depends on both time and
space coordinates. For nearly uniform velocities (on the
scale of the correlation window), this approximation is
justified. However, when spatial gradients and/or the time-
dependence of the velocity field get larger, noticeable dif-
ferences can appear between the measured velocity Dr/Dt
and the real velocity v. In this section, we calculate higher-
order terms of the expansion in Eq. (1), in order to
quantify the measurement errors appearing at high
velocity gradients. We also demonstrate analytically and
numerically how a simple technique consisting of a sym-
metric correlation window shift can drastically reduce
these errors.

2.2
Displacement of one particle
In the following, we treat two-dimensional displacements
in a two-dimensional domain, which corresponds to the

most commonly used PIV applications. Consider a particle
which, at an initial time ti, is located at a position ri, and at
a final time tf at rf (see Fig. 1). We seek an expression for
the displacement Dr=rf)ri of the particle in a given
velocity field v(r,t), as a function of the different deriva-
tives of v and the time interval Dt=tf)ti. The derivatives are
evaluated at a fixed point O, which is located close to ri and
rf, and can be interpreted as the measurement location
(e.g. a predefined grid point or centre of a correlation
window; see Fig. 1). It is the point at which the velocity
needs to be known with precision. Without loss of gen-
erality, its coordinates are set to r=0. Similarly, the origin
of time (t=0), representing the time associated with the
velocity measurement, is chosen close to ti and tf (this
point is discussed further in the Appendix). Throughout
this paper, all lengths and displacements are measured in
pixel units. They can, of course, be converted to physical
quantities of the flow field under consideration, using
appropriate scaling factors.

We suppose that the non-uniform and time-dependent
velocity field

m r; tð Þ ¼ vx x; y; tð Þ
vy x; y; tð Þ

� �
ð2Þ

can be expanded into a Taylor series around t=0 and the
point O with respect to time t and the Cartesian coordi-
nates x (horizontal) and y (vertical).

Up to second order, this Taylor expansion can be
written in compact form as:

m r; tð Þ ¼ m0 þ m0rþ t@tmþ
1

2
rym00xr

rym00yr

 !
þ 1

2
t2@ttv þ t@tv

0r

ð3Þ

where r�=(x,y) is the conjugate of r ¼ x
y

� �
and

m0 ¼ m
r ¼ 0

t ¼ 0

� �
m00x ¼

@xxvx@xyvx

@yxvx@yyvx

� �

m0 ¼
@xvx@yvx

@xvy@yvy

� �
m00y ¼

@xxvy@xyvy

@yxvy@yyvy

� �

with all derivatives being evaluated at r=0 and t=0.

Fig. 1. a Non-symmetric and b symmetric translation of correla-
tion windows with respect to the measurement point O
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The full expressions for Dr, extending Eq. (1) to second
and third order in Dt, are derived and given in the
Appendix. Here, we focus on two special cases that are of
particular interest for PIV algorithms. Both are related to
the now frequently used technique of correlation window
shifting, in which a first estimate of the velocity field is
obtained using identical windows in both images, and
where a second computation of correlation is then per-
formed, with the windows shifted by an amount corre-
sponding to the mean local particle displacement. The aim
is to reduce the apparent particle displacement between
the shifted windows as much as possible to zero, in order
to minimize particle loss and the associated noise effects
(see e.g. Raffel et al. 1998).

The first case corresponds to the situation depicted in
Fig. 1a, where only the window in the second image is
shifted according to the measured displacement, the one in
the first image remaining centred at the measurement
point O. In this ‘‘non-symmetric’’ situation, the particle
displacement is given by (see Appendix):

Dr ¼ m0Dt þ Dt2

2
ðm0m0 þ @tmÞ þ O Dt3

� �
ð4Þ

i.e. the displacement error is, as expected, of order O(Dt2).
We shall see in Sect. 6 that a PIV algorithm using window
deformation can easily handle velocity gradients of the
order of ||v¢Dt||=0.2. If at the same time the displacement
is about ||vDt||=10 pixels, i.e. about a third of a typical
window size of 32 pixels, which is the upper displacement
limit proposed by Adrian (1991), the absolute error be-
tween the measured displacement of the particle and the
‘‘displacement’’ v0Dt associated with point O can amount
to as much as 1 pixel. This is an order of magnitude higher
than the generally admitted uncertainty of classical cross-
correlation algorithms, which is about 0.1 pixel (Raffel
et al. 1998). It is therefore useful to look for a different
procedure, for which this error is considerably smaller.

In the second case, the windows used by the algorithm are
translated in a symmetric way (see Fig. 1b). This method
was proposed recently by Wereley and Meinhart (2001).

The result of the correlation process gives the dis-
placement of a particle whose initial and final positions are
symmetric with respect to point O. In this situation, we
find that the second-order term vanishes, and the dis-
placement of the particle becomes, at third order (see
Appendix):

Dr ¼ m0Dt þ Dt3

�
� m0m0

12
þ 1

24

m
y
0 m00xm0

my0 m00ym0

0
@

1
Aþ 1

12
@tm
0m0

� 1

12
v0@tmþ

1

24
@ttm

�
þ OðDt4Þ ð5Þ

When applying the general result in Eqs. (4) and (5) to
the special case of axisymmetric flow, expressions identical
to those given by Wereley and Meinhart (2001) are ob-
tained. For ||v¢Dt||=0.2 and ||vDt||=10 pixels, the first term
of the error is of the order of 0.03 pixel. Assuming that, in
most cases, the other terms are of similar magnitude or
less, and partly compensate each other, this error between

the velocity in O and the displacement Dr/Dt measured by
the algorithm can be neglected, since it is smaller than the
noise in the measurements (of the order of 0.1 pixel). If
one nevertheless wishes to reduce this error, two solutions
are possible: either decreasing the time separation between
the two images or removing the error numerically, using
Eq. (5) and an approximation of the velocity gradients.
However, the second solution amplifies the noise present
in the measurements and should be used with caution.

2.3
Numerical test of window shifting methods
The previous results were derived for the displacement of a
single particle. In the following, we analyse the effect of a
non-symmetric and a symmetric translation in an actual
PIV algorithm, where average velocities in more or less
extended correlation windows are calculated. We tested
the two schemes on a velocity field containing a high
velocity gradient, using artificial images. We used a hori-
zontal and stationary velocity field given by:

m ¼ Sx=Dt
0

� �
ð6Þ

For such a field, the exact displacement, over a time Dt,
of a particle which is at a position x on the first image is:

Dr ¼ x eS � 1ð Þ
0

� �
ð7Þ

For the test, we have chosen a relatively high velocity
gradient parameter S=0.2, which is, however, still small
enough for the algorithm to find the correlation peaks
efficiently. The first and second images are created using
this displacement (see Sect. 5 for details on the creation of
the images). We then calculate the error of the horizontal
‘‘displacement’’ vxDt, obtained using an algorithm which
translates windows of 32 pixels in either a non-symmetric
or a symmetric way. The results are shown in Fig. 2. The
agreement between the calculated errors and the theoret-
ical predictions in Eqs. (4) and (5) is very good. Both show
that the error remains weak in the symmetric case,
whereas it is important and cannot be neglected in the
non-symmetric case.

Fig. 2. Error for the velocity field in Eq. (6): open squares, non-
symmetric algorithm (as in Fig. 1a); diamonds, symmetric
algorithm (as in Fig. 1b). Solid lines correspond to the theoretical
predictions of Eqs. (4) and (5)
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In the literature, artificial images are sometimes con-
structed using a displacement v0Dt instead of the real
displacement of each particle in the velocity field. [This
can be shown, for example, for some tests presented by
Nogueira et al. (1999).] The error discussed in this section
is then hidden, and mostly not considered further, despite
its importance.

An additional error arises due to the finite size of the
window. Indeed, the algorithm averages the velocity of the
particles over the whole window. This introduces a sys-
tematic error equal to 1

24 W2Dtr2m; where W is the size of
the windows. This result can be obtained by integrating
Eq. (36) (in the Appendix), with the position ri of the
particle varying in the initial window (translated by
)vDt/2). This error remains negligible as long as W is
smaller than the typical wavelength of the flow. If the
wavelength becomes too small, appropriate algorithms,
presented e.g. by Nogueira et al. (1999) or Jambunathan
et al. (1995), should be used. This error is not present in our
tests (including the ones in Sect. 5), since r2m ¼ 0 here.

In conclusion, the use of symmetric window shifting
highly improves the performance of a cross-correlation
algorithm by reducing the error between velocities and
particle displacements to a lower value than the mea-
surement noise due to other effects, in particular in the
presence of high velocity gradients, which deform the
correlation peaks. It may be noted that, in principle, the
same increase in accuracy is obtained with a non-sym-
metric algorithm when redefining the measurement posi-
tion as the mid-point between the two windows, as is done
in some PIV algorithms. The inconvenience of this is that
the final velocity field is defined on an irregularly spaced
grid, requiring complex interpolation procedures (possibly
introducing other errors) onto a regular grid for further
processing. In the following, we assume that symmetric
window shifting is used, and the error discussed in this
section is therefore disregarded.

3
Velocity gradients and window deformation
The main error of PIV algorithms is a noise in the mea-
surements, linked to the width and maximum value of the
correlation peak. If the peak is too low, the noise in the
correlation function introduces spurious vectors in the
velocity field. If the peak is too wide, the determination of
the position of its maximum is less accurate and the cor-
responding displacement is noisy. (Broad peaks can also
be caused by a turbulent flow field with scales smaller than
the correlation window size, a situation not considered in
this paper.) It is thus important to keep the correlation
peaks as high and narrow as possible. In the following, we
analyse the effect of a velocity gradient on the shape and
height of two correlation functions: one using symmetri-
cally shifted square windows, and one using windows
which are deformed according to the velocity gradients
present in the flow.

3.1
Non-deforming correlation function
For two images of intensities Ii(r) and If(r) at times ti and
tf, respectively, we introduce a new symmetrical correla-
tion function, defined by:

RðlÞ ¼
R

w Iiðr� 1=2ð Þ � �IIiÞ Ii rþ 1=2ð Þ � �IIið Þ dr

rirfð Þ1=2
ð8Þ

where

�II ¼ 1
W2

R
w l rð Þ dr r ¼

Z
w

l rð Þ � �IIð Þ2 dr

and W is the side length of a square window centred on the
desired location. This function is an adaptation of the
standard correlation coefficient (e.g. see Raffel et al. 1998)
to the case of a symmetric translation of the windows
according to the procedure presented in the previous
section. It is normalized in a way to take values between
)1 and +1. This function is defined for continuous values
of r, even if the real algorithm only uses discrete positions.
The effect of the discretization is a slight increase in the
effective size of the particles (see Westerweel 1993, ch. 3),
which remains small if their diameter is bigger than about
1 pixel.

We now assume that the velocity field v(r) is given, and
we call u=vDt the ‘‘displacement’’ field. A particle at a
position ri on the first image is shifted by an amount Dr(ri)
in the second image given by [see Eq. (39) in the Appen-
dix]:

Dr rið Þ ¼ u0 þ u0 � riþ
1

2
u0 � u0 þ O Dt3

� �
ð9Þ

In the presence of a velocity gradient, the displacements
of the particles are not identical over the whole window
(Fig. 3a). The correlation peaks of different particles are
located at different positions (Fig. 3b) and cannot interfere
constructively as in the case of weak velocity gradients.
The correlation peak is thus wider and lower than it is in

Fig. 3. a Displacement of particles for horizontal shear.
b Corresponding correlation function. c Average of the
correlation function over different particle distributions
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the absence of a velocity gradient. This effect is evaluated
quantitatively in the following.

3.2
Ensemble average
The shape of the correlation peak highly depends on the
distribution of the particles. In order to recover a universal
property, we consider the average over all possible particle
distributions. The resulting correlation peak then only
depends on the velocity field, since the average smoothes
all the peaks coming from individual particles in a given
single distribution. Figure 3c shows this effect schemati-
cally. This behaviour was also verified numerically using
artificial images; an example is shown in Fig. 4.

For the following calculations, we use a constant par-
ticle density C, as proposed by Adrian (1988). The symbol
< > denotes the average over all possible particle distri-
butions.

Westerweel (1993) showed (his Eq. 2.49) that:

\Ii r0ð ÞIf r00ð Þ[�\Ii r0ð Þ[\If r00ð Þ[
¼ CFI0

r00 � r0 � Dr r0ð Þ½ � ð10Þ

where

FI0
lð Þ ¼

Z
I0 rð ÞI0 rþ 1ð Þ dr ð11Þ

FI0
is the self-correlation function of the intensity of one

particle, denoted by I0(r). If the windows are large enough,
we can assume that �II, which is the mean value of the
intensity over the window, is the same for all particle
distributions and equal to the ensemble average of the
intensity <I>. Similarly, we assume that r, which is the
integral of the variance of the intensity over one image, is
given by < I � �IIð Þ2 > W2, which can be simplified using
Eq. (10) into CW2FI0

ð0Þ. The expression of the average of
the correlation function can then be calculated using
Eq. (10):

\R lð Þ[¼ 1

W2FI0
0ð Þ

Z
W

FI0
l� Dr r� 1=2ð Þ½ � dr ð12Þ

This result means that the correlation function is the
average of the self-correlation function, centred on the
displacement Dr(r), for r varying in the initial window. For
small velocity gradients, the displacement is nearly uni-
form over the window, and can be approximated by u0.
Equation (12) then simplifies into:

\R lð Þ[¼ FI0
ðI� u0Þ
FI0

0ð Þ ð13Þ

This means that, for uniform flow, the correlation peak
is exactly equal to the self-correlation function FI0 centred
on the displacement u0.

3.3
Height of the peak in the presence of shear
In order to calculate the height of the correlation peak, we
define the intensity of one particle as:

I0 rð Þ ¼ I0;maxe
� r2

d2=8 ð14Þ

It is a Gaussian profile of parameter d2/8, which is a
close approximation of experimental particle image
intensity profiles, and for which 95% of the intensity is
inside a circle of diameter d. The self-correlation function
FI0 is also a Gaussian of parameter d2/4. We consider a
shear ‘‘displacement’’ field defined by:

u ¼ Sy
0

� �
ð15Þ

On the x axis, the velocity is zero, and the correlation
function for windows centred on this axis can be calcu-
lated using Eqs. (12) and (39):

\RðlÞ[¼e
� r2

d2=8 d

2SW

�
erf 2

lz

d
þ

Sly

d
þ SW

d

� �

� erf 2
lz

d
þ

Sly

d
� SW

d

� �� ð16Þ

‘‘erf ’’ is the error function (integral of the Gaussian
function vanishing in 0), and l=(lx,ly). This formula was
recently given by Hart (2000), who proposed Eq. (12) as a
conjecture without derivation. Cuts of this function along
the x and y axes are plotted in Fig. 5 for different values of

Fig. 4. Correlation functions obtained from test images with a
horizontal shear of magnitude S=¶yux=0.4 (window size
W=32 pixels). a Typical result obtained at one position.
b Average of 400 correlation functions obtained at different
locations with the same mean velocity
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the shear S. The agreement with the correlation functions
obtained numerically, using artificial images (see Sect. 5
for details) and a non-deforming algorithm, and also
shown in these plots, is very good. [The slightly negative
values are due to the use of fast Fourier transforms (FFTs)
in the correlation process.] It is obvious that increasing
velocity gradients tend to widen the correlation peak. At
high values of the shear, the peak even becomes flat,
making the determination of the location of its maximum
impossible.

The height of the peak, found for l=0, is equal to:

\Rmax[¼
d

SW
erf

SW

d

� �
ð17Þ

It is interesting to note that the height only depends on
the non-dimensional shear parameter SW/d. Figure 6
shows how it decreases with increasing SW/d. The
numerical results found with artificial images are again
very close to the theoretical predictions. A similar analysis
was made by Huang et al. (1993a) for particles with a
binary intensity (black or white). The same parameter was
derived, although their analytical expression for the peak
intensity was different.

The analytical and numerical results in this section
demonstrate how the presence of velocity gradients widens
and lowers the cross-correlation peaks when (symmetri-
cally shifted) rigid correlation windows are used. For high
gradients, it is thus necessary to introduce a new corre-
lation function.

3.4
Deforming correlation function
Huang et al. (1993b) proposed to deform the correlation
windows, according to the velocity gradients present in the
flow, in order to increase the height of the correlation
peak. This leads to a new correlation function defined by:

RðIÞ ¼
R

W ½Iiðr� 1
2� u0r

2 Þ � �IIi�½Ifðrþ 1
2

u0r
2 Þ � �IIf � dr

ðrirfÞ1=2
ð18Þ

where

u0 ¼ @xux @yux

@xuy @yuy

� �

The same calculation as in Sect. 3.2, using Eqs. (1) and
(39), yields an average correlation function independent of
the window size at second order in Dt:

\RðIÞ[¼ FI0
1þ u0=2ð Þ l� uð Þ½ �

FI0
0ð Þ ð19Þ

For this correlation function, the height of the peak is
always equal to 1. Its width increases only by 25% for a
velocity gradient of 0.5, whereas it was multiplied by a
factor of 4 with the non-deforming algorithm. For the
shear flow given by Eq. (15), the average correlation
function is:

\RðIÞ[¼ exp �
4 lz þ Sly

� �2

d2
�

4l2
y

d2

 !
ð20Þ

A cut along the x axis gives the same curve as without
shear (i.e. the dotted line in Fig. 5a). On the vertical axis, it
is very close to the curve without shear.

Equation (19) predicts a constant peak height of 1. The
numerical values in Fig. 6, although close to 1 (and always
much larger than those resulting from the non-deforming
algorithm), slightly decrease with increasing shear for a
given window size. This may be due to the fact that not
only the correlation windows, but also the individual
particle images, are deformed by the algorithm; this is not
taken into account in the theory.

Fig. 6. Height of the correlation peak as a function of the
normalized horizontal shear stress for different window sizes:
squares, W=16; diamonds, W=32; circles, W=64. Particle diameter
in the test images is d=4. Open symbols: without window
deformation [the solid line represents the prediction in Eq. (17)].
Filled symbols: with window deformation according to Sect. 3.4

Fig. 5. a Horizontal and b vertical cut through the correlation
functions for horizontal shear flows (Eq. 15), obtained from test
images (particle diameter d=4, window size W=32 pixels):
squares, S=0.05; diamonds, S=0.2; triangles, S=0.5. The solid lines
correspond to the theoretical predictions of Eq. (16), and the
dotted line to the result for uniform flow (S=0)
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It may be noted here that the use of deformed (as well
as translated) correlation windows also greatly reduces the
unwanted effects of particles entering or leaving the win-
dows between successive images (Huang et al. 1993b),
since these deformations are, by definition, designed to
match the particle motion.

The results of this section clearly demonstrate the
usefulness of window deformation in cross-correlation
PIV, when high velocity gradients are present. However,
Eq. (19) was obtained using Eq. (39), which is only a
second-order approximation of the displacement of a
particle. When taking into account the third-order terms,
the errors discussed in Sect. 2 reappear. Moreover, the
height of the peak decreases when v00 is not zero. One way
to prevent this would be to define yet another correlation
function using the third-order approximation of the dis-
placement given in Eq. (36), but the resulting expressions
and calculations become exceedingly complex. An alter-
native was proposed by Jambunathan et al. (1995) and
Nogueira et al. (1999). Unfortunately, their techniques
require quite high computing power, since the algorithm
must perform at least 30 iterations, whereas the present
algorithm converges in only two or three iterations (see
Sect. 6). Their method becomes necessary for flows with
very small wavelengths, of the order of the window size or
less.

4
Gaussian filter for fixed windows
For the calculation of the correlation function in Eq. (18),
the algorithm deforms the windows according to the
velocity gradients of the flow. Since the velocity field is
completely unknown in the beginning, several iterations
must be performed in order to converge towards a solution
where velocities and velocity gradients are known together.
The main problem is to obtain a sufficiently accurate result
in the first run. Without the velocity gradients, the algo-
rithm cannot calculate the deforming correlation function
given by Eq. (18) in this first run. It must find the dis-
placement using the non-deforming correlation function in
Eq. (8). If the gradients are high, the associated effects
discussed in Sect. 3 lead to increased noise in the results,
resulting in turn in a large number of spurious vectors,
which can be very different from the real velocity vectors. If
there are too many of them in the first iteration, the velocity
gradients cannot be determined correctly for the second
iteration, and the iterative process cannot continue suc-
cessfully. We thus need to increase the height of the peaks,
even if some accuracy is lost. The aim is to obtain at least a
rough approximation of the velocity gradients, so that the
next iterations are carried out correctly.

The height of the correlation peak for non-deformed
windows is linked to the parameter SW/d through Eq. (17)
(see also Fig. 6). A recipe for increasing its height pro-
posed in the literature (Fincham and Spedding 1997; Lin
and Perlin 1998) is to decrease the size W of the correla-
tion window. But by doing this, the number of particles in
the window also decreases and the correlation peak is
more sensitive to noise. Another idea would be to increase
the diameter d of the particles. However, in an experiment,

there is a maximum allowable size of the particles if one
wants them to be accurate tracers that move very closely
with the fluid velocity. One way around this problem,
which has been used before, consists in optical defocusing
of the flow images at acquisition, leading to bigger
apparent particle images. The drawback is that, for higher
iterations of the algorithm, the accuracy will always be
limited by the width of the auto-correlation function of the
particle intensities (Eq. 18), i.e. it will be noisier than it
could have been without defocusing.

In the present algorithm, the idea is to increase the size
of the particles numerically for the first run only, by
applying a Gaussian filter to the images, i.e. an operation
similar to numerical defocusing. We convolute the image
intensity matrix with a Gaussian function of parameter
d2/8 defined by:

G rð Þ ¼ 8

pd2 e
� r

d2=8 ð21Þ

This technique has the following advantages:

– Large sizes of the correlation window can be used,
keeping the number of particles images in them high.

– The actual particles in the fluid do not need to be large.
They can be chosen small enough to be considered as
accurate tracers.

– The noise is smoothed during the filtering. The signal to
noise ratio does not decrease in the presence of the
filter.

– The unfiltered images are not lost, they are available for
further iterations of the algorithm. The error, which
scales on the diameter of the particles, is thus inde-
pendent of the velocity gradient.

Figure 7 shows a typical correlation function obtained
without and with a Gaussian filter. Although it might seem
counter-intuitive, the height of the peak increases when
the images are filtered. However, the width of the peak
increases simultaneously. This is why this technique
should only be used for the first iteration, where only a
rough approximation of the velocity field is needed. The
resulting velocities are not highly accurate, but there are
very few spurious vectors. This is well illustrated in Fig. 8,
where the number of spurious vectors is plotted as a
function of the parameter d characterizing the width of the
filtering function, for the example of a simple shear given
by Eq. (15). For appropriately chosen values of d, the
number of spurious vectors can be decreased by an order
of magnitude with respect to the unfiltered case. This
technique remains efficient in the presence of noise; add-
ing a random white noise to the image, whose amplitude is
20% of the maximum intensity of a particles, does not
significantly change the number of spurious vectors. d
should be chosen so that this number is a minimum. If one
admits that the shear flow used to obtain the result in
Fig. 8 is representative for more general types of velocity
gradients, this would occur for d/SW near unity. This then
leads to an empirical determination of the optimal value
for d:

d � W@rvDt ð22Þ
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where ¶rv represents the maximum velocity gradient
present in the given flow, which, in many cases, can be
estimated roughly beforehand.

The technique of filtering of the images with a Gaussian
function thus seems very effective for the determination of
a rough approximation of the velocity field, without
knowledge of the velocity gradients. In the PIV algorithm
used in the present study and described below, it is used
for the first correlation in an iterative process.

5
Description of a new PIV algorithm
A cross-correlation PIV algorithm was developed, using
the above techniques: symmetric translation of the win-
dows, Gaussian filtering, and window deformation
according to the velocity gradients. It is briefly outlined in
the following.

5.1
First correlation
Before the first cross-correlation run, the two images are
filtered with the Gaussian function defined in Eq. (21), with
the parameter d chosen according to Eq. (22). The images
are divided into correlation windows in the standard way,
centred on the points of a grid, where the velocity vectors
are to be calculated. The correlation function of a given
window pair is obtained by a FFT routine, as recommended
by Raffel et al. (1998, Sect. 5.4.4), but initially without the
use of the weighting factor compensating the in-plane loss
of pairs. This factor strongly amplifies the correlation val-
ues for large displacements, which may lead to situations
where noise-generated peaks become larger than those
associated with the real particle displacement, resulting in
spurious calculated velocity vectors. Once the maximum of
the unweighted function is detected, the precise peak
location is determined to subpixel accuracy, using a three-
point Gaussian-fit estimator (Westerweel 1993, ch. 3.8).
For this, the in-plane loss correction is now applied for
better accuracy. The location of the correlation peak cor-
responds to the velocity at the centre of the window. At the
end, spurious vectors are detected and replaced by a
median-filter procedure (see Westerweel 1993 for details).
If the values of window size W and Gaussian filter
parameter d were chosen in a way to roughly comply with
the condition in Eq. (22), only 2–5% of all velocity vectors
would be erroneous (see Fig. 8), which is a sufficiently low
fraction to guarantee the successful start of the iteration
process. If significantly more vectors are bad, the first
correlation must be repeated with more suitable values for
W and d.

5.2
Further iterations
In the subsequent iterations, the unfiltered original images
are used. For an iteration number j, the windows are
translated and deformed according to the displacement
field uj)1 calculated in the preceding iteration j)1. The
displacement gradients u¢ are obtained through a centred
finite-difference scheme. For each correlation window, the
algorithm rebuilds two new intensity functions
�IIi rð Þ and �IIf rð Þ; where r=(x,y), and x,y range from )W/2 to
+W/2:

�IIi rð Þ ¼ Ii r� uj�1

2 �
u0j�1r

2

	 

�IIf rð Þ ¼ If rþ uj�1

2 þ
u0j�1r

2

	 


ð23Þ

The value of the intensity Ii and If between pixels is
found by bi-linear interpolation between the four neigh-
bouring values (e.g. see Nogueira et al. 1999). A correlation
function of these new intensities is calculated [equal to the

Fig. 8. Fraction of false vectors (error larger than 2 pixels)
obtained for images filtered with a Gaussian function defined by
Eq. (21). The velocity field is a horizontal shear (Eq. 15) with
S=0.15. Window size is W=64 pixels. Circles, without noise;
diamonds, with 20% noise

Fig. 7. Typical correlation functions obtained for a velocity field
given by Eq. (15) with S=0.2, with a window size W=64 pixels:
a without, and b with convolution of the image with a Gaussian
(Eq. 21) of parameter d=9 pixels
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deforming correlation function in Eq. (18)] in the same
way as in the first iteration, using FFT, and the location
lmax of its peak is determined to subpixel accuracy. The
new displacement uj is then given by:

uj ¼ uj�1 þ lmax ð24Þ

False vectors are again treated using a median filter
procedure.

These iterations are carried out two or three times,
depending on the strength of the velocity gradients.

5.3
Last iteration
In the previous iterations, a relatively coarse grid is used
for rapidity of the algorithm. In the final iteration, a
refinement of the spatial resolution is achieved by
increasing the number of vectors, and possibly by reduc-
ing the size W of the correlation windows. Otherwise, the
procedure is the same as for the other iterations. The final
displacement field has a high spatial resolution and high
accuracy.

6
Error estimates and optimization

6.1
Procedure and results
We carried out tests with the above algorithm to determine
the error caused by velocity gradients. For this purpose,
pairs of artificial grey-scale images (256 intensity levels,
8 bits/pixel) were created numerically. Particles with a
Gaussian intensity profile given by Eq. (14), with a diam-
eter of d=2 pixels, were introduced on the first image with
an average density of C=0.02 particles/pixel. This corre-
sponds to about 20 particles in a window of 32·32 pixels.
The new positions are then calculated using the exact
Lagrangian displacement of the flow under consideration,
and the particles are introduced on the second image. In
order to achieve more typical experimental conditions, a
random white noise with values between zero and 10% of
the maximum intensity of the particles was added to each
pixel of both images. The average normalized cross-cor-
relation coefficient between ‘‘clean’’ and ‘‘noisy’’ images
obtained in this way is close to 0.955.

We used shear flows defined by Eq. (15), with a shear
parameter S varying from 0 to 0.5. For such flows, the
velocity gradients are uniform. The following results are
therefore mainly representative for flows with slowly
varying velocity gradients (on the scale of the correlation
window), e.g. flows with large vortices or large expansion
or shear areas. The average ‘‘root-mean-square’’ error
between the true displacement u and the displacement
umeas. found by the algorithm, defined as

erms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
\ u� umeask2[
��q

ð25Þ

is calculated. The average is performed over all vectors
corresponding to particle displacements of up to a third of
the window size W, which is the generally admitted max-
imum allowed displacement for the correlation to work

properly. By doing this, the peak locking error is also
effectively averaged out.

The results of these tests are presented in Fig. 9 for
three different window sizes and a varying number of
iterations. As a general trend, one observes a faster in-
crease in the error for larger window sizes, which is a
consequence of the associated decrease in the height of the
peak (see Fig. 6). For a conventional algorithm without
window deformation, the error increases rapidly with the
velocity gradient. For example, for a window size
W=32 pixels, it already reaches 0.3 pixels for a relatively
moderate displacement gradient of S(=du/dy)=0.1. These
results are in agreement with previous calculations made
by Raffel et al. (1998). With window deformation, the error
increases much more slowly, even after very few iterations.
For the same conditions as above (W=32 pixels, S=0.1),
the error is divided by a factor of 10 after only the second
iteration. It is important to notice that it is not necessary
to carry out more than four iterations, since no further
increase in accuracy is obtained. Two or three iterations
are even sufficient in the case of moderate velocity

Fig. 9a–c. Rms errors obtained with artificial images of simple
shear flow (Eq. 15): circles, algorithm without window deforma-
tion; squares, diamonds, triangles, inverted triangles, with
window deformation after 1, 2, 3 and 4 iterations, respectively.
Window sizes: a W=16 pixels; b W=32 pixels; c W=64 pixels
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gradients. Supposing that enough iterations are made so
that the calculated displacements converged, the error is
found to remain almost constant up to a critical value of
the displacement gradient, above which it then increases
rapidly.

The behaviour of the rms error shown in Fig. 9 for
simple shear flows is representative of other more general
flows with approximately constant gradients. As an illus-
tration, Fig. 10 compares the results for four different
linear flows: simple shear (Eq. 15), one-dimensional
stretching (Eq. 6), plane stagnation point flow, and solid-
body rotation. The latter two have displacement fields
given by:

u ¼ Sx
�Sy

� �
and u ¼ �Sy

Sx

� �
ð26Þ

respectively. For these tests, the correlation window size is
W=32 pixels, and two iterations were carried out. The
overall evolution of the error with the velocity gradient
parameter S is quite similar in all these cases.

6.2
Optimum time separation and window size
The preceding results may be used to determine the
optimum time separation Dt, which should be chosen in a
given experiment, i.e. the separation which minimizes the
relative error in the velocity measurements, provided the
algorithm in the preceding section is used, with a sufficient
number of iterations. Let v(r) be the experimental velocity
field, which, up to a scaling factor determined by the
optical arrangement, is given in pixels per unit time. We
further let ¶rv represent the maximum velocity gradient in
this flow. The corresponding displacement field and dis-
placement gradient are u=vDt and ¶ru=¶rvDt, respectively.
The relative measurement error is given by

ercl ¼
erms

uk k ¼
erms

mDtk k ð27Þ

At first sight, Eq. (27) would suggest that the relative
error decreases with increasing Dt, so that the latter should
be chosen as high as possible. However, Fig. 9 shows that
the absolute error erms tends to increase with the

displacement gradient, and therefore also with Dt, which
may work against the positive effect of increasing dis-
placement u. In order to assess the net result, it is useful to
rewrite the relative error as

erel ¼
erms

@ru

@r

mk k ð28Þ

The second term is entirely determined by the flow field,
and independent of Dt; it is the inverse of a characteristic
length scale L of the velocity field. The first term depends
on the time separation via ¶ru. Supposing erms varies
approximately as in Fig. 9, this term is minimum when the
displacement gradient ¶ru equals some optimum value
Sopt, which is a function of the correlation window size. We
find Sopt[0.3, 0.2, 0.05 for W=16, 32, 64 pixels, respec-
tively. These values correspond to the black dots in Fig. 9.
They are found by minimizing the slope of the line joining
the origin and a given data point in Fig. 9. The first term in
Eq. (28) corresponds to this slope. For a given velocity
field with a gradient ¶rv, this condition on the displace-
ment gradient leads to a first estimate of the optimal time
separation:

Dt1 �
Sopt

@rv
ð29Þ

An additional well-known limitation for Dt is given by
the fact that the particle displacement between images
should not exceed about a third of the correlation window
size (Adrian 1991), in order to prevent excessive in-plane
loss of pairs in the first correlation run with fixed win-
dows. The corresponding upper bound for the time sep-
aration is

Dt2 �
W

3 vk k ð30Þ

In summary, since the time separation should never
exceed this limit, the condition given in Eq. (29) should be
modified into:

Dt ¼ min Dt1;Dt2ð Þ ð31Þ

As a final result, an estimation of the minimum relative
error as a function of the flow length scale L, achievable

Fig. 10. Rms errors obtained with artificial images and different
types of velocity gradients. Algorithm with W=32 pixels, and two
iterations: diamonds, simple shear (Eq. 15); squares, 1-dimen-
sional stretching (Eq. 6); circles, converging/diverging flow (plane
stagnation point); triangles, solid-body rotation (Eq. 26)

Fig. 11. Minimum relative error that can be obtained with the
present algorithm as a function of the characteristic length of the
flow, for different window sizes: W=16 pixels (dotted line);
W=32 pixels (solid line); W=64 pixels (dash-dotted line)
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with the present algorithm, is given in Fig. 11. For this, a
somewhat more conservative absolute error of erms=0.1
was assumed, which is thought to be more representative
of measurements on realistic flows than the values in
Fig. 9. The relative error was calculated in the following
way: for Dt1<Dt2 (i.e. for small length scales L), it is given
by Eq. (28), with ¶ru=Sopt. For Dt1>Dt2 (large L), we use
Eqs. (27) and (30).

The 32-pixel window shows the best overall perfor-
mance. For most length scales, the error is less than 1%.
High deviations are only observed for lengths considerably
smaller than the window size. For characteristic lengths
larger than about 200 pixels, i.e. for nearly uniform flows,
the use of 64-pixel windows leads to more accurate results.
The error for W=16 is twice as high as for W=32 for high
L, due to the reduced maximum allowable displacement;
and even for low L, the gain in accuracy is not very sig-
nificant.

7
Application to experimental images
The techniques and algorithm described in the preceding
sections were used for the experimental study of the
interaction of two co-rotating vortices. The vortices were
generated in water by the impulsive motion, from rest, of
two flat plates, rotated in a symmetric way. They are ini-
tially parallel, laminar, uniform along their axes, and they
have the same circulation and no axial flow in their cores.
Their core diameter is of the order of 1 cm, the distance
between their centres 2)3 cm, and their axial length about
100 cm. This large aspect ratio of the vortex pairs was
necessary to minimize the influence of end effects and
maintain the central part of the flow essentially two-
dimensional for the time of observation.

For the PIV velocity measurements, the flow was seeded
with spherical plastic particles (Optimage Ltd., UK) of
density 1.03 g/cm3 and mean diameter 50 lm. The seeding
density was about 150–200 particles/cm3. Planes perpen-
dicular to the vortex axes were illuminated by a sheet of
light (thickness 3–5 mm) from a 5 W continuous argon
ion laser. Pairs of digital images (1,008·1,018 pixels2, 256-
level grey scale) of the particles in this plane were recorded
using a Kodak Megaplus ES1.0 camera. With the field of
view being about (15 cm)2, the average particle density in
the images was C=0.02–0.03 particles/pixel.

In the example shown here, the approximate values for
the circulation G, core radius a and maximum vorticity x
of the vortices are: G=15 cm2/s, a=5 mm, x=16/s. The
characteristic length scale of the flow is given by the core
radius a; the velocity gradient by half the vorticity; and the
maximum velocity by xa/2. With the particular calibration
associated with the present set-up, this results in
L[30 pixels, ¶rv[8/s and v[240 pixels/s.

These flow characteristics lead to the following set of
optimum parameters for the PIV algorithm. According to
Fig. 11, a window size W=32 pixels would give the lowest
relative error. From this we get Dt1=0.025 s and
Dt2=0.044 s (Eqs. 29 and 30); the optimum time delay
between images is therefore found to be Dt=25 ms
according to Eq. (31). With the velocity gradient param-
eter S=¶rvDt=0.2, Eq. (22) gives the optimum value for the

parameter of the Gaussian filter in the first correlation run:
d[6 pixels.

Figure 12 shows the velocity field obtained from the
particle images of the above flow, using a conventional
algorithm without Gaussian filter or window deformation
on the one hand, and using the present algorithm on the
other. Both use symmetric window shifting and calculate a
field of 60·60 vectors (W=32 pixels, 50% window overlap);
only a fraction of which is shown in the close-up views in
Fig. 12. The conventional algorithm is clearly unable to
give a reliable velocity field in the core of the vortices, in
which the displacement gradients are highest. On the
contrary, the present algorithm still allows a very good
determination of the velocity field in these regions. This
difference in performance is even more visible in the
vorticity distribution, obtained from this data by a stan-
dard finite-difference scheme and shown in Fig. 13.
Whereas the new algorithm gives nearly circular vorticity
contours, the conventional scheme splits each vortex
into a number of smaller patches, creating the false
impression of turbulent motion, although the flow was
clearly laminar at this stage, as shown by previous dye
visualizations.

The vortices in Figs. 12 and 13 later undergo merging
into a single final vortex. At higher Reynolds numbers,
the flow undergoes a three-dimensional instability and
develops smaller structures and intermittent turbulent
motion. These different phenomena have been analysed

Fig. 12. Example of the velocity field obtained using real
experimental particle images of a co-rotating vortex pair flow.
a conventional algorithm; b present algorithm
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quantitatively in great detail, using the PIV procedure and
algorithm described in this paper. The results show
excellent agreement with theoretical and numerical anal-
yses of the same flow. Details of this work can be found in
Leweke et al. (2001), Meunier and Leweke (2001, 2002) and
Meunier et al. (2002).

8
Summary
In this paper, we performed an analytical and numerical
study of the effects of velocity (displacement) gradients in
cross-correlation PIV algorithms with window shifting and
deformation.

Expressions for the error between measured displace-
ment (representing the average velocity of a particle on its
trajectory between the two images) and the displacement
corresponding to the true velocity at the measurement
location were obtained as functions of the velocity field, up
to third order in space and time. These results show that

an important bias error exists, even for moderate
displacement gradients, when correlation windows are
displaced in a non-symmetric way. However, this error is
reduced to a level below the standard noise-related error
when using symmetric translations of the correlation
windows in the two images.

The effect of gradients on the shape and height of the
correlation peaks was also analysed in detail. Analytic
expressions for peak profiles were calculated for both non-
deforming and deforming symmetric algorithms. They
show that the strong broadening of the peak and decrease
in its amplitude, observed in the presence of gradients for
the case without deformation, are strongly reduced when
deforming the correlation windows according to the gra-
dients of the flow.

A method of obtaining a reliable first approximation of
the velocity field, without previous knowledge of velocities
or gradients, is proposed and tested successfully. It is
based on a numerical filtering of the images, which in-
creases the apparent size of the individual particle images
in the first run only.

All theoretical predictions were tested for representa-
tive flow configurations, using artificial images. The
agreement between analytical and numerical results,
as well as between the present general results and
special cases treated in the literature, is found to be very
good.

An iterative PIV algorithm was developed, using the
techniques described in this paper, and adapting the
window deformation technique, initially proposed by
Huang et al. (1993b) to the use of FFTs for increased
processing speed. Error tests performed with artificial
images demonstrate that, even in the presence of relatively
large gradients, only a few iterations with window
deformation are necessary to reduce the error to a level
obtained for almost uniform flows with a non-deforming
algorithm. Based on these error estimates, a practical
guideline for the choice of the optimum time separa-
tion between images is given as a function of the
velocities and gradients present in the flow under con-
sideration.

The increased efficiency and reliability of the present
algorithm with respect to conventional PIV methods was
demonstrated by application to real experimental images
of a flow with concentrated vortices.

Appendix
We seek an expression for the displacement Dr=rf)ri of a
particle in the velocity field given by Eq. (3). At t=ti, the
particle is located at ri, and at t=tf at rf. The origin of time
(t=0) is given by the time at which one wishes to deter-
mine the velocity at the reference point 0 (of coordinates
r=0). All derivatives are taken at this point and time. The
particle trajectory r(t) is calculated by an iterative process
as successive solutions of the differential equation

d

dt
¼ m r tð Þ½ � ð32Þ

at increasing orders of t and r.

Fig. 13. Vorticity distribution calculated from the data in Fig. 12.
Contours are separated by 2/s; dashed contours correspond to
negative vorticity
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At first order, the solution r1(t) of Eq. (32) [using
Eq. (3) taken at order 0] is given by:

r1 tð Þ ¼ ri þ
Z t

ti

m0dt0 ¼ ri þ m0ðt � tiÞ ð33Þ

Introducing this result into (3) leads, at first order, to:

d

dt
¼ m r1 tð Þ½ � ¼ m0 þ m0 ri þ v0tð Þ þ t@tm ð34Þ

The solution of Eq. (34) is the approximation r2(t) of
the trajectory to the second order:

r2 tð Þ¼ riþv0 t� tið Þþ t2� t2
i

t
@tmþ m0ri t� tið Þþ m0m0

ðt� tiÞ2

2

ð35Þ

The third-order approximation r3(t) of the particle
trajectory is found in the same way, the final result being

r3 tð Þ ¼ ri þ
Z t

ti

v r2 t0ð Þ½ �dt0
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– Non-symmetric displacement: For the displacement
corresponding to Fig. 1a, we have ri=0, and the choice
ti=0 and tf=Dt seems appropriate. Using Eq. (35), this
leads to Eq. (4), showing that, in this case, the error
between the measured velocity Dr/Dt, and the true
velocity v0 at the measurement location and at the time
of the first image is of second order in Dt. One could
also choose the origin of time halfway between ti and tf

[see Eq. (38) below], which means that the measured
velocity field is associated with the instant between the
exposures of the two images. In this case, the term
proportional to ¶tv in Eq. (4) would vanish, but the
error, now given by Eq. (39), would still remain O(Dt2).

– Symmetric displacement: For the displacement corre-
sponding to the symmetric window shifting in Fig. 1b,
the following relations hold:

rf ¼ �ri ¼
Dr

2
ð37Þ

tf ¼ �ti ¼
Dt

2
ð38Þ

Introducing Eq. (38) into Eq. (35), we obtain for t=tf:

Dr ¼ m0Dt þ m0riDt þ m0m0
Dt2

2
þ O Dt3

� �
ð39Þ

and, with Eq. (37) and I being the unit matrix

Iþ Dt

m0
m0

� �
Dr� m0Dtð Þ ¼ O Dt3

� �
ð40Þ

This results in

Dr ¼ m0Dt þ O Dt3
� �

ð41Þ

showing that, for a symmetric displacement, the error is
only of order Dt3. The expression in Eq. (5) for this higher-
order term is found by introducing Eqs. (37), (38) and (41)
into Eq. (36).
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