
Extended proper orthogonal decomposition: a tool
to analyse correlated events in turbulent flows

J. Borée

Abstract A tool to analyse correlated events in turbulent
flows based on an extended proper orthogonal decompo-
sition (POD) is proposed in this paper. A general defini-
tion of extended POD modes is presented and their
properties are demonstrated. If the initial POD analysis in
a spatio-temporal domain S concerns, for example,
velocity—the concept of extended modes can be applied to
study the correlation of any physical quantity in any do-
main W with the projection of the velocity field on POD
modes in S. The link with particular associations of POD
and linear stochastic estimation (LSE) recently proposed is
demonstrated at the end of the paper. The method is be-
lieved to provide a valuable tool to extend the well-docu-
mented POD analysis of eddy structures in turbulent flows,
for example, in boundary layers or free shear flows. If
extended modes are velocity modes, spatial and temporal
interactions between eddy structures can be detected and
studied. The rapid development of experimental diagnos-
tic techniques now permit measurements of the concen-
tration in the domain, the velocity of a dispersed phase in
the domain or the static pressure at the boundary together
with the fluid velocity field. Using this method we are
then able to extract objectively the link between the
representative groups of velocity modes and the correlated
part of the concentration, particle motion or pressure
signals.

1
Introduction
The proper orthogonal decomposition (POD) was pro-
posed by Lumley (1967) as an unbiased method for
extracting structures in a turbulent flow. The POD is
optimal as far as the kinetic energy contained in the
successive modes is concerned. This basic statistical tool is
now widely applied for analysing experimental data

obtained with PIV (particle image velocimetry) or rakes
of hot wires. It can also be useful for extracting relevant
information from the large amount of data obtained with
direct numerical simulation or large eddy simulation.

The POD has been applied to many flow configurations.
Berkooz et al. (1993) provide a comprehensive survey of
the early applications. A recent review dedicated to tur-
bulent free shear flows is proposed by Bonnet et al. (2002).
In stationary quasi-parallel turbulent flows—such as jets,
mixing layers and boundary layers—the main goals are to
identify and to analyse the spatial and dynamic properties
of coherent structures embedded in the turbulence and
to construct low-dimensional models that exhibit most of
the coherent properties of the flow (Aubry et al. 1988;
Ukeiley et al. 2001). The use of POD combined with linear
stochastic estimation (LSE) (Adrian 1975) to obtain
relevant boundary conditions for unsteady computations
from a limited number of measurement points is an
important recent development of the technique presented
by Bonnet and Delville (2001) and Bonnet et al. (2002).
A particularly challenging application of the POD is to
derive practical flow sensing and control strategies. The
recent contributions of Picard and Delville (2000) and
Taylor and Glauser (2002) show that a particular combi-
nation of POD and LSE techniques allows the remote
sensing of the velocity field via pressure signals at the wall
or at the free boundary of a round jet, as described at the
end of the paper. The POD analysis is now applied to study
the correlation of any physical quantities such as pressure,
concentration or temperature with the coherent properties
of a given flow.

An extended POD was first defined and used in Maurel
(2001) and Maurel et al. (2001) to study a jet–vortex
interaction in a model representative of internal combus-
tion engine flows (Borée et al. 2002). Extended modes were
introduced using the snapshot method (Sirovich 1987).
The POD modes were first computed in only one sub-
domain S of the measurement domain W. S was located on
the vortex core containing just 3% of the total kinetic
energy in W. For any mode, we were then able to educe in
all W the particular part of the velocity field correlated with
the projection of the velocity on this mode in S.

The goal of this paper is to provide a more general
definition of extended POD modes, independent of the
particular technique used to obtain physical data or to
educe POD decomposition in S. If the POD analysis in
S concerns, for example, velocity, the concept of extended
modes can be applied to study the correlation of any
physical quantity with the velocity field, as will be
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demonstrated. Finally, we will discuss some possible
applications to problems of fluid mechanics of turbulent
flows and the link with particular associations of POD and
linear stochastic estimation (LSE) recently proposed.

2
Definition of POD modes
We consider U(x,y,z,t)=U(X) to be a set of realisations of
the velocity field in the spatio-temporal domain S. The
fields here are all real. The POD modes are obtained by
searching for the deterministic function F(X) that is
most similar to the members of U(X) on average. We
define the inner product (U,V) and the norm
kUk=(U,U)1/2 by:

U;Vð Þ ¼
Xnc

i¼1

Z

S

Ui Xð ÞVi Xð ÞdX ð1Þ

where nc is the number of components of U.
Looking at the function that has the largest mean

square projection is a maximisation problem that leads to
a Fredholm integral value problem, where the kernel is the
two-point correlation tensor Rij(X,X¢)=ÆUi(X)Uj(X¢)æ. The
average operator Æ)æ can be temporal, spatial, ensemble or
phase average depending on the approach used.

We only recall here the major properties of POD
decomposition—see Berkooz et al. (1993) and Delville et al.
(1998) for more details. The integral equation has a dis-
crete set of solutions F(n)(X) and k(n) where (n) is the
order of the orthogonal decomposition. k(n) and F(n)(X)
are respectively the eigenvalues and eigenfunctions of the
two-point correlation tensor. All the quantities are real in
the situation discussed here. The eigenvalues are positive
and k(n)>k(n+1). The eigenfunctions are chosen to be
orthonormal with:

UðnÞ;UðpÞ
� �

¼ dnp: ð2Þ

Each realisation of the random velocity field U(X) may
be reproduced by a decomposition in the eigenfunction:

i¼ 1; . . . ; nc Ui Xð Þ ¼
X

n

aðnÞUðnÞi Xð Þ: ð3Þ

An important property of the decomposition is that the
random coefficients a(n)=(U,F(n)) are uncorrelated with:

aðnÞaðpÞ
D E

¼ kðnÞdnp: ð4Þ

This general statistical theory is very well adapted to
problems in turbulence study as it provides: (i) an optimal
decomposition of the kinetic energy integrated over the
domain S with

U;Uð Þ ¼
X

n

kðnÞ;

(ii) a diagonal decomposition of the correlation tensor

RijðX;X0Þ ¼
X

n

kðnÞUðnÞi ðXÞU
ðnÞ
j ðX0Þ:

x
The following expression (5) for F(p)(X) is derived from

these general properties and will be useful for the

definition of extended modes. By multiplying (3) with the
random coefficient a(p) associated with the projection of
U(X) on mode F(p)(X) and by averaging, one obtains:

aðpÞU Xð Þ
D E

¼ aðpÞ
X

n

aðnÞUðnÞ Xð Þ
* +

¼
X

n

aðnÞaðpÞ
D E

UðnÞ Xð Þ ¼ kðpÞUðpÞ Xð Þ:

Therefore,

UðpÞ Xð Þ ¼
aðpÞU Xð Þ
� �

kðpÞ
: ð5Þ

3
Definition of extended POD modes
We consider a(X¢) to be a set of physical quantities (scalar
or vectors) in a domain W (W can be equal to S, can
contain S or not). The dimension of W is not necessarily
the same as the dimension of S, for example, if a(X¢) is a
pressure signal acquired along a boundary. Each realisa-
tion of a(X¢) is associated with a realisation of the velocity
field U(X) in S.

We define the extended mode number (p) by:

X0 2 X WðpÞa X0ð Þ ¼
aðpÞa X0ð Þ
� �

kðpÞ
: ð6Þ

One can note that for X in the domain S and if a=U,
extended modes WðpÞU ðXÞ restrict to POD mode F(p)(X) by
virtue of relation (5). If the averaging corresponds to an
ensemble average of N independent samples, then WðpÞa ðX0Þ
is easily computed with:

WðpÞa X0ð Þ ¼
XN

k¼1

a
ðpÞ
k

kðpÞN
ak X0ð Þ: ð7Þ

If the averaging corresponds to a time average, then the
domains S and W restrict obviously to spatial domains and
WðpÞa ðX0Þ reads:

WðpÞa X0ð Þ ¼ 1

kðpÞT

Z T

0

aðpÞ tð Þa X0; tð Þdt ð8Þ

where T is the integration time.
For each realisation of the data set a(X¢), we propose

the following decomposition:

aC X0ð Þ ¼
X

n

a nð ÞWðnÞa X0ð Þ

aD X0ð Þ ¼ a X0ð Þ � aC X0ð Þ:
ð9Þ

We stress that a(n) are the random coefficients associ-
ated with the POD problem in the domain S for the
velocity U in the present context.

The following results are then easy to demonstrate
because the random coefficients a(n) are uncorrelated (see
relation (4)):

Proposition I: aC is the only part of the signal a
correlated with U.
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Indeed, for X2S; X¢2W:

a X0ð ÞU Xð Þh i ¼ a X0ð Þ
X

n

a nð ÞUðnÞ Xð Þ
* +

¼
X

n

a nð Þa X0ð Þ
D E

UðnÞ Xð Þ:

Thus,

a X0ð ÞU Xð Þh i ¼
X

n

kðnÞWðnÞa X0ð ÞUðnÞ Xð Þ

by definition (6) of extended modes. Moreover,

aC X0ð ÞU Xð Þh i ¼
X

p

a pð ÞWðpÞa X0ð Þ
X

n

a nð ÞUðnÞ Xð Þ
* +

¼
X

n

X

p

a nð Þa pð Þ
D E

WðpÞa X0ð ÞUðnÞ Xð Þ:

According to (4),

aC X0ð ÞU Xð Þh i ¼
X

n

kðnÞWðnÞa X0ð ÞUðnÞ Xð Þ ¼ a X0ð ÞU Xð Þh i:

Finally haD(X¢)U(X)i=ha(X¢)U(X)i)haC(X¢)U(X)i=0 which
proves proposition I.

Because F(n) is an orthonormal basis, we also conclude
that whatever the mode (n), haD(X¢)a(n)i=0. Note that the
decorrelated part aD(X¢) was omitted in the analysis of
Maurel et al. (2001).

Proposition II: a nð ÞWa
ðnÞ X0ð Þ is the only contribution to

aC correlated with the projection of the velocity field on
mode (n) in S.

Let us call Un(X) the projection of U on mode (n) in S:
Un(X)=a(n)F(n)(X). Using relations (9) and (4), we show
that haC(X¢)Un(X)i=k nð ÞW nð Þ

a X0ð ÞF(n)(X) which proves
Proposition II.

Proposition III:

a X0ð Þa X0ð Þh i ¼ aD X0ð ÞaD X0ð Þh i þ
X

n

kðnÞWðnÞa X0ð ÞWðnÞa X0ð Þ:

The proof of Proposition III is the result of an easy
computation. The energy of the correlated part of the
signal a is therefore decomposed as a sum of contributions
related to each extended modes. Because a POD problem
was solved in the domain S only, this decomposition in W
is not optimal.

4
Comments and concluding remarks
Following the present derivation if we suppose that a mode
or a group of modes in S is associated with a given physical
process, then, for any signal a in the domain W, we provide
an objective way to educe the only part and all the part of
a correlated with this physical process.

If a is a velocity field, this technique can be used, for
example, to study the spatial and temporal interactions
between coherent structures in a flow. For this purpose,
the POD analysis should be restricted to one sub-region of
the measured or computed flow field and extended modes
should be deduced in another region, eventually with a

varying time lag. A basic example is boundary layers where
the spatial and temporal interactions between bursts are
not fully understood. There is a major effort to apply this
knowledge to the optimal control under given constraints
(Aubry et al. 1996). For example, if a low-dimensional
model is identified in a given sub-region of the flow field,
then the evolution of the correlated part is immediately
deduced when extended modes are known.

In free turbulent shear flows, one major challenge
(Fiedler 1998) is to analyse, predict and eventually control
the role of coherent structures on (i) entrainment
and mixing of external fluid, (ii) sound generation,
(iii) transport of a dispersed solid or liquid phase
(Longmire and Eaton 1992). For the experimentalists, it is
difficult to provide simultaneous measurements of various
quantities in a domain, but there have been rapid recent
developments in Laser diagnostic techniques. Suppose that
realisations of the concentration field in S, of the motion of
particles in S or of the static pressure distribution at the
boundary ¶S of the domain have been recorded simulta-
neously with the velocity field U. On the basis of
well-documented analysis of eddy structures in such flows
using POD (Glauser and George 1987; Delville et al. 1998;
Citriniti and George 2000), we are then able to extract in
an objective way the correlation between the representa-
tive groups of velocity modes and the correlated concen-
tration, particle motion or pressure extended modes.

We stated in the introduction that a very important
application of POD studies is devoted to flow sensing and
control. Picard and Delville (2000) with an axisymmetric
jet and Taylor and Glauser (2002), using a backward facing
step with adjustable flap, have shown recently that if a data
base of simultaneous pressure and velocity measurements
is initially obtained, then it is possible to perform a remote
sensing of the velocity field by using LSE (Adrian 1975) to
estimate the instantaneous velocity field from instanta-
neous pressure information. The links with the tool pre-
sented here are established to conclude this paper.

A modified stochastic approach is proposed by Taylor
and Glauser (2002) to deduce estimated random POD
coefficients ~aaðnÞ of the velocity field. The interest of this
method, stressed by the authors, is that the surface pressure
is then viewed as an indicator of the presence of the
conditional structure associated with the projection of
the velocity field on POD mode number (n). The LSE of a(n)

then reads

~aaðnÞ ¼
Xq

j¼1

bnjpj

where pj (j=1,...,q) is the value of the instantaneous pres-
sure at the probe number j. The coefficients bnj are ob-
tained by solving the linear system of equations:

Xq

j¼1

pipj

� �
bnj ¼ aðnÞpi

D E
: for i ¼ 1; � � � ; q

The correlation between the surface pressure and the POD
expansion coefficients is therefore used for the remote
sensing of a velocity field. The properties of this correla-
tion have been demonstrated in the present work. The
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determination of bnj depends on the distribution of the
extended pressure mode number (n) with

Xq

j¼1

pipj

� �
bnj ¼ kðnÞWðnÞpi :

Moreover, by definition of the LSE of a(n), it is easy to
show that

~aaðnÞpi

D E
¼

Xq

j¼1

bnjpjpi

* +
¼
Xq

j¼1

bnj pjpi

� �
¼ aðnÞpi

D E
:

This means that the extended pressure modes

~WWðnÞpi ¼ ~aaðnÞpi

D E
=kðnÞ

of the estimated velocity field are strictly identical to the
extended pressure modes WðnÞpi ¼ aðnÞpi

� �
=kðnÞ of the true

velocity field. This is believed to be an important property
and strength of the methodology proposed by Taylor and
Glauser (2002).

From a different point of view, Picard and Delville (2000),
with similar pressure and velocity data, first used the POD in
order to analyse the pressure signal and then the LSE to
construct estimated velocity modes for each pressure POD
mode. They showed that the use of LSE technique provides a
physical interpretation, in terms of structures, of the pressure
POD modes. These structures were also found to be respon-
sible for the far-field noise emission of the round jet. In order
to show that the LSE estimation of the velocity field (say ~UUn)
from the pressure mode number (n) (say pn) is strictly
identical to aðnÞWðnÞU (see Proposition II, Sect. 3), let us call

pni ¼ pnðXi; tÞ ¼ aðnÞðtÞUðnÞp ðXiÞ ¼ aðnÞUðnÞpi

the value of the projection of the instantaneous pressure
field pi=p(Xi,t) on the pressure POD mode number (n) at
the pressure probe Xi of the boundary ¶S. The LSE of the
velocity field at point X of the domain W then reads:

~UUn X; tð Þ ¼
Xq

j¼1

bj Xð Þpnj

In Picard and Delville (2000), the vectors bj(X) are ob-
tained by solving the linear system of equation

Xq

j¼1

pipj

� �
bj ¼ piUh i

or, by definition of the POD expansion of the pressure field:

Xq

j¼1

X

n

kðnÞUðnÞpi UðnÞpj

 !
bj ¼

X

n

kðnÞ
Xq

j¼1

UðnÞpj bj

 !
UðnÞpi

¼
X

n

aðnÞU
D E

UðnÞpi

UðnÞp being a basis, we conclude that:

kðnÞ
Xq

j¼1

UðnÞpj bj

 !
¼ aðnÞU
D E

¼ kðnÞWðnÞU :

Finally, for any realisation of the pressure field,

~UUn ¼
Xq

j¼1

bjpnj ¼ aðnÞ
Xq

j¼1

bjU
ðnÞ
pj ¼ aðnÞWðnÞU :

Moreover, the LSE of the velocity field from the complete
pressure field reads:

~UU ¼
Xq

j¼1

bjpj ¼
Xq

j¼1

bj

X

n

aðnÞUðnÞpj

 !

¼
X

n

aðnÞ
Xq

j¼1

UðnÞpj bj

 !
¼
X

n

aðnÞWðnÞU :

According to Propositions I and II, Sect. 3, the LSE
estimation of the velocity field from the pressure mode
number (n) is therefore strictly identical to the contribution
of the extended velocity mode number (n). Moreover, the
LSE of the velocity field from the complete pressure field is
the sum of the contribution of the extended velocity modes.

The advantage of the present technique is to provide a
decomposition of the LSE. Moreover, the computation is
direct when the POD decomposition of the pressure is
known. This approach can thus be used to build a low-
dimensional correlated velocity field for remote sensing
and control of the flow.
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