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Abstract Laboratory experiments are performed to
examine eddy time scales in turbulence generated by an
oscillating grid in homogeneous fluid using tanks with
varying depth and fixed high aspect ratio horizontal cross-
section. For high ratios of depth to width, a mean circu-
lation develops in the form of a pair of counter-rotating
vortices. In a new technique, pearlescent dye is employed
to measure eddy time scales and to determine their power
law scaling dependence on the distance from the oscillat-
ing grid. Two scaling regimes are observed, one near the
source of turbulence and one at intermediate depths. At
intermediate depths, the scaling exponent is found to in-
crease if the total fluid depth is larger. We discuss the
significance of these results on the use of the law-of-the-
wall scaling in the upper oceanic mixed layer.

1
Introduction
Though much has been learned about the dynamics of
homogeneous, isotropic turbulence that is uniformly
forced, in many physical systems turbulence is generated
at a localized source and is affected by the presence of
rigid boundaries. The decay with distance from a source is
examined in wind tunnel (‘‘grid generated’’ turbulence)
experiments (Comte-Bellot and Corrsin 1971; Tennekes
and Lumley 1972) and mixing box experiments (‘‘oscil-
lating grid’’ turbulence) (Turner 1973). In wind tunnel
experiments, a uniform mean flow passing through a mesh
creates local horizontally homogeneous turbulence. Aver-
aged over planes, the turbulence parallel to the grid decays
with distance and by the Taylor hypothesis with time as it
is transported by the mean flow away from the source.
Examination of the statistical properties of turbulence in
these experiments is useful, for example, in examining
turbulent wakes behind moving objects.

Mixing box experiments are useful in understanding
the properties of turbulence in circumstances where there
is no mean flow. The experiments are performed in an

enclosed tank and fluid is supplied continuously with
turbulent kinetic energy generated by rapid vertical os-
cillations of a horizontal grid of bars. As in wind tunnel
experiments, the turbulence is shear-free and approxi-
mately horizontally isotropic and homogeneous. Unlike
wind tunnel experiments, however, the supplied energy
remains contained within the finite volume of the box.
Steady state is achieved through a balance between the
energy supplied and the energy lost internally and at the
boundaries.

A large body of work has been devoted to investigating
the spatial decay of turbulence in mixing box experiments
including the works of Thompson and Turner (1975), and
Hopfinger and Toly (1976). They found the following
scaling dependence upon depth, z, measured from a vir-
tual origin which lies close to the grid:

l~zz; ð1Þ
u~KKz�1; ð2Þ
where l is the integral length scale of the turbulence, u is
the rms horizontal velocity, and K, determined by Long
(1978a), parameterizes the turbulent production by the
grid. K depends on viscosity, m, as well as on the stroke
length, frequency, and mesh size of the oscillating grid (S,
f, and M respectively). For an oscillating grid with square
bars, K�f S3/2M1/2, whereas for cylindrical bars, K�(SfM/
m)1/3f S3/2M1/2.

Their experiments were performed in mixing boxes
with a square horizontal cross-section and analyzed
mostly with the use of single-point measurements, such as
laser-Doppler anemometry or hot-wire probes.

In the experiments conducted for this article, a mixing
box with a high aspect ratio (approximately 5:1) horizontal
cross-section was used. As well as enabling a study of the
effect of horizontal confinement upon the turbulence dy-
namics, the tank geometry allows us to employ a new
technique to visualize and measure statistical properties of
the entire turbulent flow field. This technique uses pear-
lescent dye and digital image processing to measure eddy
time scales as a function of the distance from the oscil-
lating grid throughout the flow field. The purpose of this
paper is to use this technique to investigate the effects of
the high aspect ratio geometry and the position of the
bottom boundary upon the spatial dependence of turbu-
lence time scales in a homogeneous fluid.

In Sect. 2, the experimental configuration and the
analysis technique are described. Sections 2.1 and 2.2 de-
tail the experimental set-up and the method by which the
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digital images are produced. Further processing of the
images is described in Sects. 2.3 and 2.4 where the calcu-
lations of eddy time scales and velocities are described,
respectively. Section 3 contains qualitative observations of
the experiments. In Sect. 4, an alternate derivation to that
given by Long (1978b) of the scaling theory for eddy time
scales as a function of depth is presented. In Sect. 5, the
eddy time-scale results and velocity measurements are
provided along with the results to the theory of Sect. 4.

2
Experimental set-up and analysis

2.1
Apparatus
Experiments were performed in an acrylic tank of hori-
zontal dimensions W=9.7 cm, L=47.6 cm, and of height
H=49 cm as shown in Fig. 1a. The horizontal cross-section
had a high aspect ratio compared with conventional ex-
periments performed in tanks with square cross-sections.
An acrylic ‘‘false bottom’’ was inserted horizontally at
different levels so that the structure of turbulent eddies in
fluid at differing depths could be examined. The tank was
filled with water up to 2 cm from the top of the tank. A
stainless steel mixer was inserted 7 cm from the top of the
tank and 5 cm below the free surface of the water. The

mixer was a ladder-shaped square grid of cylindrical bars
of diameter 0.6 cm spaced 3.2 cm apart (solidity 27%)
with ‘‘rungs’’ that extended beyond the struts of the ladder
so that the ends of the bars extended to within 2 mm of the
walls. The rungs extended 0.9 cm along the length and
2.6 cm along the width of the tank. When switched on, the
mixer moved vertically up and down with a frequency of
7 Hz and with a peak-to-peak stroke length of 2.6 cm.

A digital camera was positioned a distance Lcamera�3 m
from the tank as shown in Fig. 1b. Black paper was fas-
tened to the rear wall of the tank. A bank of fluorescent
lights illuminated the interior of the tank through its left
side from the point of view of the camera.

Figure 1a illustrates the coordinate system used in the
discussion that follows: the downward distance from the
grid is denoted by dz, which increases from zero at the
mean vertical position of the mixer to the depth D
(£ 42 cm) at the position of the false bottom; x is the
distance from the left side; y is the distance from the front
side of the tank, with respect to the camera’s point of view.

The turbulent region was visualized using pearlescent
dye (Mearlmaid Natural Pearl Essence AA, Thornley Co.,
Wilmington, Del.). Unlike typical dye-tracking techniques
that identify motion by tracking the Lagrangian transport
of the dye, pearlescence visualizes motion even when the
dye is uniformly distributed throughout the fluid. The
natural pearlescence used in this study is composed of
microscopic (30·6 lm) reflective crystals obtained from
fish scales. The crystals scatter light evenly throughout a
stationary fluid but align with the eddy-induced shear
once the fluid is in motion. This alignment with the shear
visualizes the large turbulent eddy motions by reflecting
the incident light in bright patches.

Although the specific gravity of the particles is 1.6, they
are sufficiently small that their effect upon the flow is
negligible. For example, the Stokes velocity of a falling
sphere with the same density and with a diameter of 30 lm
is 0.03 cm/s. This speed, which overestimates that of a
falling plate, is a small fraction of the observed flow
speeds. Likewise, the time over which co-aligned plates
decorrelate owing to Brownian processes is negligibly
small compared with the turbulence time scales.

Visualization of turbulence by reflective particles has
been exploited, for example, by Voropayev and Fernando
(1996) who used pearlescence, and by Dickinson and Long
(1978) who observed turbulent fronts using suspended
aluminum particles. An added advantage of our technique
is that we not only visualize turbulent eddies, but we also
compute eddy time and length scales from digitized im-
ages of the experiments.

The pearlescent dye was injected along the surface of
the tank prior to the start of the experiment. After the
mixer was turned on, the mixing region deepened and the
dye was passively transported by the turbulent eddies.
Thus, the dye simultaneously revealed the depth of the
mixed region and the characteristics of the eddies them-
selves.

The images recorded by the digital camera are a
weighted superposition of the turbulent motions across
the width of the tank. Though the strongest signal came
from eddies near the front of the tank, experiments

Fig. 1. The experimental set-up. The distance down from the
midplane of the grid is denoted dz and the location of the replaceable
bottom is at dz=D
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performed with a columnar beam illuminating a fraction
of the width of the tank gave the same statistical results as
those with the side wall fully illuminated. Thus, the camera
predominantly recorded images of the interior eddy mo-
tions which were highlighted by the pearlescent dye, not
the motions in the boundary layer of the front wall.

The recorded images in the x, z plane were analyzed
using the image processing software package DigImage
(Dalziel 1993). Snapshots of the experiment were digitized,
enhanced, and analyzed using statistical methods. These
methods are described in the following subsections.

2.2
Time series
A vertical time series is constructed by extracting a column
of pixels at successive times from digitized images of the
experiment as it evolves. The columns are positioned side
by side to form a time series image. The time series can be
constructed with a temporal resolution as small as 1/30 s
(limited by the standard NTSC video frame rate). Up to 31
vertical time series (taken at 31 different horizontal posi-
tions) can be taken simultaneously. Likewise, one can
construct horizontal time series.

Figure 2 shows a vertical time series for 1 min of an
experiment with D=42 cm. The image is enhanced by
representing intensities with a false color gray scale. The
image shows the evolution of the mixing region along a
vertical slice taken at a horizontal position x=16 cm from
the left side of the tank and starting when the mixer is
initially set in motion. The deepening of the mixed layer is
marked by the vertical extent of the pearlescent dye which
is initially at the level of the mixer and is transported
downward as the turbulent region deepens. The figure

shows that the mixed region deepens over the full depth of
the tank after approximately 40 s. This time is consistent
with that predicted by Dickinson and Long (1978; 1983).

While deepening, the mean intensity of light incident
upon the camera decreases as the pearlescent dye is di-
luted. The variations from the mean reveal eddy motions.
A bright streak in the time series indicates the presence of
an eddy in the field of view of the raw time series image. In
particular, the dye shows an increase in turbulent eddy
time scales from the top to the bottom of the mixed region
where the streaks are broader at the bottom of the image.
In this way, the width in time of any particular streak is a
measure of the corresponding eddy turnover time and the
slope of the streak measures the local vertical velocity in
the turbulence. In a similar fashion, the horizontal veloc-
ities and time scales can be determined from horizontal
time series.

Vertical time series are taken from the experimental
images with a time step of 1/15 s and a duration of 30 s.
This duration is chosen as a compromise between
resolving the fast eddy motions and acquiring enough data
for sufficient time averaging. In order to ensure that the
time series included only the fully developed turbulence in
statistically steady state, the time series are taken one
minute into the experiment. The vertical extent of the time
series is chosen to include the turbulent region of the time
series while avoiding the mixer and the tank boundaries.
Each time series is then passed through a high-pass Fou-
rier filter in the horizontal direction to subtract the mean
intensity from the digitized images. This removes the ef-
fects of light attenuation across the tank so that the re-
sulting average intensity of each time series at each
horizontal position is the same. Figure 3a shows a time
series after these enhancements, displayed as a false color
representation of the image.

2.3
Determination of time scales
We have used autocorrelations of intensity functions de-
rived from (filtered) vertical time series to measure the
eddy time scale as a function of the distance from grid.

We define a discrete function, fdz(tn), as the variation in
intensity over time at the vertical position, dz, from a
vertical time series, where n is the (integer) time index.
Explicitly, tn=nDt for n=0, 1, ..., N, where Dt is the tem-
poral resolution of the time series. Figure 3b and e shows
typical profiles, fdz(tn), for dz=10 and 35 cm, respectively.
Both are taken from the time series in Fig. 3a along the
cross-sections marked by the horizontal dotted lines. The
location of strong eddies, marked as black in the time
series image, show up as peaks in the intensity functions.
The increase in eddy time scale with distance from the grid
is evident because the peaks at dz=35 cm are much wider
than those at dz=10 cm.

In general, for a discrete signal, f(tn), the autocorrela-
tion is a discrete function of the (stepwise) temporal shift,
si ” iDt, defined by

A½f �ðsiÞ ¼
XN

n¼i

f ðtnÞf ðtn � siÞ; s : i ¼ 0; 1; :::; N: ð3Þ

Fig. 2. Vertical time series showing the start of an experiment, taken
16 cm from left edge of tank. The field of view extends from just
below the oscillating grid to the bottom boundary. A false colour
scheme is used to display the image, with black representing the
strongest intensities, grays representing weaker intensities, and white
representing the weakest intensities
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The normalized autocorrelation is defined by a[f ](s)=
A[ f ](s)/A[f ](0). It is invariant to changes in scale of a
function but is sensitive to a shift in the mean value. By
setting the mean intensity to zero in each filtered time
series, this sensitivity is removed.

Figure 3c and f shows the corresponding normalized
autocorrelation functions of the signals in Fig. 3b and e,
respectively. The narrow peaks in Fig. 3b result in a rapid
decorrelation of the signal (the autocorrelation drops to

zero within a small time shift). The wider peaks in Fig. 3e
result in a slower decorrelation.

To characterize the eddy time scale we define two time
scales based upon the behaviour of the autocorrelation
function at s=0.

We define the time scale based on the instantaneous
change in the autocorrelation function about s=0 to be

T1 ¼ �
d a½f �ðsÞ

ds

����
s¼0

� ��1

: ð4Þ

Time scale T1 is an accurate measure of the widths of the
peaks of an approximately piecewise constant function,
but the time scale varies significantly as the discontinuities
of the function become less pronounced and the changes
from positive to negative values become more gradual. In
fact, the tangent to the autocorrelation at s=0 of a con-
tinuous function is horizontal, and T1 becomes infinite.
For discrete signals, the derivative is calculated from the
first three points of the autocorrelation and is zero only in
the continuous limit.

The autocorrelation of a continuous time series has
strictly negative curvature near s=0. The first three terms
in the Taylor series expansion of a[f](s) about s=0 are
given by 1+a1s+a2s

2/2, where a1=da[f](0)/ds and
a2=d2a[f](0)/ds2. We can then define a second time scale
as the s intercept of this quadratic approximation to the
value of a[f](s). Explicitly,

T2 ¼
�a1 �

ffiffiffiffiffiffiffiffiffiffiffi
a2

12a2

p

a2
: ð5Þ

The time-scale definition of Eq. (5) is similar to the defi-
nition of the Taylor microscale for isotropic turbulence as
described in Hinze (1959) although the functions that we
are examining, rather than turbulence velocity compo-
nents, are intensity functions which are related to the local
shear in the flow.

If the signal is a piecewise linear function (as for a
rapidly varying discretely sampled signal), T1 is the ap-
propriate time scale. T2 is the appropriate time scale for a
smoothly varying function and measures the characteristic
width of the dominant peaks for a triangular wave. In
particular, for a rectangular wave with period T, we find
T1 ¼ T=4. For a triangular wave with period T, we find
T2 ¼

ffiffiffi
6
p

T=12.
The autocorrelation functions in Fig. 3c and f are re-

drawn on a small s scale in Fig. 3d and g, respectively. The
tangents to a[f](s) at s=0 are superimposed as the dotted
lines. The corresponding time scales T1 are the intercepts
of these lines with the s axis. The second order approxi-
mations to the curves are plotted as dashed lines. Note that
T1 gives consistently higher values than T2 and that the
intercepts of both time-scale curves with the s axis are
larger in the case dz=35 cm (Fig. 3g).

Using either method, a profile of time-scale value as it
varies with distance from the midplane of the grid can be
assembled for each time series by calculating the time scale
associated with the intensity functions fdz(tn) at increasing
values of dz. A similar method could be used to determine
the length scale in the turbulence at the time t0 using

Fig. 3. a Vertical time series taken at x=16 cm in an experiment with
D=42 cm. The same gray scale as in Fig. 2 is used. b Intensity plot in
time at location 10 cm below grid. c Normalized autocorrelation of
Fig. 3b. d Autocorrelation and tangent near shift s=0. e–g Corre-
sponding functions at location 35 cm below grid
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functions of position ft0(zn), zn=dz0+nDz, where Dz is the
spatial resolution of the vertical time series.

The integral time scale (the integral of the normalized
autocorrelation function) is the standard time-scale for
turbulence measurements. This time-scale is inappropriate
for our data since it assumes a negligible contribution to
the integral by shifts far from the origin, whereas with our
data non-negligible contributions to the integral will occur
when two eddies overlap. This results in significant peaks
in the autocorrelation function far from the origin, as seen
in Fig. 3c and f. Similarly, the first zero crossing is not
used as a time-scale since contributions from overlapping
eddies may result in secondary peaks prior to the occur-
rence of the zero crossing.

Another standard technique in turbulence measure-
ments is the Fourier transform. This method is also not
applicable to our time series data. Results show that al-
though there is a high-frequency cut-off at each vertical
level, the edge of the cut-off is ambiguous and the power in
the signal is spread throughout the lower frequencies
without any clear peaks.

2.4
Velocity measurements
To measure velocity, consider two time-discretized signals
f0(tn) and fj(tn), n=0, ±1, ±2... where, for notational con-
venience, f0 � fdz0

and fj � fdzj
¼ fdz0þjDz

. The cross-corre-
lation is defined as a function of the temporal shift si ” iDt
given by

C f0; fj

� �
sið Þ ¼

Xmin N;Nþið Þ

n¼max 0;ið Þ
f0 tnð Þfj tn � sið Þ ð6Þ

where |i| £ N.
Eddies advected by a background flow appear as diag-

onal streaks in a vertical time series, the slopes of which
provide the local background vertical velocities. Similarly,
the slopes of streaks in a horizontal time series provide the
local background horizontal velocities in the turbulence.

To extract the vertical velocity information from a
vertical time series, a reference signal f0(tn) is chosen as
the intensity function at the position dz0 in the time series
taken along a vertical cross-section at x=x0. Neighbouring
signals f–i(tn) and fi(tn) are cross-correlated with f0(tn) for
a prescribed integer shift i. The smallest value s at which
C[f0,f–i](s) is maximal is denoted by s–. Similarly s+ is the
time shift for which C[f0,f+i](s) is maximum. In practice,
the critical points s+ and s– are each determined by qua-
dratic interpolation of C from three points about s=0.
Finally, the average vertical velocity at dz0 is estimated
from the second order accurate derivative at s=0 (hence
where dz=dz0) for the function that passes through the
three points (s–,dz0–iDz), (0,dz0), (s+,dz0+iDz). Explicitly,

vðx0; dz0Þ ¼
�iDz

ðsþ � s�Þ
sþ

s�
þ s�

sþ

� �
ð7Þ

This procedure is used to evaluate the vertical velocity at
every vertical position, dz, along the time series. A
Gaussian-weighted filter is used to determine the mean
vertical velocity at a subset of vertical positions. Likewise,

horizontal time series are used to determine horizontal
velocities, and these are locally averaged to determine their
values at the same spatial coordinates as the vertical ve-
locities. Thus the velocity vector field is produced. In cases
for which the mixing region exhibits a background cir-
culation on a time scale longer than that of the turbulent
eddies, the above method may be used to measure the
velocity of the background flow. The technique effectively
filters the fast time scale of the eddy motions and so
provides an efficient method for determining the long time
behaviour of the flow.

3
Observations
When the mixer was set in motion tiny jets and vortices
were shed from the bars of the grid. Near the grid were
small, fast eddies. Further below the grid the eddies per-
sisted for longer times as they coalesced to form larger
eddies and as viscosity damped the motion on small length
and time scales. Depending upon the total depth of the
tank, D, these eddies were further modified by a large-scale
circulation that developed in the tank. If D�W, we ob-
served that an overall circulation developed in the form of
a pair of counter-rotating vortices oriented with vorticity
vectors directed along the y axis (perpendicular to the long
side of the tank). This circulation occurred in experiments
with large values of D.

A sequence of horizontal time series for an experiment
with D=42 cm is shown in Fig. 4. Figure 4a shows a hor-
izontal time series taken at dz=6 cm, with each subsequent
time series taken 4 cm further below the grid. The increase
in horizontal eddy length scales is evident in the images.
Near the bottom of the tank, the eddies are on the order of
2–3 cm. The overall circulation pattern can be detected
from these images. A streak with a shallow slope corre-
sponds to fast horizontal advection of an eddy, a negative
slope corresponds to motion to the left and a positive slope
corresponds to motion to the right of the tank. In all
horizontal time series, except the two nearest the grid,
there is a symmetric divergence of fluid from the centre of
the tank toward the sides. As expected, at the edges there is
almost no detectable horizontal motion. Near the grid
(Fig. 4a) eddies exhibit less coherent fluctuations.

In experiments with D�W, the typical variations in
vertical motions across the tank are illustrated in the
nine vertical time series shown in Fig. 5 (from the same
experiment as Fig. 4). The time series are taken starting
3.8 cm from the left side of the tank and are spaced 5 cm
apart. As in Fig. 4, the increase in eddy time scales and
length scales from the top to bottom of the tank is ev-
ident from the plots. The plots also show a change in
vertical motions from large upward velocities at the sides
(apparent by the positive slopes of the streaks), through
a transition to downward velocities near the middle of
the tank (apparent by the negative slopes). Although
there are significant vertical motions throughout the
tank, the fastest motions occur in the top half of the
tank.

The two sets of time series illustrate the typical overall
circulation which moved down the middle of the tank, left
and right toward the sides, and rapidly upward along a
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thin boundary layer extending approximately 2 cm from
the side walls (with no mean flow along the front and back
walls). Smaller scale eddies were embedded within this

overall circulation and their associated time scales in-
creased with distance away from the grid. This circulation
was a robust feature in experiments with D�W. On a

Fig. 5. Vertical time series for an experiment
with D=42 cm taken every 5 cm across the front
of the tank, starting 3.8 cm from the left edge of
the tank. Streaks with positive slopes indicate
upward motion of fluid, seen at the sides of the
tank, and negative slopes indicate downward
motion in the centre of the tank. The gray scale is
defined in the same way as in Fig. 4

Fig. 4. Horizontal time series for an experiment
with D=42 cm taken at locations 6–38 cm below
grid, every 4 cm. A divergence from the centre of
the tank to the sides is evident from the
symmetric diagonal streaks of fluid. Intensities
below the mean intensity value are marked as
white, above the mean as gray
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slower time scale, transient upwelling near the centre of
the tank was also sometimes observed. In experiments
with large D, fluid upwelled from the bottom over signif-
icant patches far from the side walls. This upwelling
phenomenon became more pronounced in experiments
with progressively larger values of D, and the circulation
pattern organized to form two counter-rotating cells as
previously described.

In experiments where D was comparable to W, a large-
scale circulation did not develop except within a small
region at the side walls near the oscillating grid. Further-
more, the structure of the eddies embedded within the
large-scale circulation changed as D varied. For D�W the
turbulence appeared to be approximately horizontally
homogeneous.

These circulation patterns occurred whether the mixed
region was bounded below by a rigid wall or by a de-
formable interface between the turbulent fluid and un-
mixed fluid of larger density. We ascribe the transition of
the circulation pattern as D increased to a change be-
tween the turbulence behaving as though fully three-di-
mensional (D�W) and quasi-two-dimensional (D�W).
In the latter case, the high horizontal aspect ratio of the
tank restricted the development of isotropic eddies to
length scales smaller than W. However, if D was large,
turbulent motions with length scales larger than W acted
as if they were two-dimensional. That is, there was no
mean flow along the front and back tank walls. This
circulation may have been enhanced by the relatively
high grid frequency (7 Hz), which was the critical fre-
quency at which secondary motions occurred in the ex-
periments of McDougall (1979). The secondary motions
were not, however, in the form of counter-rotating vor-
tices.

Changes in turbulent properties when the depth of the
mixed region rivals the horizontal dimensions of the tank
have been previously observed. A change in the dynamics
of a turbulent front in a homogeneous fluid was observed
for D>W in the cylindrical tank experiments of Dickinson
and Long (1978). As well, in the two-layer experiments of
Fernando and Long (1983), the deepening rate of the
turbulent region showed a marked increase after the depth
passed a breakpoint.

4
Scaling theory
The energy dissipation, �, in a statistically steady forced
turbulent flow scales according to

e
~u3

‘

u3

‘
ð8Þ

where u is the rms fluctuating velocity and ‘ is the
integral length scale of the eddies (Tennekes and Lumley
1972).

In three-dimensional turbulence there is a transfer of
energy from the integral length scale to the Kolmogorov
microscale, g. The latter is the typical length scale at which
kinetic energy is irreversibly dissipated through the action
of molecular viscosity. The value of g is related to the
energy dissipation rate by

g / ðm3=eÞ1=4: ð9Þ

Assuming the grid supplies energy evenly across the
horizontal area of the tank at grid level, and assuming the
tank dimensions do not affect the turbulence, the relevant
vertical length scale characterizing the turbulence is dz, the
distance below the energy source. In theory, dz is mea-
sured with respect to a virtual origin (Long 1978b;
Thompson and Turner 1975). In practice we find that it is
sufficient to take the virtual origin at the mean vertical
position of the oscillating grid. Dimensional arguments
then predict that ‘ / dz and g�dz. Combining these re-
sults with Eqs. (8) and (9), the velocity is found to scale
with distance from grid as u�dz–1. This scaling was also
derived by Long (1978b), although using a different the-
oretical approach. This dependence has been documented
experimentally (E and Hopfinger 1986) in tanks with
square horizontal cross-sectional area.

The characteristic time scale, s ¼ ‘=u, of horizontally
homogeneous three-dimensional turbulence is thus ex-
pected to obey the scaling law

s3D / dz2: ð10Þ

The scaling for the experiments in which D�W
cannot be derived following the same dimensional argu-
ments as in the three-dimensional case. Eddies that
extend to sufficiently large depths increase in size until
the extent is comparable to the tank width, W. Below this
depth the eddies are constrained laterally and are thus
free to move only in an approximately two-dimensional
plane (the x, z plane). Since energy cascades to larger
scale in two-dimensional turbulence (Fjørtoft 1953), the
eddies continue to increase in size to fill the extent of
the domain in which they are contained. Thus, a mean
circulation develops.

However, the eddy motions at scales ‘� W are not
confined by the tank geometry and the turbulence at the
small scales is still approximately isotropic in horizontal
planes. This small-scale turbulence is advected and dis-
torted by the mean circulation.

Therefore, as D is increased, there is a transition from
three-dimensional unconstrained turbulence to quasi-two-
dimensional turbulence at large scales with embedded
three-dimensional small-scale turbulence. The dynami-
cally important length scales are then D/W as well as dz,
and the time scale dependence need not necessarily follow
Eq. (10). Indeed, Hopfinger and Toly (1976) measured a
distortion of the scaling given by Eq. (10) in the presence
of a secondary flow.

5
Results
In this section we measure the variation of eddy time
scales with depth from grid midplane and investigate how
the structure of the turbulence changes for different values
of D, which varies from 7.7 to 34.7 cm.

For each experiment, 27 vertical time series are taken
across the tank, starting at 4 cm from the left wall, spaced
1 cm apart, to 30 cm from the left wall. The time series are
collected sufficiently far from the side walls to avoid strong
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upward moving jets in the 2 cm wide boundary layer near
the tank side walls. Time series far from the left wall of the
tank are not used to measure time scales because of weak

intensity signals resulting from light attenuation across the
tank by the pearlescent dye.

In several large aspect ratio experiments, fluid upwelled
near the centre of the tank. In these upwelling regions the
turbulence was observed to evolve with much longer eddy
time and length scales than those in the downwelling
turbulence. For consistency, time-scale analyses are per-
formed only where the centre motion is downward.

Time-scale analyses are performed individually on each
of the (at most 27) time series. The resulting profiles of
time scale versus depth are then averaged. For example,
the time scales determined from an experiment with
D=37.4 cm is shown in Fig. 6. Figure 6a shows three time-
scale profiles calculated for the time series at 5, 10, and
15 cm from the left wall of the tank. The profiles are
vertically offset for clarity. Along all three profiles the time
scale generally increases with depth, though values fluc-
tuate greatly for large dz. The fluctuations are reduced
after averaging, as evident in Fig. 6b, which shows the
average and standard deviation of 15 time-scale profiles
across the width of the tank in the same experiment. The
plot shows how the fluctuations in each time-scale profile
are smoothed by the averaging process.

Log–log plots of the averaged time-scale profiles of
T1ðdzÞ and T2ðdzÞ are shown in Fig. 7 for three experi-
ments with D=14.6, 24.7, and 34.7 cm.

Particularly evident in the T1 results, but common to
both time scales, are different scaling regimes of the tur-
bulence. Crudely, we identify three regimes: a near-grid
regime, a mid-depth regime, and a near-bottom regime.
The first and second regimes occur approximately over the
respective ranges dz=3–7 cm and dz=12–20 cm (when

Fig. 7. Comparison of profiles for time scales T2

and T1. Log–log plots of eddy time scales T as a
function of distance from grid dz for three depths
of tank, D=14.6, 24.7, and 34.7 cm from grid
midplane. The (vertically offset) best-fit lines to
the plots are given for the ranges dz=8–12 cm
when D=14.6 cm, and dz=12–20 cm when
D=24.7, and 34.7 cm

Fig. 6. a Three (vertical offset) plots of eddy time scales T2 as a
function of distance from grid, dz, in an experiment with D=34.7 cm
taken from time series at x=5, 10, and 15 cm. b Average and standard
deviation (dotted line) of 15 time-scale profiles taken at successive
horizontal positions across the tank
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D‡20 cm). These are distinguished by different power law
dependencies of the form

T ¼ ðdzÞp: ð11Þ

The power law exponent is smaller in the near-grid regime.
Indeed, the time scale profiles characterized by T1 show a
distinct elbow in all experiments, whereas with T2 the
change is more gradual. In experiments with D�W, a
third near-bottom regime is evident in which there is no
power law dependence.

We measure dz from the midplane of the grid rather
than from the virtual origin defined by Hopfinger and Toly
(1976). Since the behaviour of the turbulence time scales
near the grid is different from that away from the grid, the
dependence of eddy time scale with dz cannot be mean-
ingfully extrapolated to a virtual origin. In particular, the
time scales characterized by T2 are approximately con-
stant functions of dz near the grid and so cannot be ex-
tended to T2 ¼ 0 to determine the virtual origin.
Following Hopfinger and Toly (1976), the location of the
virtual origin for our experimental configuration would be
1±0.5 cm below the midplane of the grid. Varying the
location of the virtual origin by ±2 cm from the midplane
of the grid resulted in a maximum of a 13% difference in
the value of the exponent for the power law.

The T1 power law exponents, p, measured for
3 £ dz £ 7 cm (=1–2 S) in a series of experiments with
different depths, D, are denoted by diamonds in Fig. 8.
The exponents are approximately constant over all values
of D, with a value p�0.79±0.17. This suggests that the

structure of the turbulence in this range is affected ex-
clusively by the jets from the mixer and not by the tank
geometry, as evident in Fig. 4a. It has been extensively
reported (Thompson and Turner 1975; Hopfinger and Toly
1976; Fernando and Long 1983; Atkinson, Damiani and
Harleman 1987) that the individual wake and jet structure
persists within two stroke lengths of the grid.

At fast time scales, i.e. very close to the grid, T1 is
sensitive to the resolution of the time series data. In order
to test for the degree of sensitivity, we performed the
analysis on the same data but at half the resolution. The
results were qualitatively the same but with consistently
lower values of power law in the near-grid regime and no
change in the mid-depth values.

The power law exponents measured for 12 £ dz
£ 20 cm are denoted by the solid circles in Fig. 8 for both
T1 and T2. In experiments with D<20 cm, the power law
is instead computed over the range dz=8–12 cm. These
results are denoted by the open circles in Fig. 8. The two
data points at D=22.3 cm correspond to two different ex-
periments at that depth of tank.

In the experiment with D=20 cm a large exponent is
measured because the plot of T1ðdzÞ does not show a
sharp distinction between near-grid and mid-grid regimes.
The best-fit line in the common range of dz=12–20 cm
used to establish the power law was taken at the curve in
the plot similar to the elbows seen in Fig. 7.

When the ratio of D to W is approximately 1:1, the
counter-rotating cells of the mean circulation are not ob-
served, and the turbulence is expected to act as if it is fully
three-dimensional. In experiments with progressively
larger D, a large-scale circulation is more pronounced and
the measured values of p are larger. Whether characterized
by T1 or T2, generally we find that the power law
exponent at mid-depth in the tank increases with
increasing D.

These plots clearly demonstrate how the turbulent
scaling at mid-depth is distorted by the presence of a
bottom boundary, even though the boundary is many eddy
length scales below the scaling region. The turbulence is
affected by the large-scale circulation that develops and
deviations from horizontally homogeneous turbulence
theory become more pronounced in experiments with
D�W.

The dynamics of the large-scale circulation is illustrated
in Fig. 9 which shows the results of the cross-correlation
analysis performed on an experiment with D=42 cm.
While the time series in Figs. 4 and 5 qualitatively show
the existence of the circulation, the cross-correlation
effectively determines the slopes of the streaks in these
images and so measures the velocities.

Typical velocities for the vertical motions are 2.0 cm/s
for the overall downwelling motion and 1.5 cm/s for the
return flow near the sides. The velocities are calculated at
nine points using a Gaussian-weighted average of 506 ve-
locities determined directly from the cross-correlation
analyses. The accuracy in the final velocity measurement is
determined from the standard deviation of the averaging
process. The accuracy of the measured velocities ranges
from 0.3 cm/s to 1.2 cm/s, depending on the intensity and
duration of the streaks in the original time series. The

Fig. 8a, b. Power law dependence of time scale with distance from
grid for experiments with varying depth of tank, D. a Timescale s1;
b timescale s2. The different symbols represent different ranges of
data used to calculate the slopes of the best-fit lines to the logarithmic
plots of Fig. 7. Solid circles: dz=12–20 cm; open circles: dz=8–12 cm
(the total depth of tank is less than 20 cm); diamonds: dz=3–7 cm.
The error bars give the standard deviation of the best-fit lines. In b the
error bars are within the size of the circles
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vertical velocities with accuracy close to 0.3 cm/s are those
at the centre and sides of the tank. These are the regions
where the vertical motion in the circulation is strongest
and the cross-correlation signal is unambiguous.

Similarly, the magnitude of the horizontal velocities is
typically 2.0 cm/s measured with an accuracy between 0.5
and 1.2 cm/s. The accuracy is poor at the centre and sides
of the tank where the horizontal component of the velocity
field is close to zero.

The cross-correlation analysis measures velocities of a
strong mean circulation, such as that which occurs in the
experiment with D=42 cm. In experiments with small D
there is no significant mean circulation and such an
analysis cannot be done.

6
Discussion and conclusion
We have shown that pearlescent dye is a useful tool for
visualizing the qualitative features in a turbulent flow and
for taking quantitative measurements. The dye can high-
light individual eddy motions as seen, for example, by the
increase in time scale from top to bottom of Fig. 3a. It can
also highlight mean flows in the turbulence. For example,
Figs. 4 and 5 clearly show two tank-scale counter-rotating
vortices. Pearlescence also marks the boundary of a tur-
bulent region, as in the deepening of the mixed region
shown in Fig. 2.

We have developed a non-intrusive technique that uses
pearlescent dye to measure the variation in time scale with
distance from the energy source in oscillating grid tur-
bulence over the entire flow field. This technique can be
used to measure the local vertical and horizontal velocities
of a mean flow in the turbulence.

We have found that the change in eddy time scales with
distance from an oscillating grid exhibit different regimes.
T1, which measures the strength of the jump disconti-
nuity and the duration of the eddies, shows distinct near-
grid and mid-depth power law scaling regimes. In the re-
gime closest to the mixer, the time scales exhibit a power

law dependence in which the exponent depends exclu-
sively on the distance from the oscillating grid. In the
intermediate-depth regime the slopes of the log–log plots
increase with increasing depth of the tank. T2 is less
sensitive to the temporal resolution, but a power law
scaling is not as obvious. Nonetheless, using either of our
definitions of eddy time scale we see the same increasing
trend in the time-scale power law with an increase in D.
Thus, we have found that the location of the bottom
boundary affects the turbulence scaling behaviour over a
distance much longer than the characteristic length scale
of the eddies near the base of the mixing region.

We attribute the change in scaling behaviour to the
observed development of a mean circulation which occurs
if D�W. The circulation develops as a result of a transi-
tion from fully three-dimensional turbulence in the case
where D £ W to quasi-two-dimensional turbulence in
which there is an upscale cascade of energy for eddies with
length scales larger than W. Embedded within this large-
scale turbulence is the small-scale three-dimensional tur-
bulence. The measured time-scales record the variability of
eddies much smaller than the mean circulation. The ob-
served increase in power law exponent with an increase in
D is thus due to the transition from undistorted eddies to
eddies distorted by the mean circulation.

Although the experiments described in this paper in-
volve homogeneous fluid with a rigid bottom boundary,
further experiments investigating a turbulent mixed layer
overlying a stratified fluid have shown that similar dy-
namics occur when the rigid boundary is replaced with a
stratified layer.

These experimental results may indirectly prove useful
in interpreting turbulence measurements in the surface
mixed region of the ocean. It is common practice to
assume the classic ‘‘law-of-the-wall’’ for turbulence scal-
ing in the oceanic boundary layer (Kantha and Clayson
2000). This assumes that scaling is a function only of
distance from the surface. Our results show that scaling
may also be affected by the depth of the thermocline
underneath the oceanic boundary layer in the presence of
a mean circulation, such as Langmuir circulations. These
wind-induced circulations have the form of counter-ro-
tating cells similar to the counter-rotating vortices ob-
served in our experiments with large D. Though
generated by a different mechanism, and despite the
presence of a mean horizontal surface flow, our results
suggest that the mean circulations distort the scalings in
the turbulence.
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