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Abstract A technique is proposed for the processing of
digital particle image velocimetry (PIV) images, in one
single step providing direct estimates of fluid velocity, out-
of-plane vorticity and in-plane shear rate tensor. The
method is based on a generalization of the standard PIV
cross-correlation technique and substitutes the usual dis-
crete cross-correlation of image pairs with a correlation of
interpolated two-dimensional image intensity functions,
being subject to affine transformations. The correlation is
implemented by using collocation points, on which image
intensity values are interpolated. The resulting six-
dimensional correlation function is maximized using a
general purpose optimization algorithm. The use of the
method is demonstrated by application to different types
of synthetically generated image pairs constructed with
known particle displacement functions. The resulting
errors are assessed and compared with those of a repre-
sentative standard PIV method as well as with those of the
present technique using no differential quantities in the
search of the peak location. The examples demonstrate
that significant improvements in accuracy can be obtained
for flow fields with regions containing strong velocity
gradients.

1
Introduction
The basic principle of particle image velocimetry (PIV)
and particle tracking velocimetry (PTV) is simple and has
been used for decades in studies of moving objects. The
tracer commonly used in PIV/PTV is particles which are
sufficiently small to accurately follow the local flow. By

acquisition of two exposures with a known time separa-
tion, the velocity can be inferred from particle image
displacements. In general, two types of processing of the
image pairs can be distinguished: in PTV, individual
particles are identified on subsequent images and the
particle displacements are directly geometrically mea-
sured. While this is feasible for low particle concentra-
tions, the correspondence problem of identifying
individual particles in either image becomes increasingly
difficult with higher particle densities. However, extensive
research is still being carried out to solve those problems,
since the promise of PTV is ultimately to provide the
maximum spatial resolution of the underlying velocity
field.

The alternative processing approaches have collectively
been termed correlation image velocimetry (CIV)
(Fincham and Spedding 1997), all inferring the transport
of particles or passive scalar field from correlation analy-
sis. Since no individual tracer has to be identified and the
analysis relies on a statistical basis, such processing can be
made rather robust. The well-known standard cross-
correlation PIV technique is one example of such CIV
techniques. Here, each of two subsequent images is de-
composed into sub-images of the order of 10–100 px in
size, the so-called interrogation windows. For every win-
dow from the two images, a velocity estimate is made on
the basis of their mutual cross-correlation. Because only
one velocity vector is provided for every window pair, the
achieved spatial resolution will usually be somewhat lower
than ultimately achievable in PTV. In recent years, ex-
tensive work has been carried out to estimate the errors in
CIV-based methods and to identify their sources (see e.g.,
Nogueira et al. 1997; Huang et al. 1997; Fouras and Soria
1998; Westerweel 2000). Further, many suggestions have
recently been made on how to improve both the accuracy
of PIV and its spatial resolution.

One well-known major problem in standard PIV stems
from the fact that the processing algorithm assumes the
velocity field to be constant throughout the window.
However, if velocity gradients are present in the field, they
will broaden and lower the cross-correlation peak, gener-
ally adding errors to the peak location estimate and
therefore reducing the accuracy of the measured mean
velocity within that window. It seems common to most
attempts at improving the ability of PIV to accurately
measure strained flow fields that the techniques funda-
mentally still rely on the basic discrete cross-correlation
technique for the estimation of the displacement vectors
within an interrogation window. The improvements are
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generally sought by applying various post- and/or pre-
processing techniques to the data. In particular, window
shifting and distortion have been used to reduce the in-
plane loss of particles and counteract the broadening of
the correlation peak.

Seemingly independent of the efforts in PIV, Tokumaru
and Dimatakis (1995), Merkel et al. (1996), Deusch et al.
(2000) and others have employed generalized pattern
matching techniques from general image analysis to infer
velocity fields from the evolution of a transported tracer
scalar field. In those attempts, a generalized correlation
function between a sequence of images is maximized by
various optimization techniques. In contrast to PIV, the
equations of motion of the fluid and also certain
smoothness restrictions are added as constraints in the
search for a global image transformation function.

It is the author’s impression that, while the efforts in
both classic PIV and generalized pattern matching have
contributed to very substantial improvements in the
techniques, they have also added to the complexity of the
processing algorithms in use. With this background, the
aim of the present study has been to reformulate the
fundamental PIV processing technique by means of gen-
eral techniques from image analysis and pattern matching
algorithms without sacrifice to the conceptual simplicity of
the cross-correlation-based PIV processing. The method
directly searches for the optimum displacement and dis-
placement gradient, maximizing a generalized correlation
function defined locally in the image. At the same time,
window shifting and distortion are integrated into the
interrogation procedure, making iterative processing
sweeps and numerical computation of displacement
derivatives in the image field unnecessary.

Although the present starting point is close to that of, for
example, Tokumaru and Dimatakis (1995), the proposed
method is conceived and implemented as a generalization
of the standard cross-correlation PIV processing technique.
Therefore, the present outline takes its starting point in a
general description of the fundamentals of two-frame PIV
analysis and in a discussion of some relevant details.

1.1
Standard approach
The basic methodology of PIV has been established for
many years now, see the text of Raffel et al. (1998) for a
comprehensive description. In the following, the standard
analysis of a particle image pair I1,I2 is considered, each
image being represented as a two-dimensional array of
pixel values

I1 ¼ fct i; jð Þ; I2 ¼ fct i; jð Þ ð1Þ

at the corresponding instants t1 and t2. The PIV method-
ology is based on the assumption that a shifting trans-
formation in the image index space

Su;v i; jð Þ ¼ i þ u; j þ vð Þ ð2Þ

can be used to bring one image close to the other locally
within a given interrogation window A,

I1 Su;v i; jð Þ
� �

� I2 i; jð Þ for i; jð Þ 2 A; ð3Þ

where the integer displacement vector (u, v) is an ap-
proximation to the particle displacement vector projected
onto the image plane. The cross-correlation of the shifted
first image with the second image is defined as

G u; vð Þ ¼ C I1 S u;vð Þ i; jð Þ
� �

I2 i; jð Þ
� �

; ð4Þ

where C is the correlation operator

C I1; I2ð Þ ¼ 1

N

X
i;jð Þ2A

I1 i; jð Þ½ � I2 i; jð Þ½ �; ð5Þ

with N the number of pixels in the window.
In order to estimate the particle displacement, the

location of the maximum value of G(u, v) is found

u; vð Þ � arg max
u;vð Þ2T

G u; vð Þ; ð6Þ

where T is the domain of relevant possible integer shifting
parameters (u, v). Usually, Fourier transformation is em-
ployed together with the Convolution theorem to compute

G u; vð Þ ¼ FT	1 FT I1ð ÞFT I2ð Þ½ �; ð7Þ

since Eq. 7 can be evaluated considerably more efficiently
by use of fast Fourier transform (FFT) algorithms than by
evaluating the sum in Eq. 4 directly, if G(u, v) is needed for
all (u, v)�T.

Being important in the evaluation of the proposed new
method, a number of aspects of the above ‘‘standard
method’’ should be noted.

The shifting operator S acts as a model for the dis-
placement within an interrogation window and can be
viewed as a zeroth order Taylor approximation, as pointed
out for example by Tokumaru and Dimatakis (1995). Thus,
as mentioned before, it is a premise of the above method
that the displacement field which carries particles in image
I1 to their corresponding locations in I2 is approximately
constant throughout the interrogation window A. Other-
wise the correlation peak broadens, making an accurate
identification of the maximum more difficult. The direct
way to overcome this problem is obviously to minimize
the interrogation window size, thereby minimizing the
velocity differences within the window. However, for in-
terrogation window sizes comparable in size with particle
displacements, a considerable number of particles present
in the window of the first image have moved out of the
corresponding window of the second image and vice versa.
This so-called in-plane loss of particles can be accounted
for by shifting the window location from one image to the
other parallel to the displacement vector; see the text of
Raffel et al. (1998) or the papers by Westerweel et al.
(1997), Scarano and Riethmuller (1999) and others. The
window-shifting technique has been shown to be crucial
and has readily been implemented in most PIV analysis
algorithms today. The window offset is usually determined
on the basis of an initial standard PIV interrogation.

In order to deal with the degradation of the correlation
peak in the presence of displacement gradients, Huang
et al. (1993, 1998), Jambunathan et al. (1995), Nogueira
et al. (1999) and Lin and Perlin (1998) have extended the
window-shifting operation also to involve rotation and
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deformation of the second window. In this so-called par-
ticle image distortion (PID) technique, velocity gradients
are estimated by a standard PIV technique and then used
to distort the particle images. Those preprocessed images
are then again analyzed by a standard PIV method, the
whole procedure optionally being repeated several times.
Huang et al. (1993) demonstrated that considerable
improvements in accuracy and robustness of the
measurements could be gained by this method. However,
stability problems have been encountered when employing
image distortion repeatedly, a problem which can be cured
by using weighting functions in the image cross-correla-
tion function (Nogueira et al. 1999). For a recent review on
multi-scan methods, see Scarano and Riethmuller (2000).

The standard analysis is performed in the discrete pixel
space (i, j). Sub-pixel resolution is usually sought by em-
ploying interpolation techniques around the maximum
peak of G(u, v). Although such interpolation in favorable
circumstances has been shown to improve accuracy dra-
matically, velocity estimates usually tend to contain bias
errors towards the nearest integer displacement value. This
phenomenon, termed peak-locking, has been the subject of
extensive work and testing. For a theoretical analysis of the
achievable sub-pixel accuracy, see Westerweel (2000).

Since the interrogation window is a subset of the dis-
crete image, it most often has a rectangular (usually qua-
dratic) shape. Since FFT-based correlation algorithms are
almost always employed, window sizes of 2n px are usually
used. However, Gui and Merzkirch (1998) have described
ways of overcoming these restrictions with no or little
penalty in computational efficiency.

2
Generalized method

2.1
Fundamentals

2.1.1
The shifting operator
The new method we propose in the present study takes its
starting point in the transformation of the discrete images
I1(i, j) and I2(i, j) at the corresponding instants t1 and t2 to
their continuous counterparts F1(x, y), F2(x, y) by use of a
given interpolation algorithm Q:

F1 x; yð Þ ¼ Q I1; x; yð Þ ð8Þ
F2 x; yð Þ ¼ Q I2; x; yð Þ ð9Þ

All of the following analysis is now carried out in the
continuous space of (x, y).

The shifting operator S is extended to the continuous
affine transformation operator

Su;v;w;sij
x; yð Þ ¼ u

v

� �
þ s11 s12 	 x

s12 þ x s22

� �
x 	 xc

y 	 yc

� �

ð10Þ

defining linear movement (by u and v), rotation (by x),
and linear deformation (by the deviatoric strain tensor sij,

being symmetric, sij=sji) around the window center point
(xc, yc).

This represents a first-order Taylor expansion of the
displacement field around the center point. In an alter-
native formulation, the rotation parameter x could have
been omitted and rotation could instead have been in-
cluded within a non-symmetric gradient:

g11 g12

g21 g22

� �
¼ s11 s12 	 x

s12 þ x s22

� �
ð11Þ

the two formulation being exactly equivalent. The reason
for storing rotation and deviatoric deformation separately
is both conceptual and convenient for testing purposes,
allowing the individual types of window motion/distortion
to be switched on and off. In the following, the parameters
(u, v, sij) will be denoted

q ¼ u; v;x; s11s22;s12

� 	
ð12Þ

for brevity.

2.1.2
Interrogation
Given a virtual point ph = (xh, yh) at time th ¼ t1þt2

2 halfway
between the recording instants t1 and t2, undergoing the
transformation Sq within the interval from t1 to t2, the
corresponding locations of this point at the start and end
of the interval, t1 and t2 are

p1 ¼ x1; y1ð Þ ¼ S	1
2qðphÞ; ð13Þ

p2 ¼ x2; y2ð Þ ¼ S1
2q phð Þ; ð14Þ

respectively. A virtual interrogation area A at instant th is
now constructed covering the virtual images of particles at
that instant. According to the transformation Sq, particle
image patterns

Q I1; S	1
2q xh; yhð Þ

h i
ð15Þ

Q I2; S1
2q xh; yhð Þ

h i
ð16Þ

are then constructed for the instants t1 and t2.
Analogously to the standard approach a cross-correla-

tion function between those patterns is considered:

G qð Þ ¼ C Q I1; S	1
2q xh; yhð Þ

� 

; Q I2; S1

2q xh; yhð Þ
� 
h i

;

ð17Þ

where C denotes a continuous correlation operator of the
continuous image functions over a virtual interrogation
area (xh, yh) � A,

C F1;F2ð Þ¼
R

A w rð ÞF1 x;yð Þ½ � w rð ÞF2 x;yð Þ½ �dAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Aw rð Þ F1 x;yð Þ½ �2dA

R
Aw rð Þ F2 x;yð Þ½ �2dA

q ð18Þ

C is by definition bounded to –1 £ C £ 1 for any set of
intensity functions F1 and F2. w(r) defines a weight function,
with r denoting the distance from the window center point
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r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x	xcð Þ2þ y	ycð Þ2;

q
ð19Þ

with w=0 at the boundary of A, ensuring C to be a reason-
ably smooth function of q. Similarly to the standard ap-
proach, the method now seeks to find the closest match
between two shifted continuous pattern functions by
finding the cross-correlation peak within the parameter
space of q,

qopt¼arg max
q

G qð Þ½ �: ð20Þ

For practical applications, the cross-correlation G(q) must
be approximated with a corresponding discretized version.
Further, the evaluation of G(q) for a large number of
parameters sets q=(u,v,s11,s22,s12) giving good coverage of
the six-dimensional parameter space is not feasible
computationally. Therefore, Eq. 20 is treated as a generic
optimization problem, which is sought to be solved by a
general optimization code. Since optimization algorithms
are usually constructed for finding minima, Eq. 20 is
reformulated to

qopt¼arg min
q

1	G qð Þ½ �; ð21Þ

2.2
Implementation
In the preliminary implementation for the present study,
the conversion of the pixelized images to continuous two-
dimensional functions is performed by employing the
simplest and cheapest possible method still giving con-
tinuous functions F1, F2, which is piecewise bilinear
interpolation,

Q I; x; yð Þ ¼ 1 	 exð Þ 1 	 ey

� 	
I i; jð Þ

þ 1 	 exð ÞeyI i; j þ 1ð Þ
þ ex 1 	 ey

� 	
I i þ 1; jð Þ

þ exeyI i þ 1; j þ 1ð Þ

ð22Þ

with

ex ¼ x 	 i; ey ¼ y 	 j ð23Þ

and i, j chosen so that x�[i,i+1] and y�[j,j+1],
respectively.

In order to numerically compute cross-correlations
between the two particle image patterns, a finite set of
discrete collocation points pi=(xh,yh)i is chosen. For
symmetry, the interrogation window A is taken to be the
area within a circle of radius R, and the collocation
points are located with an average distance to nearest
neighbors of about 1 px width (see Fig. 1). Any closer
coverage would not contribute any additional informa-
tion. Since every collocation point roughly covers an
area of 1 px2, the total number of points N is
approximately

N � pR2: ð24Þ

The correlation operator C in Eq. 18 is substituted with
the discretized version

C F1; F2ð Þ ¼
Ri w rið Þ½ �2F1 xi; yið ÞF2 xi; yið Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri w rið Þ F1 xi; yið Þ½ �2
� �

Ri w rið Þ F2 xi; yið Þ½ �2
� �q

ð25Þ

again by definition ensuring –1 £ C £ 1. The weight
function w is chosen to be parabolic for simplicity

w rð Þ ¼ 1 	 r

R

� 
2
; ð26Þ

and the optimization problem is stated as

qopt ¼ k	1 arg min
kq

1 	 G kqð Þ½ � ð27Þ

with

G kqð Þ ¼ C F1 S	1
2kq x; yð Þ

h i
; F2 S1

2kq x; yð Þ
h in o

ð28Þ

The individual terms within the summation of Eqs. 25
and 28 are evaluated by shifting every point (xi,yi)
according to ±kq/2 and then interpolating within the
images F1, F2, respectively, using Eq. 22. Being important
for ensuring an optimization problem as well- condi-
tioned as possible, the diagonal matrix

k ¼ diag 1; 1;R;R;R;Rð Þ ð29Þ

is introduced in order to scale all arguments in the
optimization problem to approximately the same order
of magnitude. To prevent the optimization algorithm
requiring values of G for arguments kq outside the
relevant parameter space, such as the sampling of F
outside the image index space, the following constraint
is introduced:

kqkk 2< P; ð30Þ

where P is an upper bound of the displacement, esti-
mated a priori.

For solving the optimization problem, Eq. 27, the iter-
ative method VF13AD by Powell (1982), is chosen and
applied in an implementation (MINCF) of Madsen et al.
(1990). At every iteration step, the method requires for one

Fig. 1. Interrogation collocation points for window size 2r=16: Æ,
collocation points at th ¼ t1þt2

2 ; ·, collocation points at t1, having
undergone the transformation S	1

2q; m, collocation points at t2, having
undergone the transformation S1

2q
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parameter set kq the value G(kq) and its Jacobian @G kqð Þ
@kq ,

which is approximated by finite differences, requiring six
additional evaluations of G(kq). The step size used for the
finite difference approximation was chosen to be 10–6 px.
Throughout the work, the accuracy of the peak location
was required to be less than 10–5px. The necessary starting
guess for the optimization algorithm is computed by ex-
trapolation from found sets qopt of neighbor windows.

The above method was implemented using the software
package MATLAB (The Mathworks Inc., http://
www.mathworks.com/) and its image tool box. All com-
putations are carried out within MATLAB, except for the
evaluation of G(kq) and @G kqð Þ

@kq , which for computational
efficiency was performed in a compiled C-subroutine
called by the MATLAB program.

3
Validation test results
In the following, an attempt is made to demonstrate and
investigate the properties of the present method by testing
on different image pairs. In particular, the following two
aspects will be addressed:

• How accurate can the magnitude of a constant dis-
placement field be inferred on a sub-pixel level? The
testing will roughly follow a track similar to that of
Huang et al. (1997).

• Is the new method an improvement with respect to
velocity measurements in sheared flows? The method is
tested on two different synthetic image pairs, which are
constructed on the basis of known displacement distri-
butions, allowing exact comparisons.

Regarding the synthetic image pairs, the main variables
which are varied in the following investigation are the
interrogation window size and the particle image size,
while the particle density is kept constant.

For all test cases, the following methods are applied and
compared.

• (A) As a representative of the current standard PIV
processing techniques, the MATLAB-based package
MatPIV v. 1.4 (Jensen et al. 2001) is employed in its
default state. In the following, it is referred to as the
standard method. MatPIV closely follows the recom-
mendations made by Raffel et al. (1998). It uses a
multi-scan procedure, the first sweep defining the in-
terrogation window displacement for the next sweeps.
MatPIV employs an FFT-based algorithm for the cross-
correlation and uses Gaussian interpolation for the sub-
pixel estimation of the cross-correlation peak. Further,
outliers are found by local median filtering and inter-
polated by the use of neighbor vectors. MatPIV is
generally employed for interrogation window widths of
2R=16 px, 32 px and 64 px.

• (B) The new method, but using optimization of the
linear displacement (u,v) only and not including rota-
tion and shear, x=sij=0. Interrogation window diame-
ters used are 2R=16, 24, 32, 40, 48, 64, 80, 96 px with
the corresponding numbers of collocation points,
N=253, 547, 953, 1,471, 2,101, 3,697, 5,741, 8,233,
respectively.

• (C) The new method, employing optimization of all six
degrees of freedom in q. The interrogation window
diameter and corresponding numbers of collocation
points are the same as for B.

While the MatPIV package is used in its default state as
explained in A, in approaches B and C neither pre- nor
post-processing of the data is performed unless specifically
stated.

3.1
Constant displacement field
The natural starting point for evaluating the new method
is obviously to test its ability to measure a constant dis-
placement field within sub-pixel accuracy, and to measure
the resulting bias (peak-locking effect) and random error
levels as functions of window size 2R, particle image size
dp and particle displacement dt.

The investigation is substantially simplified using ar-
guments similar to those of Westerweel (1997) and Huang
et al. (1997) due to the fact that the collocation points are
shifted in either image. Suppose the particle displacement
is written as dt=nt+�t the error of the measured displace-
ment is a function of �t only. Hence it is sufficient to
analyze the errors within the displacement interval
0 < dt < = 0.5.

Synthetic images are created by randomly distributing
particles over the image plane of 1,024·1,024 px2 with an
average density of 0.0195 l/px2, giving on average five
particles to an interrogation window of width 16·16 px2

and 20 particles to a window of 32·32 px2. Every particle is
projected onto the discrete images with a Gaussian bell
intensity distribution of fixed size dp=1.5, 2, 3, 4, 6 px. The
particles are translated a distance dt in the x-direction and
then projected similarly onto a second image. The images
are processed with all three methods with a step size be-
tween neighbor interrogation windows of D=16 px. The
resulting estimated displacement fields (u, v) are then
analyzed statistically.

Outliers are detected by restricting vectors to be within
three standard deviations from the mean. Since the
package MatPIV relies on its own outlier analysis and
removal procedure, only a few outliers are removed ad-
ditionally to those already removed by MatPIV. In the
optimization procedures, the outlier rate is higher, in
particular when using the optimization approach includ-
ing gradients (Method C) in cases with small particle im-
age sizes and small interrogation windows.

For the following analysis, the detected outliers are
removed. The remaining vectors are then analyzed in
terms of mean and rms values of the displacement error
u–dt, E(u–dt) and r(u–dt), respectively. As can be ex-
pected, the mean error E(u–dt) proves to be independent
of the interrogation window size for all three methods. It
can be shown directly by symmetry considerations that the
mean error is identically zero for both dt=0 and dt=0.5 px
due to the window shifting. Figure 2 shows the mean error
within the interval 0 £ dt £ 0.5 px for different particle
image sizes for Method C. The bias errors of Method B are
virtually indistinguishable from those of Method C, which
is to be expected due to the absence of velocity gradients.
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Figure 3 shows the maximum bias error made within
0 £ dt £ 0.5 for both Method C and Method A. The
Gaussian sub-pixel interpolation of the standard method
essentially removes all peak-locking effects for all particle
image sizes tested, while in comparison the optimization
techniques show quite significant peak-locking, which
worsens with decreasing particle image size.

The random error levels, r(u–dt), generally appear to
be largest for dt=0.5 for all three methods. Figure 3b shows
the random error level at dt=0.5 for different interrogation
sizes as function of particle image size. In all cases, noise
levels are reduced with increasing interrogation window
size, as expected. The optimization approaches (Methods
B and C) produce decreasing noise levels for increasing
particle image size, in all cases Method B doing somewhat
better than Method C. In contrast, the noise error levels
produced by the standard approach increase slightly with
the particle image size. For small particle sizes, the MatPIV

package produces fewer random errors than the optimi-
zation approaches, while for larger particles the opposite is
the case.

3.2
Irrotational oscillatory displacement field
The second test is performed to investigate how spatially
periodic structures are resolved. A synthetic image pair is
created with randomly distributed particles with the same
density of 0.0195 l/px2 as before. The particles are then
displaced according to the irrotational oscillatory dis-
placement field

ux x; yð Þ ¼ A cos
2px

k

� �
sin

2px

k

� �
;

uy ¼ A sin
2px

k

� �
cos

2py

k

� �
; ð31Þ

where k is the wavelength, and A the amplitude. Again
particles are projected onto either image with Gaussian
intensity distributions, the sizes chosen to be dp=2 px and
dp=4 px.

Two different values for amplitude A were chosen. For
case A=1, the spatial resolution of the methods is tested
without introducing significant broadening of the corre-
lation peaks for small interrogation windows. In the
second case, A=5, the methods’ ability to deal with non-
constant particle displacements within a window is
brought to test, since it features a maximum displacement
gradient of about 25%.

The images are processed by all three methods, with a
step size between neighbor interrogation windows of
D=8 px. The resulting vector fields are decomposed into a
number of subdomains of 8·8 vectors, each of which
covers one wavelength k=128 px in either direction. The
subsequent averaging across points of equivalent phase in
the subdomains then provides phase-averaged displace-
ments Eph(ux) and Eph(uy) and their respective rms values
rph(ux) and rph(uy).

Figure 4 shows normalized velocity profiles of Eph(ux)
along the line x = 0, as they are estimated by the different
methods in the case of dp = 4 px. For the small amplitude
case, A = 1 px, the bias errors of all three methods prove to
be comparable for the small window sizes, 2R = 16 and
32 px, while for larger windows, Method C has the smallest
bias. However, when the interrogation window covers one
wavelength, 2R = k, neither of the three methods at test is
obviously able to resolve the displacement field, the result
being weighted spatial averages close to zero. In the case of
large wave amplitude, A = 5 px, Method B generally pro-
duces too many outlier vectors to allow reliable estimation
of velocity profiles at all, its robustness even weakening
with decreasing particle size. Also Method A produces
many outliers, most of which are removed and interpo-
lated by the MatPIV package itself. However, Methods A
and C provide satisfactory results for the case A = 5 px.
Both methods resolve the oscillatory field satisfactorily for
small window sizes (2R = 16), but for larger windows,
Method C produces significantly less bias error than A,
which tends to chop the oscillation peak. Another quali-
tative feature shown in Fig. 4 is the symmetry of the

Fig. 3a, b. Synthetic PIV-image pair with constant displacement: a
max bias error; b max random error for different interrogation
window sizes as a function of particle image size dp. m, Method A; +,
Method B; ·, Method C; —, 2R=16 px, - - -, 2R=32 px; Æ–Æ, 2R=64 px;
� � �, 2R=128 px

Fig. 2. Method C, optimization of q=(u, v, x, sij) on synthetic PIV-
image pair with constant displacement. Bias error as function of
particle sub-pixel displacement: —, particle image diameter
dp=1.5 px; - - -, dp=2 px; Æ–Æ, dp=3 px; � � �, dp=4 px
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profiles. Methods B and C reproduce the symmetry of the
profiles, while Method A tends to give a spatial shift.

Figure 5 shows the corresponding profiles of rph(ux)
along of the line x = 0. For the case A = 1 px, Method C
features rms levels on average about five times lower than
those of Methods A and B. In the case A = 5 px, the dif-
ference is about one order of magnitude. Moreover, a
distinct difference in the shape of the rms profiles can be
seen for larger window sizes. Method C shows its highest
random errors at displacement peak locations, while in
Methods A and B the noise is largest at locations where the
displacement gradients have their maximum.

Figure 6 directly compares the mean bias error
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of the x displacement measured by the methods as a
function of interrogation window size 2R, for the particle
image sizes dp=2 px and 4 px and amplitudes A=1 px and
5 px. Method C generally performs better in comparison
with the other methods tested. For all methods, some de-
pendency of the bias errors on the particle image size is

detected. The mean random errors of Method C are seen to
be clearly smaller than those of the other methods, this
being especially pronounced for case A=5 px. Generally,
for all methods, random errors are reduced with increas-
ing particle image size.

The divergence of Eq. 34 is easily computed to

sii ¼
4p
k

A sin
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� �
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2py

k

� �
; ð34Þ

and Eq. 34 is used to compute the error of sii as it is
estimated by Method C. Figure 7 shows the mean bias and
random error
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respectively.
Regarding the total error levels of the measured dis-

placement, Methods A and B are seen to achieve their best
overall accuracy with the smallest interrogation window
size 2R=16 px tested. The total overall displacement error
of Method C is rather constant for 2R=16, 24 and 32 px,
the larger of those producing more bias and less random

Fig. 4a–f. Synthetic PIV-image pair with periodic irrotational dis-
placement field, Eq. 31 with particle image size dp=4 px. Phase-
averaged velocity component Eph(ux)/A along line x=0: a Method A,

A=1 px; b Method A, A=5 px; c Method B, A=1 px; d Method B,
A=5 px; e Method C, A=1 px; f Method C, A=5 px; diamonds, exact
profile; —, 2R=16 px; - - -, R=32 px; Æ–Æ, 2R=64 px; ÆÆÆ, 2R=128 px
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errors and and vice versa. The total error of sii measured
by Method C is seen to be smallest somewhere between
2R=24 and 32 px.

3.3
Oseen vortex
The methods’ capability of resolving a single vortex is
investigated in a test similar to that of Huang et al.

(1993) and others. Again a synthetic image pair is
created by randomly distributing particles over the image
plane of 1,024·1,024 px2 with an average density of
0.0195 1/ px2. The particles are displaced from one image
to the other by an exact Oseen vortex with the center
located at the image center and the angular displacement
given as

Fig. 5a–f. Synthetic PIV-image pair with periodic irrotational dis-
placement field, Eq. 31 with particle image size dp=4 px. Rms of
phase-averaged velocity component along line x=0: a Method A,

A=1 px; b Method A, A=5 px; c Method B, A=1 px; d Method B,
A=5 px; e Method C, A=1 px; f Method C, A=5 px; —, 2R=16 px;
- - -, 2R=32 px; Æ-Æ, 2R=64 px; � � �, 2R=128 px

Fig. 6a–d. Synthetic PIV-image pair with periodic irrotational
displacement field, Eq. 31. Mean of phase-averaged bias and random
displacement errors averaged over one wavelength in either direction
of the field: a norm. bias error, Eq. 32, A=1 px; b norm. bias error,

Eq. 32, A=5 px; c norm. random error, Eq. 33, A=1 px; d norm.
random error, Eq. 33, A=5 px; m, Method A; +, Method B; ·, Method
C; —, particle image size dp=2 px; - - -, particle image size dp=4 px
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where L=115 px and L=0.1934 1/px, setting the vortex
size to about 100 px and the maximum displacement in
the field to 10 px. The vorticity of Eq. 37 can be com-
puted to be
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and the only non-zero strain rate tensor element is
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This test features a maximum displacement gradient of
about 20% in the vortex core, while the maximum
magnitude of the second displacement derivative is seen
at a distance of about 100 px from the vortex center to
be about 10–3 1/px.

Again every particle is projected onto the discrete im-
ages with a Gaussian bell intensity distribution of the sizes

dp=2 px and dp=4 px, respectively. Additionally, 10%
white noise is added to each image.

Figures 8 and 9 show the error of the length of the ve-
locity vector compared with the exact profiles as a function
of the distance r from the vortex center point. Methods A
and B are seen to yield similar results, although random
error levels overall are a little lower for Method B. In the
vortex core region, the random error component tends to
grow with increasing window size for both methods, while it
decreases in the vortex periphery. Using larger interroga-
tion windows, some negative bias error can be detected
additionally in the vortex core region. Using Method C, the
error dependency on the interrogation window size is
fundamentally different. For 2R=16 px, see Fig. 8c, the
average error is not larger than in Methods A and B; how-
ever, in a few windows outlier values are produced. As be-
fore, increasing the window size removes such outliers
everywhere in both the vortex core and in its periphery and
further increase in the window size further reduces the
random error component. Also, Method C produces some
limited bias error when using larger windows, although
clearly less than Methods A and B. Not being shown, the

Fig. 7a, b. Synthetic PIV-image pair with periodic irrotational
displacement field, Eq. 31. Method C. Mean of phase-averaged bias
and random errors of divergence sii averaged over one wavelength in
either direction of the field: a A=1 px; b A=5 px; -·-·-, norm. bias

error, Eq. 35, dp=2 px; - · -, norm. bias error, Eq. 35, dp=4 px; —,
norm. random error, Eq. 36, dp=2 px; - - -, norm. random error,
Eq. 36, dp=4 px

Fig. 8a–c. Synthetic PIV-image pair of Oseen vortex. Particle image
size dp=4 px. Tangential displacement error |(u,v)|–Vh for every
window as a function of distance r from vortex center. Interrogation
window size 2R=16 px: a Method A; b Method B; c Method C

Fig. 9a–c. Synthetic PIV-image pair of Oseen vortex. Particle image
size dp=4 px. Tangential displacement error |(u,v)|–Vh for every
window as a function of distance r from vortex center. Interrogation
window size 2R=32 px: a Method A; b Method B; c Method C
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errors of the velocity angle are considerably larger for
Methods A and B than for Method C, in particular in the
vortex core region. Its dependency on window size follows
the tendency of the velocity norm error. Further, the stan-
dard approach (Method A) produces asymmetric velocity
fields, seen by a significant bias of the velocity angle profile.

For all three methods, the vorticity is estimated by
central differences in the displacement components,

xFD x;yð Þ¼v xþD;yð Þ	v x	D;yð Þ
2D

	u x;yþDð Þ	u x;y	Dð Þ
2D

;

ð40Þ

the step size being D=16 px. Figure 10 shows the nor-
malized error, when compared with Eq. 38, Method C
having random errors one order of magnitude smaller
than the other two methods. With Method C, additionally
to finite difference approximations, the vorticity is esti-
mated directly. Figure 11 shows the average error of the
normalized vorticity for different interrogation window
sizes as a function of the distance from the vortex center
point. Using 2R=16 produces very significant scatter;
however, larger windows again narrow the noise level in
the estimation, yielding considerable accuracy.

In Fig. 12, total displacement errors are averaged over
the field and plotted as function of interrogation window
size for the three methods. Methods A and B provide their
optimum somewhere between 2R=24 px and 32 px, while
Method C yields minimum error levels at 2R=32 px and
2R=48 for the particle image sizes dp=4 px and dp=2 px,
respectively. Contrary to the standard method, the meth-
ods based on optimization clearly produce least errors for
the largest particle image size, tested. Apart from the case
of 2R=16 px and dp=2 px, Method C performs generally
better than the other methods.

Figure 13 shows the average error of the measured
vorticity, divergence, and shear rate as computed by
Method C for different window sizes. It is noteworthy that
the least total error is produced with a window as large as
2R=92 px.

4
Discussion
In Sect. 3, an attempt has been made to demonstrate the
properties of the new method and to compare the results

with the standard approach. In the following, results are
discussed and their implications outlined. Effectively, the
comparison procedure is divided into two parts: first the
effect of the collocation method itself is tested with linear
displacements only (Method B) and compared with the
standard approach. Secondly, the influence of taking into
account displacement gradients into the interrogation
procedure (Method C) is tested. The MatPIV package
(Method A) was used as the standard method, because it is
readily available.

Fig. 10a–c. Synthetic PIV-image pair of Oseen vortex. Displacement
error |(u,v)|–Vh. Comparison of average error made by different
analysis methods as a function of interrogation window width: m,
Method A; +, Method B; ·, Method C; —, dp=2 px; - - -, dp=4 px

Fig. 11a–c. Synthetic PIV-image pair of Oseen vortex. Normalized
vorticity error (x–W)/(L) for every window as function of distance r
from vortex center. Vorticity is computed by central differences.
Interrogation window size 32 px: a Method A; b Method B; c Method C

Fig. 12. Method C, optimization of q=(u,v,sij) on synthetic PIV-
image pair of Oseen vortex. Normalized vorticity error (x–W)/(L)
for every window as function of distance r from vortex center:
a 2R=16 px; b 2R=32 px; c 2R=64 px
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It is a requirement for being able to extend the usual
discrete shifting operator to the image distortion with
affine transformations that the processed images are
treated as continuous functions at least partly in the pro-
cess. In the image-distortion approaches of Huang et al.
(1993), Huang (1998), Jambunathan et al. (1995) and
Nogueira et al. (1999), affine transformation of the images
is used only for re-sampling, while interrogation still relies
on the usual discrete FFT-based cross-correlation analysis.
In contrast, the present method window integrates image
distortion directly into the interrogation procedure
without need of pre- and post-processing. The problem
of the in-plane losses of particle pairs (usually solved by
interrogation window shifting) has a simple straightfor-
ward solution in the new method, since the affine trans-
formation of the collocation points shifts the interrogation
window automatically in either image in both location and
shape. Since the images are correlated at the virtual time
th, where the shifted collocation points coincide, the two
image patterns are easily compared.

A second major difference is the implementation of the
correlation function by use of collocation points. Once the
images are transferred from the discrete index space (i,j)
into continuous coordinates (x,y), full freedom is given in
the choice of interrogation window shape. Theoretically, as
much symmetry as possible in time as well as in space
should be introduced in the interrogation procedure.
Therefore, we believe the circular shape to be the best
choice. Due to the affine transformation of collocation
points xi in either direction, given by ±q/2, the velocity
field is a second-order approximation to the velocity field
at time th=(t1+t2)/2, preserving symmetry as seen in
Figs. 4.

A further difference can be seen in the fact that, since
the new method does all analysis in the continuous space
(x,y), the results are by definition continuous and there-
fore further sub-pixel interpolation around the correlation
peak is not needed.

In the present investigation based on synthetic images,
a number of real-life error sources such as electronic
noise, inhomogeneous seeding and light sheet, out-of-
plane loss of particles, etc. have been neglected. The
remaining errors are essentially due to the discretization

to pixelized images and due to the non-uniformity of the
displacement field. The size of errors in the tests is gen-
erally determined by the following three parameters: First,
the average number of particles within an interrogation
window determines the amount of information on the
basis of which measurements are made within a window.
Secondly, the relative size of the interrogation window
compared with the length scale of the displacement gra-
dients in the field determines the difference of particle
displacements within the window, and the resulting
broadening of the correlation peak. The third parameter is
the particle image size, determining the size of the
discretization error and the width of the correlation peak.
In order to save computational time for the tests and to
reduce the amount of data to be presented, only the par-
ticle image size and the window width were varied in the
present study. The particle density was kept constant,
making the number of particles within the window pro-
portional to the window area.

4.1
Random errors
The random errors produced by the three methods are
primarily determined by the number of particles within a
window and by the broadening of the correlation peak due
to displacement differences within the window. Random
errors in PIV are generally known to grow with decreasing
number of particles within a window, which is confirmed
by the present results. Given only a limited number of
particles, Method C suffers more than the other methods,
because more information is required to determine six
parameters q=(u, v, s11, s22, s12) than only two (u, v).
Theoretically, at least three particles are necessary in either
image to determine q uniquely, while one particle is suf-
ficient in the standard method and Method B. This effect
can be seen in the present study when using the window
size 2R=16, since the average particle density used in the
test corresponds to an average of 3.9 particles per window,
being close to the theoretical limit.

Hence, in PIV the signal-to-noise ratio is increased by
increasing the window size due to the increased number of
particles within a window, as long as displacement dif-
ferences within the window do not broaden the correlation
peak. Broadening of the peak in Methods A and B begins
when those displacement differences grow to scales similar
to the average particle image size. In such cases, the ran-
dom error component of standard PIV is known to in-
crease considerably. In Method C, the correlation peak
does not broaden as long as an inherent first-order Taylor
expansion is a good approximation to the displacement
field over the window area. Hence, unlike Methods A and
B, the signal-to-noise ratio of Method C still further in-
creases when enlarging the interrogation window. This
behavior is similar to that reported for the window dis-
tortion techniques (see e.g., Huang et al. 1993; Scarano and
Riethmuller 2000) and the growth of the signal-to-noise
ratio is continued as long as higher-order velocity deriv-
atives can be neglected. This is demonstrated in Fig. 5,
Method C having the highest random errors where second-
order displacement derivatives have their maximum, while
both Methods A and B show maximum noise-levels at

Fig. 13. Method C, optimization of q=(u,v,sij) on synthetic PIV-
image pair of Oseen vortex. Comparison of average total error of
differential quantities as function of interrogation window width 2R:
diamonds, vorticity error, (x–W)/(k); left triangle, divergence error,

sii/(ak); right triangle, shear rate error,
ffiffiffiffiffiffiffiffiffi
SijSij
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continuous lines, dp=2 px; dashed lines, dp=4 px
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locations with maximum first-order derivatives in the
displacement field. At such locations Method C produces
least noise, since here the second-order displacement de-
rivative vanishes due to the sinusoidal profile of Eq. 31.

It is well known in the PIV literature that finite differ-
ence approximations of measured velocity vectors suffer
from the large random errors present in the velocity es-
timates, see e.g., Raffel et al. (1998). This is the reason for
usually employing other numerical differentiation schemes
and various smoothing algorithms, to some extent re-
ducing spatial resolution. Since the random errors of
Method C are reduced, finite differences can be employed
with considerably higher accuracy (see Fig. 10). At first
view, surprisingly, the error in the directly estimated
vorticity (Fig. 11b) is considerable larger than that found
by finite differences (see Fig. 10c), using the same inter-
rogation window width. However, using 2R=64 yields er-
rors which are comparable with the ones obtained by finite
differences of the velocity components found with 2R=32.
This indicates that the directly estimated gradients are
equivalent in accuracy to finite difference approximations,
as long as the area of the PIV image used for the estima-
tion is similar.

4.2
Bias errors, peak-locking and spatial resolution
With the use of interpolation in the pixel space of the
image, errors in the velocity estimates arise, similar to the
errors introduced by sub-pixel interpolation within the
standard PIV framework, usually termed peak-locking.
Considerable bias errors are introduced by the bilinear
interpolation in Methods B and C, the errors being largest
for small particle image sizes. The peak-locking effect in
the standard method is virtually removed in the constant
displacement test, since the Gaussian sub-pixel interpola-
tion scheme is constructed for the Gaussian intensity
distributions of the synthetic particles images used in the
tests. However, even in the weak case (A=1 px) of the
irrotational oscillatory field (see Fig. 6), the bias error
produced by the standard method is dependent on the
particle image size, the dependency in fact being of the
same order of magnitude as that of Methods B and C. This
is so because the correlation peak in Method A is no longer
of Gaussian shape due to displacement differences within
the window, despite the Gaussian profiles of individual
particle images.

It should be pointed out that peak-locking effects
similar to those of Method C have to be expected for the
image distortion techniques in the literature, since they all
use bilinear interpolation in the re-sampling procedure of
the distorted second image. However, once displacement
gradients are taken into account by either image distortion
or within the pattern matching algorithm itself, such bias
errors prove to be less disturbing in the measurement of
strained flows. This is because the peak-locking effect is
local to each particle in the window and is to some extent
averaged out if particles within the window have different
sub-pixel displacements. However, is is still worthwhile to
consider other interpolation techniques, such as, for ex-
ample, higher-order piecewise interpolation methods or
splines, such option having been investigated by Fincham

and Delerce (2000) and Scarano and Riethmuller (2000),
for example.

The spatial resolution of all the methods is restricted by
the Nyqvist limit, since velocity fluctuations on the scale of
the interrogation window are averaged out in the mea-
surement. Introducing displacement gradients in the in-
terrogation procedure does not remove that limit. Similar
to what is shown in Nogueira et al. (1999) and Scarano and
Riethmuller (2000), the ability of spatially resolving details
in the displacement field can be described by defining a
spatial wavelength response function. Based on the oscil-
lating displacement test in the present study, a response
function is defined by finding the maximum phase-aver-
aged x displacement Eph(ux) at (x,y)=(0,k/4) (see Fig. 14).
For all three methods tested, the response is essentially
that of a sliding average over the window area, as expected.
While the response of the standard method is practically
identical to that of a sliding average with constant weight,
Method B is slightly less damping due to its non-constant
weighting function w(r) and effectively smaller, circular
window shape. Method C shows the least damping prop-
erties, having an amplitude reduction half that of the
sliding average as long as the window size is less than half
the oscillation wavelength.

4.3
Application to real experimental image pairs
Westerweel (2000) and others have pointed out that the
testing of PIV processing algorithms with synthetically
produced image data can give very optimistic estimates of
a method’s capabilities. Further, in the present study not
only the method’s accuracy, but also its robustness has to
be demonstrated with respect to real experimental images,
since the method relies on gradient-based optimization – a
technology that is prone to convergence problems. It is
beyond the scope of the present paper to investigate such
aspects thoroughly. Here, only a demonstration is given of
the differences which can be expected between the results
of the standard procedure and the present method. To
accomplish this, an image pair from Ullum (2000) is
processed with turbulent boundary layer air flow behind a
fence. The nominal Reynolds number based on the fence
height h=40 mm is Reh=1300 and the pixel width corre-

Fig. 14. Synthetic PIV-image pair with periodic irrotational dis-
placement field, Eq. 31, A=1 px. Amplitude of measured x-displace-
ment as function of relative window width: e, moving average; m,
Method A; +, Method B; ·, Method C; —, dp=2 px; - - -, dp=4 px
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sponds to px=1.8·10–3h. The time interval between the two
images was adjusted to give maximum particle displace-
ments in the field of about 10 px. The tracer is spray of a
mix of water and glycerol, yielding particles of diameter

between 1 and 3 lm. The images were preprocessed by
subtracting from the image a local mean pixel intensity
that was found by sliding averages over an 11·11-px2 area.
All three methods are applied to the image pair for dif-
ferent interrogation window sizes.

Figures 15 and 16 show the norm of the displacement
vector, as computed for the window size 2R=16 px and
32 px by Methods A and C. The results of Method A is
overall very similar to that of Method B (not shown): for
small interrogation windows, many similar details are re-
solved and the quality of the measurement seems to be
equivalent. For larger windows, the velocity field appears
to be smoothed, which is expected due to the filtering
effects of the local averaging within each window, reducing
local extremum velocity values. However, in some isolated
parts of the plane, local strong gradients seem to be am-
plified, such a discontinuous response being reported by
others (see e.g., Scarano and Riethmuller 2000). Method C,
in contrast, appears to provide a more detailed but
smoother velocity field than the other methods, using
similar window sizes. Further, the use of larger interro-
gation windows appears only to have a smoothing effect
also in the strong gradients regions mentioned, with the
qualitative features of the velocity field in all cases being
retained.

4.4
Choice of objective function
Since the correlation operator C is computed using direct
summation, it could be substituted with any other objec-
tive function expressing similarity of two image patterns.
AsFincham and Delerce (1997) and Huang et al. (1997), for
example, have pointed out, the correlation operator should
be substituted with the covariance operator, being nor-
malized with respect to the average pixel intensity and
intensity variance of either of the two patterns to be
matched. By this normalization, the interrogation algo-
rithm becomes less sensitive to spatial gradients in the
images that are caused by inhomogeneous light sheet in-
tensity, inhomogeneous particle seeding, etc. Accordingly,
Eq. 25 could be substituted with

C F1;F2ð Þ¼ 1

N

X
i

w rið ÞF1 xi;yið Þ	E F1ð Þ½ � w rið ÞF2 xi;yið Þ	E F2ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V F1ð ÞV F2ð Þ

p
ð41Þ

where E and V denote the mean and variance operators,
respectively

E Fð Þ¼ 1

N

X
i

w rið ÞF xi;yið Þ; ð42Þ

V Fð Þ¼ 1

N

X
i

w rið ÞF xi;yið Þ	E Fð Þ½ �2: ð43Þ

Preliminary tests using Eq. 41 do not show any significant
changes in the results for any of the examples in the
present paper. Generally, random errors are slightly larger
than with Eq. 25 in use. Further, the optimization algo-
rithm on average needs a few more iterations, resulting in
a minor loss of computational efficiency. However, the

Fig. 15a, b. Speed of flow behind fence. Interrogation window size
2R=16 px: a Method A; b Method C

Fig. 16a, b. Speed of flow behind fence. Interrogation window size
2R=32 px: a Method A; b Method C
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synthetic images used for the present testing are obviously
very clean, so no final conclusion can be drawn at present.
Another possibility worth testing is the MQD approach of
Gui and Merzkirch (2000), also being easily implemented
within the current framework.

Nogueira et al. (1999) reports that the image distortion
technique of Huang et al. (1993) suffers from numerical
instabilities when used iteratively. Nogueira et al. (1999)
ascribe this unstable behavior to the spatial frequency
response of standard PIV interrogation methods, being
negative for certain spatial frequencies, and they showed
that removing the negative response by introducing
weight function in the cross-correlation operator removes
the instabilities. Also, the present method uses a weight
function in the correlation operator. However, the fre-
quency response does not determine the stability of the
method, since an implicit optimization method is em-
ployed, while the image distortion procedures are essen-
tially explicit, image distortion being dependent on
displacement fields measured at previous iterations. The
primary function of the weighting function in the present
approach is to guarantee reasonable smoothness of G(q),
since the optimization routine VF13AD formally requires
both G(kq) and @G kqð Þ

@kq to be continuous. In the case
w(ri)=1 for all collocation points (xi,yi), small changes of
q could imply abrupt changes in G when moving the
window over a particularly bright spot in the image.
Giving low weights to the periphery of the window re-
duces this tendency.

4.5
Robustness of the method
In all correlation-based PIV analysis, the location of the
maximum correlation is sought in one way or another. In
the standard PIV method, fast algorithms are used for the
calculation of the image cross-correlation, making it
feasible to cover the whole relevant parameter space (u,v)
with only a moderate computational burden. The location
of the maximum correlation is then determined by a
simple search algorithm. However, in order to find the
correlation peak, it is not necessy to compute values for
the cross-correlation for a large sample of (u,v), as long
as the region around the correlation peak is well re-
solved. Usually in general optimization problem solving,
search procedures would be avoided and instead more
intelligent techniques are employed to track down an
optimum with as few evaluations of the objective func-
tion as possible. The drawback of this approach com-
pared with the use of search algorithms is that the
objective function must be smooth and usually must have
smooth gradients. Further, convergence of the method
cannot be guaranteed, and no warranty can be given that
the optimum found is global, if local optima exist. In
gradient-based optimization, the easier it is to solve the
problem, the smoother is the objective function to be
minimized. Hence the correlation analysis of tracer scalar
fields, as in Tokumaru and Dimatakis (1995) and others,
is particularly easier, as in the present case, where the
correlation function is only smooth within scales of the
average particle image size, and the correlation optimum
is searched locally without any additional smoothness

constraints. However, due to the usually good starting
guess available, typically it would locate the global peak
within 10–20 iteration steps to the required convergence
criterion. Most of the iteration steps are spent in the
process of finding the approximate location of the opti-
mum. When the peak has eventually been identified, the
subsequent exact pinpointing of the peak location within
sub-pixel accuracy is always obtained within a few iter-
ation steps. The convergence behavior does not appear to
be very sensitive to the interrogation window size, as
long as there is a sufficient number of particles within the
window, but it is obviously very dependent on good
starting guesses.

The production of outliers in the processing of the
synthetic image pairs is generally due to either of two
reasons. In cases with fewer than three particles within a
virtual window, clearly a correct correlation optimum
cannot be found. The method would then either converge
into a peak due to noise or would shift the window in
either of the images, so that the image patterns within the
transformed windows S1

2
kq phð Þ in either image, I1 and I2,
respectively, feature three particles. The location q of the
optimum will obviously be wrong; however, the correla-
tion peak found will usually be quite high. The second
reason for outlier production comes into effect in cases
where the transformation Sq is an inaccurate approxima-
tion of the displacement field within A. This results in a
broadening of the correlation peak in such a way that the
optimization algorithm might converge within arbitrary
weak local optima. This is easily detected, since unlike the
former case, the correlation peak found is weak. Since the
width of the correlation peak in the kq-parameter space is
essentially of the order of the average particle image size,
the problem of outlier production increases with de-
creasing particle image size.

4.6
Computational efficiency
The main workload in the optimization procedure lies in
the evaluation of the correlation G(kq), which on a typical
year-2000 PC (800 MHz AMD Athlon) is timed to require
10–5Ns, N being the number of collocation points used.
Assuming 10–20 iteration steps to be necessary, every step
requiring seven evaluations of G(kq), the typical process-
ing speed is about five windows per second for a window
size of 2R=16 px. This efficiency is clearly inferior to the
speed of a standard method. However, if the point of view
is somewhat similar to the philosophy of Fincham and
Spedding (1997and Fincham and Delerce 2000), requiring
accuracy regardless of the computational cost, the com-
putational overhead of the present method is certainly
acceptable. Further, it should be noted that once the lo-
cation of the correlation peak has been determined for one
interrogation window size, it usually only costs one to
three iterations to find the peak location for another
slightly different window size, due to the very good
starting guess available. In this way, only moderate addi-
tional costs are generated by computing results for a whole
cascade of interrogation window sizes. The additional data
can give valuable additional information, for example
when attempting to demodulate the averaging effect of the
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PIV interrogation in order to improve spatial resolution,
as proposed by Scarano and Riethmuller (2000).

From a numerical and implementational point of view,
quite some possibilities of improving the efficiency of the
present method can be imagined. An attempt should be
made to avoid the calculation of a full Jacobian in the
optimization algorithm, since it in the present imple-
mentation accounts of more than 50% of the total com-
putation time. As often done in similar iterative
algorithms, the Jacobian could be reused to some extent
from former steps, or Broyden updates to the Jacobian
could be employed, only requiring one additional evalua-
tion of the objective function. Further, parallelization of
the interrogation algorithm is trivial due to its very local
nature.

5
Conclusion
In the present study, a new method is presented for the
processing of PIV image pairs. It integrates previous
suggestions on how to take into account particle dis-
placement gradients in a simple consistent technique. It
also solves the problem of sub-pixel interpolation in a
straightforward manner, gives full freedom in the choice of
interrogation window geometry, and solves the problem of
in-plane loss of particle pairs without any further
processing.

By applying the new method to synthetic sample image
pairs, it is demonstrated that the method (similar to
window distortion techniques) can improve measurement
accuracy considerably by reducing the random error levels
usually encountered when measuring strongly strained
flow and by providing a somewhat less damping wave-
length response to local flow features. Hence the dynamic
range of measurements of velocity gradient, i.e., vorticity,
is significantly enhanced. In its present state, the compu-
tational cost of the method is higher than that of the
conventional approach.

The present study only documents the first test with
this new method, and many different aspects need further
investigation. In particular, how real life error sources
such as electronic noise, out plane loss of particles, varying
particle image sizes, very high particle densities, inho-
mogeneous particle seeding and light sheet intensity, etc.
affect the measurements must be tested.
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