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practice. Hence, accurately estimating the probability of 
successful SWL treatment for large stones would maximize 
patient benefits [3].

Previous studies investigated various factors from a stan-
dard non-contrast CT scan, which may influence the success 
of SWL treatment of ureteral stones, including stone size, 
density, texture, etc. [4–8]. The usefulness of CT texture 
analysis in assessing internal structural heterogeneity and 
its potential role in enhancing the accuracy of SWL success 
prediction remains contentious. Overall, AUCs of predic-
tion models based on these factors remained unsatisfactory 
[9–11].

Recent research indicates that morphology can differen-
tiate between COM and calcium oxalate dihydrate (COD) 
stones [12]. Radiomics extracts quantitative imaging fea-
tures from radiological images, creating a high-dimensional 
dataset that enhances diagnostic, prognostic, and predictive 
accuracy in clinical decision support [13, 14]. Therefore, 
it is plausible to hypothesize that radiomics features can 
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Urolithiasis is a common urological condition with an 
increasing incidence and prevalence worldwide [1, 2]. 
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lines recommend URS as the first-line therapy for ureteral 
stones larger than 10 mm, SWL can also be used in clinical 
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Abstract
Purpose  This study aims to investigate the predictive value of CT-based radiomics in determining the success of extracor-
poreal shock wave lithotripsy (SWL) treatment for ureteral stones larger than 10mm in adult patients.
Materials and Methods  A total of 301 eligible patients (165/136 successful/unsuccessful) who underwent SWL were retro-
spectively evaluated and divided into a training cohort (n = 241) and a test cohort (n = 60) following an 8:2 ratio. Univariate 
analysis was performed to assess clinical characteristics for constructing a nomogram. Radiomics and conventional radio-
logical characteristics of stones were evaluated. Following feature selection, radiomics and radiological models were con-
structed using logistic regression (LR), support vector machine (SVM), random forest (RF), K nearest neighbor (KNN), and 
XGBoost. The models’ performance was compared using metrics such as the area under the receiver operating characteristic 
curve (AUC), precision, recall, accuracy, and F1 score. Finally, a nomogram was created incorporating the best image model 
signature and clinical predictors.
Results  The SVM-based radiomics model showed superior predictive performance in both training and test cohorts (AUC: 
0.956, 0.891, respectively). The nomogram, which combined SVM-based radiomics signature with proximal ureter diameter 
(PUD), demonstrated further improved predictive performance in the test cohort (AUC: 0.891 vs. 0.939, P = 0.166).
Conclusions  Integration of CT-derived radiomics and PUD showed excellent ability to predict SWL treatment success in 
patients with ureteral stones larger than 10mm, providing a promising approach for clinical decision-making.
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predict SWL success more effectively. Within the field of 
urolithiasis, radiomics has been used to identify stone com-
position [15] and predict stone-free rate of flexible ureteros-
copy [16]. However, no published reports have investigated 
whether radiomics signature may enhance the accuracy of 
predicting SWL treatment outcomes for ureter stones.

The study aimed to investigate the predictive value of 
radiomics using non-contrast CT images for SWL treatment 
success in patients with ureteral stones over 10  mm. We 
also compared radiomics’ prediction performance with con-
ventional radiological features and developed a combined 
model incorporating independent clinical predictors and 
superior imaging signatures.

Patients and methods

Patients

A retrospective study analyzed patients with ureteral stones 
treated with SWL at our hospital from January 2018 to Janu-
ary 2023. SWL were performed using the Dornier Compact 
Delta II lithotripter (Dornier MedTech, Wessling, Ger-
many). Stone-free status was assessed two weeks after each 
SWL using kidney, ureter, and bladder film and ultrasound. 
Retreatment was carried out for inadequate fragmentation 
and incomplete clearance of the stone. If the stone remained 
intact after a maximum of three sessions, the case was con-
sidered a failed treatment. Treatment success was defined as 
achieving complete stone absence.

The inclusion criteria for this study were as follows: (a) 
availability of pre-treatment non-contrast CT images, (b) 
complete follow-up during or after treatment, and (c) the 
maximum diameter of stone larger than 1 cm. The exclusion 
criteria were as follows: (a) presence of multiple ureteral 
stones on the ipsilateral side, (b) previous open ureteral sur-
gery or a history of ureteral stricture, and (c) any genitouri-
nary tract anomaly.

A total of 301 patients were included in this study based 
on predefined inclusion and exclusion criteria. Subse-
quently, these patients were randomly assigned to a training 
cohort and a test cohort at a ratio of 8:2.

Baseline clinical data of the patients, including age, gen-
der, body mass index (BMI), presence of diabetes mellitus 
(DM) or hypertension (HTN), stone laterality, location, 
hydronephrosis grade (HG) [17], proximal ureter diameter 
(PUD), skin-to-stone distance (SSD) were obtained from 
the medical records.

Radiological analysis

Two experienced radiologists reviewed and evaluated pre-
treatment CT images of stone on our hospital’s picture 
archiving and communication systems.

Radiographic parameters of stone included maximum 
craniocaudal diameter (MCD), maximum transverse diam-
eter (MATD), minimum transverse diameter (MITD), mean 
stone density (MSD), standard deviation of stone density 
(SDSD) and variation coefficient of stone density [(VCSD, 
(SDSD)/(MSD)*100(%)] [18].

Radiomics feature extraction and selection

The workflow for radiomics analysis is shown in Supple-
mentary Fig. 1. Image segmentation was performed using 
ITK-SNAP software (version 3.8.0, http://www.itksnap.
org/). The volume of interest (VOI) of the entire stone was 
semi-automatically segmented.

Radiomics feature extraction was performed using 
PyRadiomics package, an open source tool (https://
pyradiomics.readthedocs.io; version 3.0.1), implemented 
in Python. Then, radiomics features were extracted from 
each patient’s VOI, which included geometry, intensity, 
and texture features. Here, texture features were calculated 
using various techniques, including gray level cooccurrence 
matrix (GLCM), gray level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), and neighborhood 
gray tone difference matrix (NGTDM) methods.

To ensure comparability and eliminate any potential bias, 
all extracted feature data were normalized by z-score analy-
sis. The radiomic feature selection and dimension reduction 
process in the training cohort involved the following steps: 
First, a univariate analysis was performed to identify sta-
tistically significant features. Then, Spearman’s rank corre-
lation coefficient was applied to reject features with high 
correlations, and only one of the two was retained with cor-
relation coefficients greater than 0.8. Finally, the least abso-
lute shrinkage and selection operator (LASSO) regression 
adjusted the penalty parameters through 10-fold cross vali-
dation with minimum criteria, and then applied to select the 
most reliable predictive features with non-zero coefficients 
for signature construction.

Development of different models and performance 
evaluation

Following Lasso analysis, we employed five machine 
learning (ML) algorithms to train models with retained 
radiomics features to identify the most effective classifier, 
including logistic regression (LR), support vector machine 
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(SVM), random forest (RF), K nearest neighbor (KNN), and 
XGBoost.

The construction process of radiological signature was 
similar to that of radiomics signature. First, features used 
to construct radiological signatures were selected based on 
univariate analysis of radiological characteristics, using a 
significant p-value < 0.05. Similar to the radiomics signa-
ture, the same ML model was used in the building process 
of the radiomic signature.

The prediction performance of radiomics and radiologi-
cal signature models was assessed by the area under the 
receiver operating characteristic curve (AUC), accuracy and 
precision. The DeLong test was used to compare the AUCs 
of two models. In addition, the prediction models developed 
using the training sets were validated with independent test 
sets.

The identified superior imaging signature, along with 
clinical candidate variables, were used to develop a nomo-
gram. The predictive efficacy of the nomogram was tested 
in both the training and test cohort using ROC curves. Cali-
bration curves were generated to evaluate the calibration 
of the nomogram, accompanied by the Hosmer-Lemeshow 
goodness-of-fit test. Decision curve analysis was conducted 
to assess the clinical usefulness of the nomogram by calcu-
lating the net benefit at various threshold probabilities.

Statistical analysis

We used R software (version 4.1.2; https://www.r-project.
org) and Python software (version 3.9.7; http://www.python.
org) for statistical analysis. Continuous variables were ana-
lyzed using either the one-way ANOVA test or Mann-Whit-
ney U test, while categorical variables were compared using 
the chi-squared test or Fisher exact test. Statistical signifi-
cance was determined by a two-sided P value of less than 
0.05.

Results

Clinical and radiological characteristics

Of the 301 patients enrolled, 165 were identified as suc-
cessful in SWL treatment, and 136 were unsuccessful. The 
training cohort included 132 successful and 109 unsuccess-
ful patients, while the test cohort included 33 successful and 
27 unsuccessful patients.

Clinical and radiological characteristics of the training 
and test cohorts are summarized in Table 1. There were no 
significant differences in clinical and radiological character-
istics between the training and test cohorts. Univariate anal-
ysis showed that only PUD differed significantly between 

the successful and unsuccessful groups in both training and 
test cohorts (Table 1).

Radiological signature building and performance 
evaluation

Univariate analysis identified four significant radiological 
predictors: MCD, MATD, MITD, and MSD. Therefore, 
the radiological signature was constructed using these four 
predictors.

Table 2 shows the prediction performance of radiologi-
cal signature models developed using five ML algorithms in 
training and test cohorts.

Radiomics signature building and performance 
evaluation

A total of 1834 radiomics features were extracted from each 
patient’s CT images. Supplementary Fig. 2 displays LASSO 
analysis identifying 25 features from the training cohort. 
Table 2 shows the prediction performance of radiomics sig-
nature models constructed using different ML algorithms, 
both in training and test cohorts.

Comparison of prediction performance between 
radiomics and radiological signature models

The Delong test demonstrated that radiomics signature 
models, based on LR and SVM, showed superior predic-
tive performance compared to radiological signature models 
using the same ML algorithms, in both the training cohort 
and the test cohort (Table 2).

In addition, there were no significant differences between 
training and test cohorts within LR- and SVM-based 
radiomics models, as well as LR- and SVM-based radio-
logical models. This indicates a high generalization capabil-
ity in these models.

Although the performance in the test cohort was com-
parable between LR- and SVM-based radiomics models 
(P = 0.520), we considered SVM-based radiomics to be 
superior as it yielded better results than LR-based model 
in the training cohort (P < 0.001). Detailed performance 
results of SVM-based radiomics are shown in Supplemen-
tary Fig. 3.

Combined model construction and validation

A radiomics nomogram model was developed by combin-
ing clinical predictor (PUD) and radiomics signature. The 
nomogram, shown in Fig.  1a, did not improve prediction 
ability in the training cohort (AUC: 0.955). However, it 
showed improved prediction performance in the test cohort 
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enhanced prediction performance in the test cohort com-
pared to radiomics signature alone, providing important 
information for proper treatment selection.

In vitro studies suggest that stone heterogeneity in CT 
scans can indicate susceptibility to SWL for cystine and 
calcium oxalate stones [8, 19], but not for brushite stones 
[20]. However, naked-eye observation of stone heterogene-
ity may not be a reliable predictor of SWL outcomes. Pre-
vious studies have used various methods to describe stone 
heterogeneity [18, 21, 22], but SDSD and VCSD did not 
show a significant correlation with SWL success in our 
study, consistent with previous findings [22]. While some 
studies have suggested that CT texture analysis may offer 
novel parameters to predict SWL response, its effectiveness 
remains controversial [9, 11, 22, 23].

Some studies [9, 22] found that CT texture parameters 
did not improve SWL outcome prediction, with an AUC 
ranging from 0.64 to 0.7.

compared to using only SVM-based radiomics signature, 
but the differences were not statistically significant (AUC: 
0.939, P = 0.166) (Fig. 1b).

Calibration plots showed good calibration of the nomo-
gram in both training and test cohorts (Fig. 1c). The Hos-
mer-Lemeshow test yielded nonsignificant statistics in both 
the training (P = 0.825) and test cohort (P = 0321), indicat-
ing that there was no deviation from the perfect fit. DCA of 
the nomogram in the test cohort is shown in Fig. 1d.

Discussion

This study found that radiomics signature derived from non-
contrast CT scans outperformed conventional radiological 
models in predicting the success of SWL treatment for ure-
teral stones larger than 10  mm, especially when using an 
SVM-based ML classifier. In addition, incorporating SVM-
based radiomics signature and PUD into the nomogram 

Table 1  Baseline characteristics of the patients
Characterisic Training Cohort (n = 241) Test Cohort (n = 60)

Unsuccessful (n = 109) Successful (n = 132) P value Unsuccessful (n = 27) Successful (n = 33) P value
Age (years) 46.50 ± 14.27 46.73 ± 16.05 0.91 48.67 ± 12.76 47.85 ± 14.48 0.82
MSD (HU)* 1111.4 (885.5,1334.0) 928 (773.25,1104.5) < 0.001 1145 (890,1252) 955 (655,1226) 0.03
SDSD (HU) * 346.25 (205.40,443.53) 340.44 (186.33,365.33) 0.07 348.79 (197.35,390.07) 344.35 (205.64,338.72) 0.12
VCSD (%) * 38.12 (25.02,45.33) 39.34 (26.16,54.44) 0.13 37.89 (24.88,40.64) 39.54 (24.79,51.09) 0.09
MCD (mm)* 11.0 (10.0,12.9) 10.0 (10.0,11.15) < 0.001 12.0 (10.5,15) 10.0 (10.0,11.15) < 0.001
MITD (mm)* 6.5 (5.75,7.95) 5.7 (5.0,6.48) < 0.001 7.1 (6.3,8.0) 5.8 (5.3,6.8) 0.005
MATD (mm)* 8.0 (6.95,9.75) 7.0 (6.0,8.0) < 0.001 8.4 (7.4,10.5) 7.4 (6.45,8.0) 0.02
BMI 24.60 ± 3.17 24.88 ± 2.88 0.48 24.20 ± 5.63 25.29 ± 3.05 0.34
Gender 0.07 0.69
  Male 95 (87.16%) 102 (77.27%) 24 (88.89%) 27 (81.82%)
  Female 14 (12.84%) 30 (22.72%) 3 (11.11%) 6 (18.18%)
Location 0.18 0.26
  Proximal 80 (73.39%) 89 (67.42%) 20 (74.07%) 23 (69.70%)
  Middle 12 (11.01%) 22 (16.67%) 5 (18.52%) 7 (21.21%)
  Lower 17 (15.60%) 21 (15.91%) 2 (7.4%) 3 (9.09%)
Laterality 0.06 0.45
  Right 61 (55.96%) 57 (43.18%) 15 (55.56%) 14(42.42%)
  Left 48 (44.04%) 75 (56.82%) 12 (44.44%) 19(57.58%)
DM 0.94 0.81
  Yes 12 (11.01%) 16(12.12%) 3 (11.11%) 2 (6.06%)
  No 97 (88.99%) 116(87.88%) 24 (88.89%) 31 (93.94%)
HTN 0.32 0.18
  Yes 16 (14.68%) 27 (20.45%) 1 (3.70%) 6 (18.18%)
  No 93 (85.32%) 105 (79.55%) 26 (96.30%) 27 (81.82%)
HG (grade) 2.3 ± 0.3 2.0 ± 0.5 0.16 2.2 ± 0.3 2.1 ± 0.2 0.24
PUD (mm) 8.67 ± 1.76 7.22 ± 1.33 < 0.001 8.91 ± 1.68 7.39 ± 1.35 < 0.001
SSD (mm) 108.72 ± 19.22 107.65 ± 15.54 0.146 109.72 ± 17.57 107.49 ± 16.73 0.089
MSD = mean stone density; SDSD = standard deviation of stone density; VCSD = variation coefficient of stone density; MCD = maximum cra-
niocaudal diameter; MITD = minimum transverse diameter; MATD = maximum transverse diameter; BMI = body mass index; DM = diabetes 
mellitus; HTN = hypertension; HG = hydronephrosis grade; PUD = proximal ureter diameter; SSD = skin-to-stone distance
*Data are presented as the median (interquartile range)
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studies using ML algorithms to predict SWL outcomes, a 
decision tree model [5] yielded an excellent AUC of 0.95 for 
predicting SWL outcomes using various clinical and stone 
characteristics. However, it was not validated in an indepen-
dent set. Meanwhile, the RF algorithm was used to predict 
successful SWL, but the limited sample size of 51 patients 
may affect the reliability of the results [24].

Our study had several limitations. First, the proposed 
nomogram was developed using data from a single center. 
To validate the reliability and generalizability of our predic-
tion model, prospective multicenter studies with large datas-
ets are required. Second, other factors that may affect SWL’s 
success were not included, such as the lithotripter effective-
ness, operator skills [25], etc. Third, subsequent treatments 
were not followed-up and evaluated after SWL failure.

In conclusion, this study indicated that the CT-based 
radiomics model showed superior predictive ability in pre-
dicting the success of SWL treatment in patients with ure-
teral stones larger than 10 mm than traditional radiological 
models, especially when using an SVM-based classifier. 
Therefore, incorporating radiomics and PUD may provide 
a reliable prognosis to distinguish patients with a high prob-
ability of successful treatment outcomes from those with a 
low probability before making an SWL decision. Based on 
the nomogram we developed, SWL is suitable for eligible 
patients with ureteral stones larger than 10 mm.

The morphology of urinary stones can predict their fra-
gility, as their visual characteristics are closely related to 
their chemical composition [12]. An automated approach to 
quantify stone surface morphology, distinguishing between 
COM and COD stones on CT images, demonstrated excel-
lent discrimination ability with AUC values of 0.93 and 
0.90, respectively [12]. This shows potential for clinical use 
as COD stones are highly responsive to SWL, while COM 
stones are more resistant. Additionally, conventional CT 
technology, such as HU values, cannot reliable distinguish 
COM and COD stones due to their comparable chemical 
compositions [8]. Radiomics provide a more comprehen-
sive assessment of stone characteristics, including shape 
features derived from morphology and texture features 
based on higher-order gray scale matrices [13]. As expected, 
in our study, the proposed radiomics signature consisting of 
25 robust features was identified as an independent factor 
for predicting SWL success in patients with ureteral stones 
larger than 10  mm and demonstrated excellent predictive 
performance in both training and test cohorts.

Based on five different ML models, radiomics signature 
models outperformed traditional radiological models in the 
test cohort. Nonlinear SVM showed more stable predictive 
efficiency and better generalization capability than the other 
four models, possibly due to our sample size being insuf-
ficient for complex models like RF, our training data being 
nonlinear or linearly inseparable, and SVM achieving com-
parable performance with a smaller training set. Despite few 

Table 2  Performance of radiological models and radiomics models with different classifiers
Cohort Models Classifier AUC (95% CI) P value(a) P value(b) Accuracy Precision
Training Radiological LR 0.732 (0.667–0.796) - 0.726 0.704

SVM 0.625(0.553–0.696) - 0.651 0.656
KNN 0.866(0.823–0.908) - 0.751 0.909
RF 0.993(0.986–1.000) - 0.975 0.992
XGBoost 0.990(0.982–0.997) - 0.942 0.968

Radiomics LR 0.890 (0.849–0.931) <0.001 0.826 0.846
SVM 0.956(0.932–0.979) <0.001 0.888 0.857
KNN 0.933(0.904–0.962) 0.009 0.871 0.874
RF 0.998(0.995–1.000) 0.201 0.988 0.992
XGBoost 1.000(0.999–1.000) 0.014 0.996 0.992

Test Radiological LR 0.744 (0.611–0.877) 0.898 0.717 0.808
SVM 0.635 (0.494–0.776) 0.899 0.600 0.846
KNN 0.683 (0.494–0.776) 0.012 0.478 0.659
RF 0.841 (0.494–0.776) 0.004 0.783 0.833
XGBoost 0.725 (0.595–0.854) < 0.001 0.758 0.941

Radiomics LR 0.873 (0.788–0.958) 0.011 0.868 0.817 0.844
SVM 0.891 (0.788–0.958) <0.001 0.898 0.850 0.875
KNN 0.808 (0.700- 0.914) 0.172 0.026 0.733 0.758
RF 0.857 (0.700- 0.914) 0.799 0.002 0.800 0.839
XGBoost 0.805 (0.696–0.913) 0.342 < 0.001 0.750 0.696

LR = logistic regression; SVM = support vector machine; RF = random forest; KNN = K nearest neighbor
(a)Comparsion of radiological and radiomics models; (b) Comparision of training and test cohorts
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