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Abstract
Purpose Urolithiasis has become increasingly prevalent, leading to higher disability-adjusted life years and deaths. Various 
stone classification systems have been developed to enhance the understanding of lithogenesis, aid urologists in treatment 
decisions, and predict recurrence risk. The aim of this manuscript is to provide an overview of different stone classification 
criteria.
Methods Two authors conducted a review of literature on studies relating to the classification of urolithiasis. A narrative 
synthesis for analysis of the studies was used.
Results Stones can be categorized based on anatomical position, size, medical imaging features, risk of recurrence, etiol-
ogy, composition, and morphoconstitutional analysis. The first three mentioned offer a straightforward approach to stone 
classification, directly influencing treatment recommendations. With the routine use of CT imaging before treatment, precise 
details like anatomical location, stone dimensions, and Hounsfield Units can be easily determined, aiding treatment planning. 
In contrast, classifying stones based on risk of recurrence and etiology is more complex due to dependencies on multiple 
variables, including stone composition and morphology. A classification system based on morphoconstitutional analysis, 
which combines morphological stone appearance and chemical composition, has demonstrated its value. It allows for the 
rapid identification of crystalline phase principles, the detection of crystalline conversion processes, the determination of 
etiopathogenesis, the recognition of lithogenic processes, the assessment of crystal formation speed, related recurrence rates, 
and guidance for selecting appropriate treatment modalities.
Conclusions Recognizing that no single classification system can comprehensively cover all aspects, the integration of all 
classification approaches is essential for tailoring urolithiasis patient-specific management.
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Introduction

Urolithiasis affects a significant proportion of the global 
population, with prevalence rates ranging between 1 and 
13% worldwide [1]. Since 1990, there has been a rise in the 
overall number of urolithiasis cases, as well as the associated 
disability-adjusted life years and deaths [2, 3]. This under-
scores the importance of implementing diverse strategies 
aimed at preventing and treating urolithiasis.

To support urologists in making treatment decisions, 
identifying the characteristics of stones, deepening the 
understanding of lithogenesis, and predicting the risk of 
recurrence, various stone classification systems have been 
developed by guidelines committees [4, 5]. The aim of this 
manuscript is to provide an overview of different stone clas-
sification criteria to facilitate better understanding stone 
formation, guide treatment strategies, and prevent stone 
recurrence.

Methods

Two authors (V.D.C. and E.X.K.) conducted a review of lit-
erature using the Medline, Scopus, and Web of Science data-
bases in July 2023. The search terms “classification” AND 
(“urolithiasis” OR “kidney stones”) AND (“anatomy” OR 
“size” OR “imaging” OR “recurrence” OR “etiology” OR 
“composition” OR “morphoconstitutional analysis”) were 
used, and the filters “English” and “humans” were applied. 
Only studies relating to the classification of urolithiasis 
were considered. Case reports, editorials, and letters were 
excluded. Additional articles identified through references 
lists were also included. A narrative synthesis for analysis 
of the studies was used. The content and structure of the 
manuscript were agreed upon by consensus between the two 
authors (V.D.C. and E.X.K.) (Table 1).

Results

Anatomical position

Urinary stones can be situated in diverse anatomical loca-
tions within the urinary tract, such as the pyelocaliceal sys-
tem, ureter, bladder, or urethra (Fig. 1). To further pinpoint 
the location, the renal pelvis is considered as an important 
location of its own, as are the upper, middle, and lower cal-
yces. The ureter is segmented into proximal, middle, and 
distal portions. The proximal ureter ranges from the uret-
eropelvic junction until the superior crest of the sacroiliac 
joint. The mid-ureter ranges from the superior to inferior 

crest of the sacroiliac joint. From there, the distal ureter 
passes through the vesicoureteric junction into the blad-
der. [6].Such precision in localization plays a pivotal role 
in selecting appropriate treatment modalities, ranging from 
conservative approaches to surgical intervention [4, 5, 7, 8].

Size

Stone size can be described using one, two, or three dimen-
sions. The majority of literature reports stone burden based 
on the largest diameter, with stratification methods such 
as < 5 mm, 5–10 mm, 10–20 mm, and > 20 mm aiding in 
outcome comparison and treatment guidance [4, 5, 7–9]. 
This unidimensional measurement is arguably adequate 
for the description of small particles [10]. A minority of 
publications report stone size in surface area which can 
be calculated from both ultrasound (US) and kidney–ure-
ter–bladder (KUB) radiography [9]. Finally, only a few 
publications report stone burden in terms of volume. This 
calculation method is on the rise for several reasons. Most 
patients receive non-contrast computerized tomography 
(CT). Reporting stone volume is undeniably the most accu-
rate method for reporting stone burden [9]. It also allows the 

Fig. 1  Anatomy of the urinary system
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assessment of stone ablation efficiency during laser litho-
tripsy [11]. With the development of thulium fiber lasers and 
devices with integrated pressure-measuring and aspiration 
technology, it also pushes boundaries of retrograde intra-
renal surgery for larger stones [12, 13]. To facilitate stone 
burden measurements, fully automated systems for kidney 
stone detection and volume quantification on CT have been 
developed recently [14].

Medical imaging characteristics

US, KUB, and CT stand out as the most frequently employed 
imaging techniques for the comprehensive evaluation of uro-
lithiasis. Depending on the mineral composition, stones can 
be categorized based on their appearance on plain X-rays, 
resulting in classifications such as radiopaque (including 
calcium oxalate monohydrate (whewellite), calcium oxa-
late dihydrate (weddellite), and brushite), poorly opaque 
(comprising carbapatite, magnesium ammonium phosphate 
(struvite), and cystine), or radiolucent (encompassing uric 
acid, urate, and miscellaneous types). In both single-energy 
and dual-energy CT scans, the Hounsfield Unit (HU) values 
have demonstrated predictive capabilities for determining 
stone compositions (Fig. 2) [15–21]. The lowest HU values 
(approximately 400) have been notably associated with uric 
acid stones, showing a remarkably high success rate in oral 
chemolysis treatment [22]. Additionally, investigations have 
revealed that lower HU values are linked to heightened suc-
cess rates in shockwave lithotripsy (SWL), while higher HU 
values have exhibited a strong correlation with SWL failure 
[23–25].

Artificial intelligence presents as a valuable tool in the 
field of urolithiasis imaging, a topic commonly known as 
radiomics. Several studies to date have unveiled the potential 
of radiomics, suggesting that radiomics has a high potential 
to help clinicians providing personalized medicine [26].

Risk of recurrence

Accurately estimating the risk of stone recurrence is a sig-
nificant concern, as it plays a pivotal role in safeguarding 
patients from potential regrowth, episodes of renal colic, the 
development of chronic kidney failure, mineral and bone dis-
orders, and the crucial decision of initiating pharmacological 
treatment. In the guidelines of the European Association of 
Urology (EAU) and the American Urological Association 
(AUA), patients are typically categorized into low- and high-
risk stone formers. This classification takes into account a 
range of factors, including the timing of stone formation, 
stone composition, stone burden, the presence of (genetic) 
conditions associated with stone formation, medication his-
tory, anatomical anomalies, and environmental and occupa-
tional influences [27, 28].

To predict stone recurrence, Rule et al. developed a recur-
rence of kidney stones (ROKS) nomogram. This predictive 
tool relies on thirteen readily accessible features from a 
patient's clinical history, which are typically available at 
the time of the initial stone episode [29]. Performance of 
the ROKS nomogram has demonstrated a limited to modest 
ability in foreseeing stone-related events [30, 31]. Based on 
a survey on risk estimation of stone recurrence, clinicians 
seemed not be able to distinguish patients with high and low 
recurrence risk when compared with peers and the ROKS 
nomogram [32].

In conclusion, there exists a clear need for additional 
clinical tools within the healthcare workflow to optimize 
the precision of stratifying individuals as low or high-risk 
stone formers. Moreover, it is imperative to explore tailored 
approaches regarding the type and frequency of imaging, 
specifically aligned with individual patient risk profiles, to 
curtail the risks associated with costly and excessive radia-
tion exposure [33, 34].

Etiology of formation

Another method of classifying stones involves categorizing 
them based on their etiology that can be stratified into four 

Fig. 2  Stone composition in 
function of Hounsfield Units 
on CT in the range of 80 kV to 
140 kV COM calcium oxalate 
monohydrate, COD calcium 
oxalate
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groups [27]. Stones associated with non-infectious origins, 
encompassing compositions like calcium oxalate, calcium 
phosphate, uric acid, and ammonium urate. Additionally, 
there are stones attributed to infections, which encompass 
magnesium ammonium phosphate and highly carbonated 
apatite, and various urates. Third, genetic defects can give 
rise to stones composed of cystine, xanthine, and 2,8-dihy-
droxyadenine. Finally, certain stones are linked to the use of 
specific medications.

Composition

Stones are generally stratified upon composition to distin-
guish the variations in structure among various stone con-
stitutions and their associated lithogenic processes. In rou-
tine clinical practice, diverse techniques are used to analyze 
stone composition: microscopy (binocular, polarized light 
and scanning electron microscopy) and constituent analysis 
(Fourier transform infrared spectroscopy with or without 
attenuated total reflectance, Raman spectroscopy, X-ray dif-
fraction, and thermal analysis) [35–41].

Microscopic examination is a valuable tool for under-
standing various aspects of crystalline components, such 
as their nature, shape, internal structure, and location. It 
also provides insights into crystalline conversions and the 
relationships between different crystalline species. This 
technique has been extensively used to explore the inner 
structure of stones and reveal the morphology of small 
crystals [42, 43]. It is worth mentioning that following laser 
lithotripsy, there has been an observed alteration in the crys-
talline organization of stone dust when compared to stone 
fragments [44]. Following Ho:YAG laser lithotripsy, these 
changes included the conversion of calcium oxalate dihy-
drate to calcium oxalate monohydrate, shifts in the carbapa-
tite spectra toward an amorphous phase, alterations of mag-
nesium ammonium phosphate toward different amorphous 
and crystalline phases, and the presence of hydroxyapatite 
on brushite fragments. On the other hand, after thulium fiber 
laser lithotripsy, most stone dust samples showed changes in 
their crystalline organization, with the exception of calcium 
oxalate monohydrate and carbapatite [45].

Regarding constituent analysis, infrared spectroscopy is 
currently the reference method. It has a high sensitivity to 
detect scarce but clinically important components. It also 
identifies mineral and organic components, drugs, and for-
eign particles [42]. Until now, there has been no approved 
standard for conducting stone analysis. Several groups have 
noticed a strong variability in both qualitative and quantita-
tive stone analysis results among different laboratories and a 
lack of standardization of used nomenclature [46, 47]. This 
can be explained by the fact that less than 10% of stones are 
pure or include only one chemical compound [48]. Since 
the constituent analyses do not identify stone structure and 

crystal phases, another technique called morphoconstitu-
tional analysis is of interest to provide information of the 
lithogenic process of the entire stone.

Morphoconstitutional analysis

The initial endeavor to establish a morphoconstitutional clas-
sification of stones was undertaken by Ord and Shattock in 
1895[49]. Afterward, multiple groups investigated relation-
ships between stone characteristic and their composition 
[50–52]. Later, several authors attempted to correlate stone 
composition with etiopathogenesis [53–56]. In 1993, Daudon 
et al. provided a detailed understanding of the overall charac-
teristics of urinary stones in their morphoconstitutional analy-
sis [42]. It involves a combined approach to examine both the 
stone's morphologic appearance and its chemical composi-
tion examined with infrared spectroscopy [57]. On the one 
hand, their refined morphological and structural examination 
involves observing the stone's size, shape, surface features, and 
internal organization under optical microscopy including loca-
tion of different components and crystalline conversion. Com-
positional analysis using infrared spectroscopy, on the other 
hand, helps identifying stone composition and to determine 
the ratio of different components within a single stone [42].

By employing morphoconstitutional analysis, Daudon 
et al. proposed a classification based on surface and sec-
tion morphology with its corresponding pathophysiologi-
cal factors aiding to a better understanding of stone-related 
diseases and their etiopathogenesis (Table 2, adapted from 
[58]). They classified stones into seven types and twenty-
two subtypes. Each subtype exhibits correlations with spe-
cific pathophysiologic conditions, which provides valuable 
insights into the underlying causes of stone formation and 
may guide clinicians in the selection of treatment modalities 
[42, 57, 58]. A series of clinical applications derived from 
morphoconstitutional analysis are detailed hereunder.

Fast identification of crystalline phase principles

Various chemical components can crystallize in multiple forms. 
For instance, calcium oxalate can manifest as calcium oxalate 
monohydrate, calcium oxalate dihydrate, or calcium oxalate 
trihydrate. As early as four decades ago, research revealed that 
calcium oxalate monohydrate is influenced by oxalate concen-
tration, while calcium oxalate dihydrate is more dependent on 
calcium concentration. These diverse crystalline forms have 
been linked to specific biochemical conditions causing hyper-
oxaluria and hypercalciuria, respectively [59–61].

Detection of crystalline conversion process

Calcium oxalate dihydrate stones are primarily linked to 
hypercalciuria, while calcium oxalate monohydrate stones 
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are predominantly formed due to primary crystallization in 
hyperoxaluric conditions [57, 62]. Nevertheless, the latter 
can also arise from the conversion (dehydration) from cal-
cium oxalate dihydrate toward calcium oxalate monohydrate 
stones [43]. It is crucial to detect this conversion process 
from calcium oxalate dihydrate to calcium oxalate mono-
hydrate during morphoconstitutional analysis when estab-
lishing connections between stone morphology, crystalline 
composition, and potential etiopathogenic factors.

Directing etiopathogenesis

The refined morphologic examination proposed by Dau-
don et al. provides etiopathogenic orientations and guides 
metabolic evaluation [42, 57, 63]. Just to choose one are 
the carbapatite (calcium phosphate) stones, which account 
for 10% to 15% of all stones. Based on 1093 patients who 
had an available etiological diagnosis and stones contain-
ing at least 70% of calcium phosphate without magnesium 

Table 1  Classification system

Classification System Application Interest

Anatomical position Pyelocaliceal system (renal pelvis, upper, 
middle, and lower calyces)

Pivotal role in selecting appropriate treatment modalities, ranging 
from conservative approaches to surgical intervention

Ureter (ureteropelvic junction, proximal, 
middle, distal ureter, vesicoureteric 
junction)

Bladder
urethra

Size One dimension: US, KUB, CT Unidimensional measurement: adequate for the description of 
small particles

Two dimensions: US, KUB, CT Surface area: more accurate than unidimensional
Three dimensions: CT Volume: most accurate method for reporting stone burden. Allows 

assessment of stone ablation efficiency during laser lithotripsy. 
Pushes boundaries of retrograde intrarenal surgery for larger 
stones

Medical imaging characteristics US Urolithiasis detection
KUB: radiopaque or radiolucent Guiding treatment modalities and follow-up after treatment
CT: Hounsfield Unit Predictive capabilities for determining stone compositions. 

Assessing success rates of treatment modalities. Potential of 
radiomics

Risk of recurrence Low- and high-risk stone formers Safeguarding patients from potential regrowth, episodes of renal 
colic, the development of chronic kidney failure, mineral and 
bone disorders, and the decision of initiating pharmacological 
treatment

Nomograms Foreseeing stone-related events. Troublesome application
Etiology of formation Non-infectious stones Calcium oxalate, calcium phosphate, uric acid, and ammonium 

urate
Infectious stones Magnesium ammonium phosphate, highly carbonated apatite, 

various urates
Genetic stones Cystine, xanthine, 2,8-dihydroxyadenine
Other

Composition Microscopy Nature, shape, internal structure, and location of crystalline 
components. Crystalline conversions. Relationships between 
different crystalline species

Constituent analysis Identification mineral and organic components (but strong 
variability, and no identification of stone structure and crystal 
phases)

Morphoconstitutional analysis Cfr. Figure 1 Fast identification of crystalline phase principles
Detection of crystalline conversion process
Directing etiopathogenesis
Identification of lithogenic process: papillary umbilication and 

randall plaques
Assessment of crystal formation speed and recurrence rates
Guidance of treatment modalities
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ammonium phosphate, Dessombz et al. evaluated the stone 
morphology [64]. They found that 13% of carbapatite stones 
had a peculiar morphology termed type IVa2, characterized 
by a smooth aspect and a glazed brown yellow appearance 
with tiny cracks. Type IVa2 morphology was associated 
with inherited distal renal tubular acidosis (dRTA) in 53% of 
cases, medullary sponge kidney in 35%, Sjögren syndrome 
in 9%, carbonic anhydrase inhibitors intake in 1.5% and uri-
nary tract infection in 1.5%. In contrast, these diseases were 
associated with IVa1 stones in 0.3%, 17%, 0.7%, 5%, and 
40% of cases, respectively. Remarkably, 96% of patients with 
inherited distal renal tubular acidosis had stone morphology 
type IVa2, representing a sensitivity and specificity of 96% 
and 94%, respectively.

Identification of lithogenic process: papillary umbilication 
and Randall plaques

In 1936, the American urologist Alexander Randall 
described the presence of calcium phosphate deposits at the 
tip of the renal papilla. He also observed calcium oxalate 
renal stones connected to the plaques and put forward the 
hypothesis that these papillary calcifications could poten-
tially be the initial trigger for stone formation in these 
patients [65, 66]. Recently, it was found that these plaques 
have a 83% prevalence in kidney stone formers [67]. The ori-
gin of Randall's plaque is thought to be the basement mem-
branes of the thin limbs of the loop of Henle. This plaque 
formation may be linked to increased calcium reabsorption 
from the proximal tubule, leading to higher concentrations 
of calcium in the descending vasa recta and subsequently 
in the interstitium around thin limbs [68]. These plaques 
may be influenced by hypercalciuria, and the combined use 
of vitamin D and calcium could accelerate their formation 
[69]. Stones that grow over Randall plaques can dislodge 
and extract a piece of the papilla, creating a visible pap-
illary pit or umbilication. This phenomenon results in a 
Randall plaque forming on the lower surface of the stone 
and a papillary pit corresponding to the area of attachment. 
In 2019, Almeras et al. introduced a classification system 
for renal papillary abnormalities visualized during flexible 
ureteroscopy with the aim of standardizing their descrip-
tion. This classification, denoted as Sx nPx Drx/i/px, com-
prises various elements: S designates the observed type of 
papillary stones, n denotes the count of abnormal papillae 
within the same kidney along with their specific type (P), 
and D encompasses deposits, which includes quantification 
of Randall's plaques (rx), as well as the presence of active 
intrapapillary papular deposits (i) and plugs (p) [67]. This 
observation has the potential to contribute to our understand-
ing of nephrolithogenesis mechanisms and the risk of stone 
recurrence [70].

Assessing the stone surface can also be used to track 
other stones. Similar to beach pebbles, certain stones types 
(such as Id, IIc, IIIa, Vb) display distinct characteristics 
with smooth, rounded, and naturally polished surfaces. This 
appearance is a result of constant mechanical interaction, 
as the stones continuously toss and roll against each other, 
leading to abrasion and surface smoothing. This particular 
morphology indicates the presence of multiple stones and 
conditions of stasis, such as calyceal diverticulum, uretero-
pelvic junction stenosis, and benign prostatic obstruction 
[42, 58].

Assessment of crystal formation speed

Crystal formation speed and recurrence rates are important 
clinical parameters that may hint to the underlying meta-
bolic disease. A typical example is primary hyperoxaluria, 
which is an uncommon genetic disorder that results in an 
excessive production of oxalate, mainly affecting the kidneys 
and resulting in fast growth of calcium oxalate monohydrate 
stones. To prevent complications and preserve kidney func-
tion, early diagnosis and intervention are essential [71]. A 
study conducted by Daudon et al. involved the stone analysis 
of 74 patients with primary hyperoxaluria. They discovered 
a distinct stone morphology within this group. The stones 
exhibited a whitish or pale-yellow surface and a loose, unor-
ganized inner structure (type Ic), which was notably different 
from the dark-brown surface and well-organized, radiating 
inner structure (type Ia) commonly seen in most calcium 
oxalate monohydrate stones. Scanning electron micros-
copy confirmed that the crystalline structure found in the 
primary hyperoxaluria stones (type Ic) was different from 
the typical structure observed in the common whewellite 
stone (type Ia). The authors hypothesized that this dissimi-
larity in morphology is indicative of the rapid and permanent 
crystal formation induced by genetic hyperoxaluria. They 
concluded that this peculiar stone morphology is pathog-
nomonic for primary hyperoxaluria and should prompt an 
early and comprehensive laboratory evaluation [72, 73]. If 
morphological analysis was omitted, patients with primary 
hyperoxaluria may suffer from delayed time point of diag-
nosis and impaired kidney function.

Assessment of recurrence rates

Guidelines of EAU and AUA recommend close follow-up and 
metabolic testing in recurrent stone formers [27, 28]. This 
assessment considers particular stone compositions, includ-
ing brushite, uric acid, urate, and cystine. Recently, Daudon 
et al. assessed the risk of recurrency based on the morphoc-
onstitutional analysis of 38,274 stones [74]. The age of first 
stone occurrence varied, with dihydroxyadenine occurring at 
the youngest age (15.7 years) and anhydrous uric acid at the 
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oldest (62.5 years). Calcium oxalate stones fell in between 
(40.7 years for calcium oxalate dihydrate and 48.4 years for 
calcium oxalate monohydrate). When considering composi-
tion alone, calcium oxalate monohydrate stones had a lower 
recurrence rate, with only 38.0% coming from patients with 
previous episodes. However, when examining different cal-
cium oxalate monohydrate morphologies, type Ic had a sig-
nificantly higher recurrence rate (82.4%). Similarly, among 
stones composed of apatite, type IVa2 had a higher recur-
rence rate compared to other apatite morphologies (78.8% 
vs. 39–42%). They concluded that stone composition alone is 
insufficient to predict recurrence risk, and considering stone 
morphology can aid in identifying highly recurrent stones.

Guidance of treatment modalities

Initially, it was thought that resistance to SWL was related to 
crystalline compositions [75]. It was only after later research 
that stone fragility was found to be associated with stone 
mineral content measured by dual photon absorptiometry 
[76, 77]. Williams et al. found that the variability in stone 
fragility to shock waves was large within groups of the same 
mineral composition. They hypothesized that the variation in 
stone structure could underlie the variation in stone fragil-
ity within the same stone composition [78]. This was fur-
ther analyzed by Daudon et al. on several morphologies of 
calcium oxalate monohydrate stones [42]. To gain a deeper 
understanding of the crystalline structure, a single-crystal 
neutron study was conducted using a four-circle automated 
diffractometer. Additionally, scanning electron microscopy 
was employed to investigate the mesoscopic scale, while 
powder neutron diffraction was used to explore the nano-
metric scale. All types of whewellite stones showed a similar 
structure at the nanometric scale. However, significant dif-
ferences were observed at the mesoscopic scale. The study 
revealed a close relationship between stone morphology 
and the organization of the crystals at the mesoscopic level, 
which also had an impact on the effectiveness of SWL. From 
an analysis involving 1270 SWL procedures performed on 
calcium oxalate monohydrate stones (including type Ia, Ib, 
and Id), the failure rates were found to be 80% for type Ib 
stones; whereas for type Ia and Id stones, the failure rates 
were less than 10% [79]. This research provided valuable 
insights into the morphological and structural characteris-
tics of different types of whewellite stones, shedding light 
on the association between their formation and response to 
SWL. These findings were in line with prior studies showing 
higher success rates for smooth surfaced stones compared to 
rough surfaced stones [80, 81]. In conclusion, the resistance 
to fragmentation by shock waves appears to be more related 
to the organization of the stones, particularly for poorly 
organized structures (e.g., type Ib and Va), rather than their 
stone composition.

Discussion

Stones can be classified according to various criteria such as 
anatomical position, size, medical imaging features, risk of 
recurrence, etiology, composition, and morphoconstitutional 
analysis (Table 1). Categorizing stones by anatomical posi-
tion, size, and medical imaging characteristics is a straight-
forward process that can arguably directly impact treat-
ment recommendations. Given that CT imaging is typically 
administered prior to treatment for most patients, determin-
ing the precise anatomical location, stone dimensions, and 
HU can be easily interpreted and should be recommended 
(expert opinion). In the process of offering treatment modali-
ties such as SWL, RIRS, or PNCL, these criteria must be 
considered in conjunction with patient preferences. Radiom-
ics, the utilization of artificial intelligence capabilities within 
the domain of medical imaging, has the potential to enhance 
this personalized patient approach [26].

In contrast, the classification of stones according to risk 
of recurrence and etiology is more complex since it depends 
on multiple variables, including stone composition and mor-
phology. Importantly, the composition of most kidney stones 
is typically mixed [82–84]. This can arise from the presence 
of concurrent lithogenic factors on one hand, or from subse-
quent conditions triggering new lithogenic processes, such 
as dietary hyperoxaluria, dietary hypercalciuria, gout, dia-
betes mellitus, chronic diarrhea, abuse of laxatives, primary 
hyperparathyroidism, intake of carbonic anhydrase inhibi-
tors, or urinary tract infections. As stones are infrequently 
extracted in one piece since the advent of minimally invasive 
techniques, it becomes crucial to identify the structural char-
acteristics of stone surfaces and sections (including judge-
ment of stone core localization, e.g., Randall plaque) dur-
ing surgery [42, 57, 58, 63]. This is particularly important 
since stone composition can alter during laser lithotripsy 
[44, 45, 85]. Consequently, the stone dust generated might 
not adequately represent the crystalline organization of the 
stones before laser lithotripsy. To address this, Estrade et al. 
evaluated the feasibility of intra-operative stone composi-
tion recognition by a single expert urologist using Daudon 
et al. morphoconstitutional classification [42, 86]. They 
discovered an 82% agreement between endoscopic and 
microscopic characterizations of urinary stones. In contrast, 
Henderickx et al. also assessed the diagnostic accuracy and 
intra-observer agreement of endoscopic stone recognition 
compared to formal stone analysis by fifteen urologists. They 
concluded that diagnostic accuracy was limited, and intra-
observer agreement fell below an acceptable threshold [87]. 
One possible solution lies in utilizing automated computer-
assisted in situ recognition of morphological characteristics 
of both pure and mixed urinary stones, as demonstrated in 
a preliminary study with promising discrimination results 
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[88]. Incorporating specialized artificial intelligence into 
ureteroscopes may represent a significant advancement 
toward perioperative morphoconstitutional analysis [89–91].

Currently, the guidelines of the EAU and the AUA pri-
marily propose treatment algorithms based on the stone's 
anatomical position and size as a unidimensional measure-
ment. However, considering all three dimensions would 
offer a more accurate assessment of stone burden and 
could assist urologists in selecting treatment modalities 
based on their individual stone ablation efficiency. When 
implementing this approach, the incorporation of other 
aforementioned classifications, including medical imag-
ing characteristics and patients' medical history, could 
further aid in the appropriate selection of treatments and 
the assessment of success rates in everyday practice [92]. 
Moreover, the inclusion of morphoconstitutional analysis 
could significantly enhance the management of urolithiasis 
patients. This analysis allows for the rapid identification 
of crystalline phase principles, the detection of crystalline 
conversion processes, the determination of etiopathogen-
esis, the recognition of lithogenic processes, the assess-
ment of crystal formation speed, and the evaluation of 
recurrence rates, and the guidance for selecting appropri-
ate treatment modalities. Therefore, as no single classifi-
cation system can cover all aspects comprehensively, the 
integration of all classification approaches is essential for 
tailoring a patient-specific treatment approach.

Conclusion

Classification of urinary stones involves several criteria, 
each offering unique insights into stone characteristics and 
formation. Anatomical position, stone size, and medical 
imaging characteristics provide essential information 
for treatment decisions. Classification based on risk of 
recurrence and etiology is more complex, demanding a 
comprehensive understanding of stone composition and 
morphology. The use of advanced techniques like mor-
phoconstitutional analysis, which is rapid and low cost 
by combining morphological appearance and chemical 
composition, has proven invaluable in identifying stone-
related diseases and guiding treatment strategies. This 
holistic approach has enabled the identification of distinct 
crystalline phases, determination of lithogenic processes, 
and even tracking stone history. Becoming familiar with 
and combining all these classification systems will assist 
urologists in refining personalized clinical management 
approaches. Furthermore, as technology continues to 
evolve, the integration of automated stone recognition and 
artificial intelligence holds promising potential for enhanc-
ing stone recognition accuracy and for integrating all the 

described stone classifications, further aiding urologists in 
adopting a tailored approach.
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