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Abstract
Purpose  As computational power has improved over the past 20 years, the daily application of machine learning methods 
has become more prevalent in daily life. Additionally, there is increasing interest in the clinical application of machine 
learning techniques. We sought to review the current literature regarding machine learning applications for patient-specific 
urologic surgical care.
Methods  We performed a broad search of the current literature via the PubMed-Medline and Google Scholar databases up 
to Dec 2020. The search terms “urologic surgery” as well as “artificial intelligence”, “machine learning”, “neural network”, 
and “automation” were used.
Results  The focus of machine learning applications for patient counseling is disease-specific. For stone disease, multiple 
studies focused on the prediction of stone-free rate based on preoperative characteristics of clinical and imaging data. For 
kidney cancer, many studies focused on advanced imaging analysis to predict renal mass pathology preoperatively. Machine 
learning applications in prostate cancer could provide for treatment counseling as well as prediction of disease-specific 
outcomes. Furthermore, for bladder cancer, the reviewed studies focus on staging via imaging, to better counsel patients 
towards neoadjuvant chemotherapy. Additionally, there have been many efforts on automatically segmenting and matching 
preoperative imaging with intraoperative anatomy.
Conclusion  Machine learning techniques can be implemented to assist patient-centered surgical care and increase patient 
engagement within their decision-making processes. As data sets improve and expand, especially with the transition to large-
scale EHR usage, these tools will improve in efficacy and be utilized more frequently.

Keywords  Urologic surgery · Machine learning · Artificial intelligence · Image registration

Introduction

The accurate assessment and interpretation of clinical data 
are essential to deliver patient-specific care. With increased 
access to robust data sets, physicians are challenged with 
interpreting complex information to diagnose and treat uro-
logic disease. However, the application of advanced com-
putational techniques can assist with data mining and inter-
pretation, improving patient care [1]. The field of artificial 
intelligence (AI) has been applied commonly in daily life 
allowing for the rapid analysis of large, non-linear data sets 

via developed algorithms and statistical models [2]. A field 
within AI, machine learning (ML), involves the development 
of algorithms to allow for complex pattern recognition and 
output prediction, which improve in accuracy as data inputs 
increase. With patient health data consisting of multifacto-
rial and non-linear variables, ML can be a powerful tool 
for enhancing patient-specific care for urologic surgery [3].

Machine learning has been applied across multiple areas 
of medicine, allowing for improved disease diagnosis, treat-
ment selection, patient monitoring, and risk stratification 
for primary prevention [2]. Incorporating ML techniques to 
enhance surgical systems requires accurate automated inter-
pretation of perioperative patient imaging, as well as surgi-
cal anatomy and instrument tracking in the operative field. 
Although, no clinical surgical system exists that can com-
pletely perform these tasks autonomously, there have been 
several robots proving the feasibility of autonomous tasks 
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such as anatomic tracking, suturing, and biopsy sampling 
[4]. Furthermore, in urology, some semi-autonomous surgi-
cal systems, such as Aquablation™, have been emerging and 
have proven the feasibility of robotic directed therapies [5]. 
Developing both autonomous methods that facilitate surgical 
candidate selection and automated surgical robotic systems 
could improve surgical accuracy and patient outcomes. The 
first step, however, is to develop accurate ML algorithms to 
improve evaluation and enhance the treatment of urologic 
disease.

The aim of this review article is to evaluate the current 
state of ML algorithms that could apply to patient-specific 
interventions in urologic surgery. Though no current systems 
exist, by improving ML algorithms and applying them to 
current surgical systems, the field could take steps toward 
autonomous surgery.

Background

Machine learning (ML) is the application of artificial intel-
ligence techniques to generate computational systems that 
can simulate intellectual processes. Through sophisticated, 
non-linear modelling, ML can perform reasoning, learning, 
and problem-solving tasks. Specifically, it allows for the 
creation of computer algorithms that are not programmed 
with specific rules. By being exposed to sample data (i.e. 
“training data”), the computational algorithm identifies and 
adapts to specific patterns in the data set. This algorithm, in 
turn, can be used to interpret novel data. Machine learning 
tools have proven highly valuable in modern life to perform 
basic and complex human decisions such as traffic predic-
tion, spam filtering, text prediction, and online advertising. 
Moreover, the ability to develop non-linear algorithms is 
particularly useful in analyzing medical data, which is often 
complex and nuanced.

Having access to high-quality, large data sets is essential 
to train any ML algorithm. When a data set is large enough, 
current algorithms can be trained to interpret noisy inputs to 
yield accurate outputs. As with any statistical model, large, 
retrospective datasets have missing data points, confounders, 
and biases which could impact the training of any algorithm. 
Thus, having a validated “ground-truth” data set can be used 
to assess the accuracy of any algorithm [6].

Within ML, there are multiple subfields dealing with 
the interpretation of different data types. Each subfield 
demonstrates that machines do not need explicit execut-
able steps to function and make decisions but can gen-
erate knowledge and predict outcomes through pattern 
recognition and inference. For example, natural language 
processing (NPL) focuses on a computer’s analysis and 
comprehension of human language. Computer vision 
(CV) relates to machine analysis of image or video, such 

as radiographic or endoscopic images. Within medicine, 
much of ML has focused on the subfield of artificial neu-
ral networks (ANN). Like biological neurons, an ANN 
is a composition of individual processing nodes, similar 
to that of neurons, arranged in a layered architecture that 
enables machine systems to develop pattern recognition 
from sophisticated inputs. These layers consist of an input 
layer made of input nodes, a hidden layer made of hid-
den nodes, and an output layer made of output nodes. The 
characteristics of these layers, in both depth and width, 
determine the functionality of the ANN. Increasing depth 
and width enables increasing processing and learning 
capability (Fig. 1) [7].

The introduction of these computational tools can assist 
with the interpretation of complex medical data and lead to 
improvements in both clinical and surgical practice. Devel-
oping autonomous surgical systems would require incor-
porating each different subfield of machine learning to 
analyze and combine different kinds of data. Specifically, 
these tools can be applied to assist with imaging interpre-
tation and surveillance, operative planning and guidance, 
medical management, as well as outcome prediction.

Fig. 1   Above is the framework for a neural network structure. Such 
algorithms can combine multiple inputs through a series of hidden 
layers to form an interpretable output. The layers are considered “hid-
den” as they may not be directly observable. By training an algorithm 
with a dataset, each node is given a certain weight for its contribution 
to output prediction. The number of inputs and layers can be varied 
to optimize data interpretation. Too many inputs and nodes can lead 
to overfitting, while too few may decrease the prediction accuracy of 
the algorithm
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Evidence acquisition

We performed a search of the current literature via the 
PubMed-Medline database up to Dec 2020. The search 
terms “urologic surgery” as well as “artificial intelligence”, 
“machine learning”, “neural network”, and “automation” 
were used. We reviewed 346 articles based on title and 
abstract and selected those directed towards machine learn-
ing applications for patient care during urologic surgery. 
Following full-text evaluation of 65 manuscripts, evidence 
was selected based on study relevance, strengths, and limita-
tions. Twenty-six studies were included in our review and 
summarized.

Patient counseling and disease‑specific outcomes 
for surgical candidate selection

Though thorough history and physical are still the founda-
tion for medical decision making, ML tools using electronic 
health record (EHR), imaging, and laboratory data can fur-
ther facilitate disease diagnosis and treatment. The ability 
to rapidly synthesize patient data would allow for “machine-
guided” patient-specific therapeutic decisions and enhance 
surgical planning. These tools will continue to improve and 
are an essential step in developing larger systems, which 
could optimize surgical care for a variety of genitourinary 
pathologies. Currently, multiple ML methods are being 
evaluated to help facilitate surgical candidate selection and 
predict outcomes. Many of these methods are disease-spe-
cific and, below, we highlight select studies that can impact 
patient counseling for surgery (Table 1).

Nephrolithiasis

There is concern regarding stone-free rates (SFR) after 
surgery for renal stones as residual fragments can increase 
subsequent stone events [8]. Current development of 
machine learning methods for nephrolithiasis treatment 
focus on SFR prediction based on surgical technique. 
Aminsharifi et al. evaluated the use of an ANN to pre-
dict percutaneous nephrolithotomy (PCNL) postoperative 
SFR [9]. A 200 patient set was used to train the ANN 
using preoperative features and evaluate postoperative 
outcomes. Through a 254 patient test set, both preopera-
tive stone burden and stone complexity were found as 
the most significant preoperative predictors of SFR. The 
group further developed a machine learning method to 
predict outcomes of PCNL [10]. Using 146 adult patients 
and a support vector machine (SVM) model, predictive 
outcomes were compared to the actual outcome. The ML 
system predicted PCNL outcomes with 80–95% accuracy. 
To compare the ML system with Guy’s stone score (GSS) 
and Clinical Research Office of Endourological Society 

(CROES) nomogram, a receiver operating characteristic 
curve was created for each method and area under curves 
(AUC) were compared. The ML software showed an excel-
lent AUC (0.92) as compared to GSS (0.62) and CROES 
(0.62).

Likewise, shock wave lithotripsy outcomes have been 
evaluating using various neural networks. In two stud-
ies, researchers evaluated an ANN to predict SFR follow-
ing shock wave lithotripsy [11, 12]. Gomha et  al. used 
10 parameters to develop a model to analyze SFR status. 
Parameters included patient age, sex, renal anatomy, stone 
location, side, number, stone length, stone width, whether 
stones were de novo or recurrent, and stent use. Results of 
a logistical regression (LR) model and the ANN were then 
compared to show respective sensitivities (100, 78%), spe-
cificities (0.0, 75%), positive predictive values (93, 97%), 
and overall accuracies (93, 78%). Similarly, Seckiner et al. 
analyzed 11 variables through a 139 patient training group to 
predict SFR after SWL. In a 32 patient test group, SFR was 
predicted with 99% accuracy in the training group, 85% in 
the validation group, and 89% in the test group. Thus, both 
neural networks showed high efficacy in predicting patient 
outcomes using multiple variables.

Kidney cancer

There is interest in developing novel methods to improve 
the prediction of renal mass pathology and prevent interven-
tions on benign masses [13]. Several studies have exempli-
fied ML applications in predicting tumor pathology of renal 
masses based on computerized tomography (CT) imaging 
data [14]. A recent study performed by Tanaka et al. focused 
on small renal cell masses (less than or equal to 4 cm) to 
determine malignancy using multiphase contrast-enhanced 
CT and deep learning techniques. Using 1807 image sets 
from 159 lesions with known pathologies (training set, 
N = 1526, validation set, n = 134), researchers evaluated 
neural networks for the separate phases of CT imaging. 
Accuracy in the prediction of malignancy across all phases 
was about 80%, showing potential ML tools in renal mass 
evaluation [15]. Furthermore, it is possible that improved 
image analysis techniques utilizing computer vision algo-
rithms can improve pathologic prediction for renal masses. 
For example, Yu et al. evaluated 119 patients with pathologi-
cally evaluated renal masses and generated a machine learn-
ing tool using texture analysis techniques of four-phase CT 
image data. By doing so, they were able to identify unique 
features from imaging data that could discriminate clear cell 
renal cell carcinoma and oncocytoma, respectively (AUC 
0.91, 0.93, p < 0.01) [16]. Further techniques can be incorpo-
rated into clinical practice, enhancing preoperative surgical 
counseling.
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Prostate cancer

Other applications of ML techniques have demonstrated 
potential for guiding patients to treatment decisions. For 
example, Auffenberg et al. employed a novel machine learn-
ing model to help guide men with newly diagnosed prostate 
cancer to a decision on treatment approach [17]. To accom-
plish this, the group created a database of clinical features 
of 7543 men who had been counseled regarding options for 
prostate cancer treatment, including radical prostatectomy, 
surveillance, radiation therapy, androgen deprivation, and 
watchful waiting. A multinomial random forest ML algo-
rithm was developed using two-thirds of patients, with one-
third as a validation cohort. The group showed that, based 
on clinical features included, they could predict treatment 
decisions for prostate cancer (AUC 0.81), suggesting that 
this algorithm could help further inform patients and guide 
treatment decisions.

Other ML applications have focused on disease recur-
rence for prostate cancer (i.e. biochemical recurrence). For 
example, Zupan et al. created two separate algorithms, one 
using preoperative data and one using postoperative features 
of patients undergoing prostatectomy [18]. Preoperative 
features included Gleason score, clinical stage, and preop-
erative PSA, while postoperative features included Gleason 
score from the surgical specimen, prostatic capsular inva-
sion, surgical margin status, seminal vesicle invasion, and 
lymph node status. By training two separate Naïve Bayes 
classifier algorithms, the group showed that pre and post-
operative data could predict recurrence with an accuracy of 
71 and 78%, respectively compared to a Cox proportional 
hazards model pre and post-operative accuracy of 70 and 
79%. With more robust models, however, accuracy could 
improve. For example, Wong et al. examined ML predic-
tion of prostate cancer biomarker recurrence following 
robot-assisted prostatectomy for localized prostate cancer 
after 1 year [19]. The group used 19 clinical features to train 
three separate ML models K-nearest neighbor, random forest 
tree, and LR. These were compared to classic Cox regres-
sion analysis. All AUCs for K-nearest neighbor (0.90), ran-
dom forest tree (0.92), and LR (0.94) outperformed the Cox 
regression (0.87). Additionally, K-nearest neighbor, random 
forest tree, and LR demonstrated accuracy prediction scores 
of 98, 95, and 98%, respectively. By further validating and 
improving these algorithms, clinical systems could develop 
to improve prostate cancer counseling and outcomes.

Bladder cancer

As stage typically drives bladder cancer treatment, current 
ML efforts involve preoperative stage prediction using imag-
ing to help with decision management. For example, Gara-
pati et al. investigated the feasibility of machine learning 

modeling to predict bladder cancer staging based on pre-
operative CT urography [20]. A dataset of 84 bladder can-
cer lesions was segmented on pre-operative imaging and 
grouped based on pathological stage after cystectomy (≥ pT2 
or < pT2). CT images were analyzed and specific charac-
teristics from segmented tumors were extracted. Several 
models were trained based on the imaging and had AUC-
ROCs ranging from 0.88 to 0.97, showing promise of correct 
staging. It is possible that such an algorithm could aid in 
classifying patients for neoadjuvant chemotherapy. However, 
larger data sets and algorithm optimization is needed.

Intraoperative applications

The successful application of ML to real-time, automated, 
intraoperative interventions would involve developing a mul-
tifaceted, AI platform. The platform would ideally be able to 
identify patient anatomy, as well as track equipment being 
used while adapting to a continually changing operative 
environment. Such a tool could aid in the physician’s intra-
operative decisions or even give active feedback on surgical 
techniques. Though no automated ML systems yet exist for 
the operating room, many studies have laid the groundwork 
for this technology to develop in the future.

Preoperative identification and tracking of patient anatomy

Developing programs to accurately identify patient anatomy 
is the first step in implementing automated surgical systems 
to enhance surgical procedures. As radiologic imaging inter-
pretation is critical to surgical management, there have been 
many efforts to apply ML techniques in imaging analysis. 
As described above, a subset of machine learning dealing 
with image analysis, computer vision (CV), can enhance 
the diagnosis of urologic pathologies. For example, in stone 
disease, several studies have demonstrated the use of CV 
techniques on CT abdominal imaging data to identify stone 
location [21]. These techniques depend on improved pro-
cessing of imaging signals to make more robust algorithms 
[22]. By doing so, even visually subtle differences between 
pathologic and normal anatomy can be computationally 
recognized.

Furthermore, through segmentation (i.e. anatomic locali-
zation) of imaging, target surgical anatomy can be automati-
cally delineated by computational algorithms. Currently, this 
process is done manually and has many “image-guided” sur-
gical applications. However, manual segmentation of target 
anatomy and vasculature is very time-consuming. Automat-
ing this process involves CV techniques to quickly analyze 
imaging studies and interpret specific anatomical details. 
Recently, using multi-atlas segmentation, wherein a specific 
patient’s anatomy is analyzed by an algorithm trained on a 
large dataset of other imaging data, has shown improved 
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detection of anatomic variation and segmentation accuracy 
[23]. This technique has been investigated to aid in surgical 
planning. For example, Huo et al. investigated using multi-
atlas segmentation to analyze patient pyelocaliceal anatomy 
[24, 25]. Using CT urography, 3D anatomy characterization 
was performed automatically removing the need for manual 
dimension measurement. Successful segmentation was done 
for 8 of 11 pyelocaliceal systems to measure the infundibu-
lopelvic angle (IPA). Though some errors were identified 
in image labeling, the study demonstrates the feasibility 
of multi-atlas segmentation for anatomic characterization. 
Further improvements in the technique will allow for the 
accurate construction of isolated anatomical features and 
improve localization and characterization of complex patient 
anatomy that is otherwise not easily captured through cur-
rent methods.

Automatic tracking of intraoperative patient anatomy 
requires the ability to overcome the visual obstruction of 
instruments, blood, smoke, and adipose tissue while predict-
ing tissue deformation during dissection. Though challeng-
ing, novel techniques are being developed to improve the 
automatic identification of patient anatomy. Nosrati et al. 
developed a multimodal approach to align pre-operative 
data with intraoperative endoscopic imaging during partial 
nephrectomy [26]. The alignment method used subsurface 
feature cues, such as vessel pulsation patterns, as well as 
color and texture information to automatically register the 
workspace to the preoperative imaging. Our group has simi-
larly developed a method of quickly registering preopera-
tive imaging to surgical anatomy using robotic tip position 
data (Fig. 2) [27]. Though not automated, registration was 
near instantaneous with limited target registration error 
(0.75–2.2 mm). Further work to automatically identify and 
register intraoperative patient anatomy to preoperative imag-
ing for surgical guidance is ongoing.

Future applications

As we look toward the future, technologies that support 
accurate, automated patient-specific care are expected. Some 
automated surgical systems are already being used clinically. 
For example, in urologic surgery, procept biorobotics has 
introduced the first fully automated system for prostate ade-
noma ablation (aquablation) [5]. The technology has proven 
to be efficient and safe for the treatment of benign pros-
tatic hypertrophy. There are additional automated surgical 
systems currently being developed for a variety of surgical 
fields [28]. It is only a matter of time until they are intro-
duced into clinical practice.

Additionally, there has been an increasing interest in 
the evaluation of surgical technique and its correlation to 
surgical outcomes. The ability to automatically evaluate 
the surgical technique in real-time offers a unique training 

capability that could be used in education, credentialing, 
and quality improvement. Multiple studies have investigated 
the use of machine learning as a tracking tool for surgical 
techniques. For example, Ghani et al. examined bladder 
neck anastomosis videos of 11 surgeons to train a computer 
vision algorithm to detect velocity, trajectory, smoothness 
of instrument movement, as well as the relationship to 
contralateral instrument in a frame-by-frame manner [29]. 
Surgeons were then categorized into high and low skill. A 
final, 12th, video was used to validate the system repeatedly 
(n = 12) and the results were averaged. Evaluations were 
compared to blinded review by 25 peer surgeons using the 
global evaluative assessment of robotic skills (GEARS) tool. 
The algorithm proved an accuracy of skill categorization of 
83% when using single instrument points and 92% when 
incorporating joint movement. Further incorporation of con-
tralateral instrument raised the accuracy to 100% in binary 
skill level categorization. They found the most correlated 
metrics predicting skill were the relationship between needle 
driver forceps and joint position, acceleration, and velocity.

These intraoperative metrics, moreover, can be correlated 
with clinical outcomes. For example, Hung et al. demon-
strated that algorithms can be trained to predict surgical spe-
cific outcomes. In one study, the group developed an ML 
algorithm to interpret automated performance metrics from 
surgical videos and were able to predict a length of hospital 
stay greater than 2 days with 87% accuracy [30]. In another 
study, the group demonstrated their algorithm’s ability to 
predict improved continence based on the intraoperative 
performance metrics [31]. These techniques will be used to 
inform system outcomes research and shape both practice 

Fig. 2   Example of registration of segmented preoperative imaging to 
the surgical workspace in a kidney phantom
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and policy. Additionally, the technology will undoubtedly 
play a role in credentialing and surgical training as well.

Current limitations and barriers to implementation

Though the previously discussed studies show promise in 
incorporating ML algorithms to augment patient-specific 
care, the technology remains largely investigational. The 
strength of ML algorithms correlates with the robustness of 
the input data. Training any algorithm requires rigorous data 
pre-processing, and large and diverse datasets are manda-
tory to refine safe patient-specific tools. Furthermore, not all 
ML tools are designed to be explainable, so it is critical for 
clinicians to understand the data used for algorithm training 
to accurately interpret results [32]. Most of the above stud-
ies are limited by data size and lack of external validation, 
though widespread usage of EHRs offers a future avenue 
for high-volume data collection. Similar to the integration 
of previous novel technologies, the incorporation of ML 
tools to improve disease diagnosis and treatment will be 
gradual and still require human regulation [32, 33]. Though 
further work is necessary to examine and validate ML tools 
in patient-specific care in urologic surgery, its widespread 
adoption in other areas of modern life offers encouragement 
that these challenges are only temporary barriers.

Conclusion

Machine learning techniques can be implemented to assist 
patient-centered surgical care and increase patient engage-
ment within their decision-making processes. Though the 
technology remains largely investigational, refining algo-
rithms through large-scale EHR datasets will improve their 
efficacy and facilitate incorporation into clinical practice. 
Furthermore, these tools have shown viability in the evalu-
ation of surgeon skill as well. With scalability to larger data 
sets, ML systems will continue to have promising applica-
tions within urology both on the patient and health care sys-
tems levels.
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