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Abstract

Purpose As computational power has improved over the past 20 years, the daily application of machine learning methods
has become more prevalent in daily life. Additionally, there is increasing interest in the clinical application of machine
learning techniques. We sought to review the current literature regarding machine learning applications for patient-specific
urologic surgical care.

Methods We performed a broad search of the current literature via the PubMed-Medline and Google Scholar databases up
to Dec 2020. The search terms “urologic surgery” as well as “artificial intelligence”, “machine learning”, “neural network”,
and “automation” were used.

Results The focus of machine learning applications for patient counseling is disease-specific. For stone disease, multiple
studies focused on the prediction of stone-free rate based on preoperative characteristics of clinical and imaging data. For
kidney cancer, many studies focused on advanced imaging analysis to predict renal mass pathology preoperatively. Machine
learning applications in prostate cancer could provide for treatment counseling as well as prediction of disease-specific
outcomes. Furthermore, for bladder cancer, the reviewed studies focus on staging via imaging, to better counsel patients
towards neoadjuvant chemotherapy. Additionally, there have been many efforts on automatically segmenting and matching
preoperative imaging with intraoperative anatomy.

Conclusion Machine learning techniques can be implemented to assist patient-centered surgical care and increase patient
engagement within their decision-making processes. As data sets improve and expand, especially with the transition to large-
scale EHR usage, these tools will improve in efficacy and be utilized more frequently.

Keywords Urologic surgery - Machine learning - Artificial intelligence - Image registration

Introduction

The accurate assessment and interpretation of clinical data
are essential to deliver patient-specific care. With increased
access to robust data sets, physicians are challenged with
interpreting complex information to diagnose and treat uro-
logic disease. However, the application of advanced com-
putational techniques can assist with data mining and inter-
pretation, improving patient care [1]. The field of artificial
intelligence (AI) has been applied commonly in daily life
allowing for the rapid analysis of large, non-linear data sets
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via developed algorithms and statistical models [2]. A field
within AI, machine learning (ML), involves the development
of algorithms to allow for complex pattern recognition and
output prediction, which improve in accuracy as data inputs
increase. With patient health data consisting of multifacto-
rial and non-linear variables, ML can be a powerful tool
for enhancing patient-specific care for urologic surgery [3].

Machine learning has been applied across multiple areas
of medicine, allowing for improved disease diagnosis, treat-
ment selection, patient monitoring, and risk stratification
for primary prevention [2]. Incorporating ML techniques to
enhance surgical systems requires accurate automated inter-
pretation of perioperative patient imaging, as well as surgi-
cal anatomy and instrument tracking in the operative field.
Although, no clinical surgical system exists that can com-
pletely perform these tasks autonomously, there have been
several robots proving the feasibility of autonomous tasks
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such as anatomic tracking, suturing, and biopsy sampling
[4]. Furthermore, in urology, some semi-autonomous surgi-
cal systems, such as Aquablation™, have been emerging and
have proven the feasibility of robotic directed therapies [5].
Developing both autonomous methods that facilitate surgical
candidate selection and automated surgical robotic systems
could improve surgical accuracy and patient outcomes. The
first step, however, is to develop accurate ML algorithms to
improve evaluation and enhance the treatment of urologic
disease.

The aim of this review article is to evaluate the current
state of ML algorithms that could apply to patient-specific
interventions in urologic surgery. Though no current systems
exist, by improving ML algorithms and applying them to
current surgical systems, the field could take steps toward
autonomous surgery.

Background

Machine learning (ML) is the application of artificial intel-
ligence techniques to generate computational systems that
can simulate intellectual processes. Through sophisticated,
non-linear modelling, ML can perform reasoning, learning,
and problem-solving tasks. Specifically, it allows for the
creation of computer algorithms that are not programmed
with specific rules. By being exposed to sample data (i.e.
“training data”), the computational algorithm identifies and
adapts to specific patterns in the data set. This algorithm, in
turn, can be used to interpret novel data. Machine learning
tools have proven highly valuable in modern life to perform
basic and complex human decisions such as traffic predic-
tion, spam filtering, text prediction, and online advertising.
Moreover, the ability to develop non-linear algorithms is
particularly useful in analyzing medical data, which is often
complex and nuanced.

Having access to high-quality, large data sets is essential
to train any ML algorithm. When a data set is large enough,
current algorithms can be trained to interpret noisy inputs to
yield accurate outputs. As with any statistical model, large,
retrospective datasets have missing data points, confounders,
and biases which could impact the training of any algorithm.
Thus, having a validated “ground-truth” data set can be used
to assess the accuracy of any algorithm [6].

Within ML, there are multiple subfields dealing with
the interpretation of different data types. Each subfield
demonstrates that machines do not need explicit execut-
able steps to function and make decisions but can gen-
erate knowledge and predict outcomes through pattern
recognition and inference. For example, natural language
processing (NPL) focuses on a computer’s analysis and
comprehension of human language. Computer vision
(CV) relates to machine analysis of image or video, such
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as radiographic or endoscopic images. Within medicine,
much of ML has focused on the subfield of artificial neu-
ral networks (ANN). Like biological neurons, an ANN
is a composition of individual processing nodes, similar
to that of neurons, arranged in a layered architecture that
enables machine systems to develop pattern recognition
from sophisticated inputs. These layers consist of an input
layer made of input nodes, a hidden layer made of hid-
den nodes, and an output layer made of output nodes. The
characteristics of these layers, in both depth and width,
determine the functionality of the ANN. Increasing depth
and width enables increasing processing and learning
capability (Fig. 1) [7].

The introduction of these computational tools can assist
with the interpretation of complex medical data and lead to
improvements in both clinical and surgical practice. Devel-
oping autonomous surgical systems would require incor-
porating each different subfield of machine learning to
analyze and combine different kinds of data. Specifically,
these tools can be applied to assist with imaging interpre-
tation and surveillance, operative planning and guidance,
medical management, as well as outcome prediction.

Input Layer

Hidden Layer 1 Hidden Layer 2 Output Layer

Fig.1 Above is the framework for a neural network structure. Such
algorithms can combine multiple inputs through a series of hidden
layers to form an interpretable output. The layers are considered “hid-
den” as they may not be directly observable. By training an algorithm
with a dataset, each node is given a certain weight for its contribution
to output prediction. The number of inputs and layers can be varied
to optimize data interpretation. Too many inputs and nodes can lead
to overfitting, while too few may decrease the prediction accuracy of
the algorithm
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Evidence acquisition

We performed a search of the current literature via the
PubMed-Medline database up to Dec 2020. The search
terms “urologic surgery” as well as “artificial intelligence”,
“machine learning”, “neural network”, and “automation”
were used. We reviewed 346 articles based on title and
abstract and selected those directed towards machine learn-
ing applications for patient care during urologic surgery.
Following full-text evaluation of 65 manuscripts, evidence
was selected based on study relevance, strengths, and limita-
tions. Twenty-six studies were included in our review and
summarized.

Patient counseling and disease-specific outcomes
for surgical candidate selection

Though thorough history and physical are still the founda-
tion for medical decision making, ML tools using electronic
health record (EHR), imaging, and laboratory data can fur-
ther facilitate disease diagnosis and treatment. The ability
to rapidly synthesize patient data would allow for “machine-
guided” patient-specific therapeutic decisions and enhance
surgical planning. These tools will continue to improve and
are an essential step in developing larger systems, which
could optimize surgical care for a variety of genitourinary
pathologies. Currently, multiple ML methods are being
evaluated to help facilitate surgical candidate selection and
predict outcomes. Many of these methods are disease-spe-
cific and, below, we highlight select studies that can impact
patient counseling for surgery (Table 1).

Nephrolithiasis

There is concern regarding stone-free rates (SFR) after
surgery for renal stones as residual fragments can increase
subsequent stone events [8]. Current development of
machine learning methods for nephrolithiasis treatment
focus on SFR prediction based on surgical technique.
Aminsharifi et al. evaluated the use of an ANN to pre-
dict percutaneous nephrolithotomy (PCNL) postoperative
SFR [9]. A 200 patient set was used to train the ANN
using preoperative features and evaluate postoperative
outcomes. Through a 254 patient test set, both preopera-
tive stone burden and stone complexity were found as
the most significant preoperative predictors of SFR. The
group further developed a machine learning method to
predict outcomes of PCNL [10]. Using 146 adult patients
and a support vector machine (SVM) model, predictive
outcomes were compared to the actual outcome. The ML
system predicted PCNL outcomes with 80-95% accuracy.
To compare the ML system with Guy’s stone score (GSS)
and Clinical Research Office of Endourological Society

(CROES) nomogram, a receiver operating characteristic
curve was created for each method and area under curves
(AUC) were compared. The ML software showed an excel-
lent AUC (0.92) as compared to GSS (0.62) and CROES
(0.62).

Likewise, shock wave lithotripsy outcomes have been
evaluating using various neural networks. In two stud-
ies, researchers evaluated an ANN to predict SFR follow-
ing shock wave lithotripsy [11, 12]. Gomha et al. used
10 parameters to develop a model to analyze SFR status.
Parameters included patient age, sex, renal anatomy, stone
location, side, number, stone length, stone width, whether
stones were de novo or recurrent, and stent use. Results of
a logistical regression (LR) model and the ANN were then
compared to show respective sensitivities (100, 78%), spe-
cificities (0.0, 75%), positive predictive values (93, 97%),
and overall accuracies (93, 78%). Similarly, Seckiner et al.
analyzed 11 variables through a 139 patient training group to
predict SFR after SWL. In a 32 patient test group, SFR was
predicted with 99% accuracy in the training group, 85% in
the validation group, and 89% in the test group. Thus, both
neural networks showed high efficacy in predicting patient
outcomes using multiple variables.

Kidney cancer

There is interest in developing novel methods to improve
the prediction of renal mass pathology and prevent interven-
tions on benign masses [13]. Several studies have exempli-
fied ML applications in predicting tumor pathology of renal
masses based on computerized tomography (CT) imaging
data [14]. A recent study performed by Tanaka et al. focused
on small renal cell masses (less than or equal to 4 cm) to
determine malignancy using multiphase contrast-enhanced
CT and deep learning techniques. Using 1807 image sets
from 159 lesions with known pathologies (training set,
N=1526, validation set, n=134), researchers evaluated
neural networks for the separate phases of CT imaging.
Accuracy in the prediction of malignancy across all phases
was about 80%, showing potential ML tools in renal mass
evaluation [15]. Furthermore, it is possible that improved
image analysis techniques utilizing computer vision algo-
rithms can improve pathologic prediction for renal masses.
For example, Yu et al. evaluated 119 patients with pathologi-
cally evaluated renal masses and generated a machine learn-
ing tool using texture analysis techniques of four-phase CT
image data. By doing so, they were able to identify unique
features from imaging data that could discriminate clear cell
renal cell carcinoma and oncocytoma, respectively (AUC
0.91,0.93, p<0.01) [16]. Further techniques can be incorpo-
rated into clinical practice, enhancing preoperative surgical
counseling.
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Prostate cancer

Other applications of ML techniques have demonstrated
potential for guiding patients to treatment decisions. For
example, Auffenberg et al. employed a novel machine learn-
ing model to help guide men with newly diagnosed prostate
cancer to a decision on treatment approach [17]. To accom-
plish this, the group created a database of clinical features
of 7543 men who had been counseled regarding options for
prostate cancer treatment, including radical prostatectomy,
surveillance, radiation therapy, androgen deprivation, and
watchful waiting. A multinomial random forest ML algo-
rithm was developed using two-thirds of patients, with one-
third as a validation cohort. The group showed that, based
on clinical features included, they could predict treatment
decisions for prostate cancer (AUC 0.81), suggesting that
this algorithm could help further inform patients and guide
treatment decisions.

Other ML applications have focused on disease recur-
rence for prostate cancer (i.e. biochemical recurrence). For
example, Zupan et al. created two separate algorithms, one
using preoperative data and one using postoperative features
of patients undergoing prostatectomy [18]. Preoperative
features included Gleason score, clinical stage, and preop-
erative PSA, while postoperative features included Gleason
score from the surgical specimen, prostatic capsular inva-
sion, surgical margin status, seminal vesicle invasion, and
lymph node status. By training two separate Naive Bayes
classifier algorithms, the group showed that pre and post-
operative data could predict recurrence with an accuracy of
71 and 78%, respectively compared to a Cox proportional
hazards model pre and post-operative accuracy of 70 and
79%. With more robust models, however, accuracy could
improve. For example, Wong et al. examined ML predic-
tion of prostate cancer biomarker recurrence following
robot-assisted prostatectomy for localized prostate cancer
after 1 year [19]. The group used 19 clinical features to train
three separate ML models K-nearest neighbor, random forest
tree, and LR. These were compared to classic Cox regres-
sion analysis. All AUCs for K-nearest neighbor (0.90), ran-
dom forest tree (0.92), and LR (0.94) outperformed the Cox
regression (0.87). Additionally, K-nearest neighbor, random
forest tree, and LR demonstrated accuracy prediction scores
of 98, 95, and 98%, respectively. By further validating and
improving these algorithms, clinical systems could develop
to improve prostate cancer counseling and outcomes.

Bladder cancer

As stage typically drives bladder cancer treatment, current
ML efforts involve preoperative stage prediction using imag-
ing to help with decision management. For example, Gara-
pati et al. investigated the feasibility of machine learning

modeling to predict bladder cancer staging based on pre-
operative CT urography [20]. A dataset of 84 bladder can-
cer lesions was segmented on pre-operative imaging and
grouped based on pathological stage after cystectomy (>pT2
or < pT2). CT images were analyzed and specific charac-
teristics from segmented tumors were extracted. Several
models were trained based on the imaging and had AUC-
ROC:s ranging from 0.88 to 0.97, showing promise of correct
staging. It is possible that such an algorithm could aid in
classifying patients for neoadjuvant chemotherapy. However,
larger data sets and algorithm optimization is needed.

Intraoperative applications

The successful application of ML to real-time, automated,
intraoperative interventions would involve developing a mul-
tifaceted, Al platform. The platform would ideally be able to
identify patient anatomy, as well as track equipment being
used while adapting to a continually changing operative
environment. Such a tool could aid in the physician’s intra-
operative decisions or even give active feedback on surgical
techniques. Though no automated ML systems yet exist for
the operating room, many studies have laid the groundwork
for this technology to develop in the future.

Preoperative identification and tracking of patient anatomy

Developing programs to accurately identify patient anatomy
is the first step in implementing automated surgical systems
to enhance surgical procedures. As radiologic imaging inter-
pretation is critical to surgical management, there have been
many efforts to apply ML techniques in imaging analysis.
As described above, a subset of machine learning dealing
with image analysis, computer vision (CV), can enhance
the diagnosis of urologic pathologies. For example, in stone
disease, several studies have demonstrated the use of CV
techniques on CT abdominal imaging data to identify stone
location [21]. These techniques depend on improved pro-
cessing of imaging signals to make more robust algorithms
[22]. By doing so, even visually subtle differences between
pathologic and normal anatomy can be computationally
recognized.

Furthermore, through segmentation (i.e. anatomic locali-
zation) of imaging, target surgical anatomy can be automati-
cally delineated by computational algorithms. Currently, this
process is done manually and has many “image-guided” sur-
gical applications. However, manual segmentation of target
anatomy and vasculature is very time-consuming. Automat-
ing this process involves CV techniques to quickly analyze
imaging studies and interpret specific anatomical details.
Recently, using multi-atlas segmentation, wherein a specific
patient’s anatomy is analyzed by an algorithm trained on a
large dataset of other imaging data, has shown improved
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detection of anatomic variation and segmentation accuracy
[23]. This technique has been investigated to aid in surgical
planning. For example, Huo et al. investigated using multi-
atlas segmentation to analyze patient pyelocaliceal anatomy
[24, 25]. Using CT urography, 3D anatomy characterization
was performed automatically removing the need for manual
dimension measurement. Successful segmentation was done
for 8 of 11 pyelocaliceal systems to measure the infundibu-
lopelvic angle (IPA). Though some errors were identified
in image labeling, the study demonstrates the feasibility
of multi-atlas segmentation for anatomic characterization.
Further improvements in the technique will allow for the
accurate construction of isolated anatomical features and
improve localization and characterization of complex patient
anatomy that is otherwise not easily captured through cur-
rent methods.

Automatic tracking of intraoperative patient anatomy
requires the ability to overcome the visual obstruction of
instruments, blood, smoke, and adipose tissue while predict-
ing tissue deformation during dissection. Though challeng-
ing, novel techniques are being developed to improve the
automatic identification of patient anatomy. Nosrati et al.
developed a multimodal approach to align pre-operative
data with intraoperative endoscopic imaging during partial
nephrectomy [26]. The alignment method used subsurface
feature cues, such as vessel pulsation patterns, as well as
color and texture information to automatically register the
workspace to the preoperative imaging. Our group has simi-
larly developed a method of quickly registering preopera-
tive imaging to surgical anatomy using robotic tip position
data (Fig. 2) [27]. Though not automated, registration was
near instantaneous with limited target registration error
(0.75-2.2 mm). Further work to automatically identify and
register intraoperative patient anatomy to preoperative imag-
ing for surgical guidance is ongoing.

Future applications

As we look toward the future, technologies that support
accurate, automated patient-specific care are expected. Some
automated surgical systems are already being used clinically.
For example, in urologic surgery, procept biorobotics has
introduced the first fully automated system for prostate ade-
noma ablation (aquablation) [5]. The technology has proven
to be efficient and safe for the treatment of benign pros-
tatic hypertrophy. There are additional automated surgical
systems currently being developed for a variety of surgical
fields [28]. It is only a matter of time until they are intro-
duced into clinical practice.

Additionally, there has been an increasing interest in
the evaluation of surgical technique and its correlation to
surgical outcomes. The ability to automatically evaluate
the surgical technique in real-time offers a unique training
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Fig.2 Example of registration of segmented preoperative imaging to
the surgical workspace in a kidney phantom

capability that could be used in education, credentialing,
and quality improvement. Multiple studies have investigated
the use of machine learning as a tracking tool for surgical
techniques. For example, Ghani et al. examined bladder
neck anastomosis videos of 11 surgeons to train a computer
vision algorithm to detect velocity, trajectory, smoothness
of instrument movement, as well as the relationship to
contralateral instrument in a frame-by-frame manner [29].
Surgeons were then categorized into high and low skill. A
final, 12th, video was used to validate the system repeatedly
(n=12) and the results were averaged. Evaluations were
compared to blinded review by 25 peer surgeons using the
global evaluative assessment of robotic skills (GEARS) tool.
The algorithm proved an accuracy of skill categorization of
83% when using single instrument points and 92% when
incorporating joint movement. Further incorporation of con-
tralateral instrument raised the accuracy to 100% in binary
skill level categorization. They found the most correlated
metrics predicting skill were the relationship between needle
driver forceps and joint position, acceleration, and velocity.

These intraoperative metrics, moreover, can be correlated
with clinical outcomes. For example, Hung et al. demon-
strated that algorithms can be trained to predict surgical spe-
cific outcomes. In one study, the group developed an ML
algorithm to interpret automated performance metrics from
surgical videos and were able to predict a length of hospital
stay greater than 2 days with 87% accuracy [30]. In another
study, the group demonstrated their algorithm’s ability to
predict improved continence based on the intraoperative
performance metrics [31]. These techniques will be used to
inform system outcomes research and shape both practice
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and policy. Additionally, the technology will undoubtedly
play a role in credentialing and surgical training as well.

Current limitations and barriers to implementation

Though the previously discussed studies show promise in
incorporating ML algorithms to augment patient-specific
care, the technology remains largely investigational. The
strength of ML algorithms correlates with the robustness of
the input data. Training any algorithm requires rigorous data
pre-processing, and large and diverse datasets are manda-
tory to refine safe patient-specific tools. Furthermore, not all
ML tools are designed to be explainable, so it is critical for
clinicians to understand the data used for algorithm training
to accurately interpret results [32]. Most of the above stud-
ies are limited by data size and lack of external validation,
though widespread usage of EHRs offers a future avenue
for high-volume data collection. Similar to the integration
of previous novel technologies, the incorporation of ML
tools to improve disease diagnosis and treatment will be
gradual and still require human regulation [32, 33]. Though
further work is necessary to examine and validate ML tools
in patient-specific care in urologic surgery, its widespread
adoption in other areas of modern life offers encouragement
that these challenges are only temporary barriers.

Conclusion

Machine learning techniques can be implemented to assist
patient-centered surgical care and increase patient engage-
ment within their decision-making processes. Though the
technology remains largely investigational, refining algo-
rithms through large-scale EHR datasets will improve their
efficacy and facilitate incorporation into clinical practice.
Furthermore, these tools have shown viability in the evalu-
ation of surgeon skill as well. With scalability to larger data
sets, ML systems will continue to have promising applica-
tions within urology both on the patient and health care sys-
tems levels.
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