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assay. Protein and mRNA levels of full-length AR (AR-FL) 
and AR-V7 were determined by qPCR and western blot, 
respectively. The nuclear translocation of p50 and p65 was 
assessed to reflect the activity of the NF-κB pathway.
Results CX4945 reduced the proliferation of CRPC cells 
in a dose-dependent and time-dependent manner. AR-V7 
rather than AR-FL was downregulated by CX4945 in both 
the mRNA and protein level. Furthermore, CX4945 could 
restore the sensitivity of CRPC cells to bicalutamide. The 
analysis of possible mechanisms demonstrated that the 
inhibition of CK2 diminished the phosphorylation of p65 
at ser529 and thus attenuated the activity of the NF-κB 
pathway.
Conclusion The inhibition of CK2 by CX4945 can 
repress the viability of CRPC cells and restore their sensi-
tivity to anti-androgen therapy by suppressing AR-V7. This 
finding presents a potential option for the treatment of pros-
tate cancer, especially CRPC.
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Introduction

Prostate cancer (PCa) has become the most commonly 
diagnosed cancer in males and accounted for the sec-
ond largest number of male cancer-related deaths in the 
United States [1]. Given the crucial role of the androgen/
androgen receptor (AR) signaling axis in PCa, androgen-
deprivation therapy (ADT) is the first-line treatment for 
relapsed or advanced prostate cancer patients. Unfortu-
nately, despite the initial response for a median time of 
18–20  months, almost all patients will suffer from recur-
rence, progressing into a lethal state of castration-resistant 

Abstract 
Purpose The aberrant expression of casein kinase 2 
(CK2) has been reported to be involved in the tumorigen-
esis and progression of prostate cancer. The inhibition of 
CK2 activity represses androgen-dependent prostate cancer 
cells by attenuating the androgen receptor (AR) signaling 
pathway. In this study, we examined the effect of CK2 inhi-
bition in castration-resistant prostate cancer (CRPC) cells, 
in which AR variants (ARVs) play a predominant role.
Methods A newly synthetic CK2 selective inhibitor 
CX4945 was utilized to study the effect of CK2 inhibi-
tion in CRPC cells by CCK8 assay and colony formation 
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prostate cancer (CRPC) [2]. It is now widely acknowledged 
that even if with low levels of serum testosterone, AR sign-
aling remains active and indispensable in CRPC [3]. Based 
on this new understanding of CRPC, second-generation 
AR-targeted therapies, abiraterone and enzalutamide, have 
been developed and approved for the treatment of CRPC by 
the US Food and Drug Administration (FDA) [4, 5]. How-
ever, despite the exciting success of these drugs, inherent or 
acquired resistance still remains a major clinical challenge 
and requires further investigation [6].

It has been demonstrated that complex mechanisms con-
tribute to the development of CRPC, including AR muta-
tions [7], intraprostatic testosterone and DHT synthesis [8], 
AR bypass signaling pathway activation [9] and the expres-
sion of ligand-independent AR splice variants (ARVs) 
[10]. Among these, constitutively active ARVs, which lack 
the ligand-binding domain, represent an emerging crucial 
mechanism responsible for CRPC. One of the best charac-
terized ARVs is AR-V7, also known as AR3 [11]. In vitro 
and in vivo studies have demonstrated that selective knock-
down of AR-V7 expression inhibited androgen-independent 
cell growth and restored responsiveness to androgen and 
anti-androgen therapy [11, 12]. Therefore, it is believed that 
targeting AR-V7 may be a potential strategy against CRPC.

Protein kinase 2, formerly called casein kinase 2 (CK2), 
is a multifunctional, highly conservative, ubiquitously 
expressed and constitutively active protein kinase. This 
enzyme is a holoenzyme complex composed of two cata-
lytic subunits (CK2α or CK2α′) and two regulatory CK2β 
subunits [13]. Cumulative evidence has demonstrated 
that CK2 can phosphorylate a large number of substrates 
involved in cellular growth, apoptosis and angiogenesis. 
All of the above functions suggest its potential role in car-
cinogenesis and tumor progression [14, 15]. Certain studies 
have indicated that elevated CK2 expression and activity 
were closely associated with the development of prostate 
cancer and poor prognosis [16, 17]. Accordingly, our previ-
ous research illustrated that the inhibition of CK2 attenu-
ated AR function and cell proliferation in prostate cancer 
cells [18]. Hessenauer et al. [19] found different responses 
in hormone-sensitive and hormone-refractory prostate can-
cer cells to the inhibition of CK2. However, the cells they 
used in that study were LNCaP (AR-dependent) and PC-3 
(AR-negative). No AR-independent and ARV-driven CRPC 
cells were included. Therefore, we sought to investigate 
whether CK2 also plays a role in ARV signaling. Herein, 
we utilized a highly selective inhibitor of CK2, CX4945, 
which is currently in Phase I and II clinical trials (Clini-
calTrials.gov Identifier: NCT02128282). We found that 
the inhibition of CK2 by CX4945 reduced the prolifera-
tion of 22Rv1 and VCaP cells and restored their sensitiv-
ity to bicalutamide under ADT conditions. Mechanistically, 
CX4945 does not influence the expression of full-length 

AR (AR-FL) but downregulates AR-V7 at both the mRNA 
and protein level. These findings implied a potential and 
effective approach for the treatment of CRPC, which is a 
major challenge in clinic.

Materials and methods

Cell culture and reagents

The 22Rv1 and VCaP cell lines were obtained from the 
Type Culture Collection of the Chinese Academy of Sci-
ences (Shanghai, China). Cells were routinely cultured 
in RPMI 1640 supplemented with 10% FBS (Gibco, Life 
Technologies), 100 units/ml penicillin and 100 μg/ml strep-
tomycin at 37 °C with humidified air and 5%  CO2. Unless 
indicated, cells were transferred to charcoal stripped FBS 
(csFBS, Biological Industries) medium at the beginning of 
the experiments.

Cells were treated with CX4945, Bicalutamide or QNZ 
(Selleck, Shanghai, China) dissolved in DMSO (final con-
centration ≤0.1%). The control groups of all sets of experi-
ments received DMSO at a concentration equal to that in 
drug-treated cells.

Western blotting

Cell compartment proteins were extracted using a Nuclear 
and Cytoplasmic Protein Extraction Kit (Beyotime). A 
total of 20 µg of protein was separated by 10% SDS-PAGE 
gels and transferred onto a PVDF membrane (Millipore). 
The membranes were incubated with the following specific 
primary antibodies: AR, pNF-κB  p65ser529 (1:500, Santa 
Cruz Biotechnologies), p50, p65, GAPDH and Histone H3 
(1:2000, Cell Signaling Technology). GAPDH was used as 
an internal control for whole cell lysates, while Histone H3 
was an internal control for nuclear fraction protein.

Quantitative real-time PCR

Total RNA was isolated using Trizol™ reagent (Invitro-
gen). Approximately 1  µg RNA was used for cDNA syn-
thesis using GoScript™ Reverse Transcription System 
(Promega). QPCR was conducted using the GoTaq® qPCR 
Master Mix (Promega). Primers for the corresponding tar-
get genes are listed as follows:

AR-FL.
5ʹ-GAC GAC CAG ATG GCT GTC ATT-3ʹ (forward).
5ʹ-GGG CGA AGT AGA GCA TCC T-3ʹ (reverse).
AR-V7.
5 ʹ-CCA TCT TGT CGT CTT CGG AAA TGT TA-3 ʹ 

(forward).
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5 ʹ-TTT GAA TGA GGC AAG TCA GCC TTT CT-3 ʹ 
(reverse).

PSA.
5ʹ-GTG TGT GGA CCT CCA TGT TATT-3ʹ (forward).
5ʹ-CCA CTC ACC TTT CCC CTC AAG-3ʹ (reverse).
GAPDH.
5ʹ-TTC TTT TGC GTC GCC AGC CGA-3ʹ (forward).
5ʹ-GTG ACC AGG CGC CCA ATA CGA-3ʹ (reverse).

Cell viability assay and colony formation assay

Cells were seeded in 96-well plates the day before CX4945 
treatment. Cell viability was evaluated using the Cell 
Counting Kit 8 (CCK8, Dojindo). To assess the sensitivity 
of 22Rv1 to bicalutamide, cells were treated with different 
doses of bicalutamide with or without CX4945 for 3 days 
under 5% csFBS condition. All the experiments were per-
formed in triplicate.

For colony formation assays, 500 cells per well were 
seeded in six-well plates and incubated with CX4945 or 
control reagent (DMSO) for 14 days. Cells were fixed in 
methanol for 10 min and then stained with Giemsa’s solu-
tion. Colonies were counted with more than 50 cells under 
microscopy.

Cell cycle analysis and apoptosis assay

For cell cycle analysis, cells were seeded 4 × 105 cells/well 
in six-well plates, and treated with CX4945 or DMSO for 
24 h. Cell cycle distribution was analyzed using a Gallios 
flow cytometer (Beckman Coulter).

For apoptosis assay, cells were seeded 2  ×  105 cells/
well in six-well plates, and treated with corresponding rea-
gents. After 48 h, cells were harvested and incubated with 
Annexin V-FITC and PI (KeyGen BioTECH) for 10  min 
and then analyzed by a Gallios flow cytometer (Beckman 
Coulter).

ECLIA assay

Approximately 4 × 105 cells were seeded in six-well plates 
and treated with CX4945 for 12, 24 and 48 h. The PSA lev-
els of the conditioned medium were quantified by ECLIA 
assay using the Elecsys total PSA immunoassay on a Cobas 
E-602 analyzer (Roche Diagnostics) according to the man-
ufacturer’s instruction.

Statistical analysis

All data were presented as the mean ± SD of three inde-
pendent experiments and analyzed using GraphPad Prism 
software (version 5 for Windows, GraphPad Software). 
The significance of the differences between groups was 

analyzed by one-way analysis of variance (ANOVA) using 
SPSS software. P  <  0.05 was considered statistically 
significant.

Results

Suppressive effect of CX4945 on CRPC cell lines

To determine whether CX4945 exerted any effect on CRPC 
cell lines, different doses of CX4945 were added to 22Rv1 
and VCaP, two AR-V7-positive CRPC cell lines. In addi-
tion, different incubation times of 3, 5 and 7  days were 
used to examine the time-dependent effect. As shown in 
Fig. 1a, CX4945 reduced cell viability of 22Rv1 and VCaP 
in a dose-dependent and time-dependent manner. To define 
the mechanisms by which CX4945 repressed 22Rv1 cells, 
we analyzed the cell cycle status as well as the percentage 
of apoptotic cells by flow cytometry. As shown in Fig. 1b, 
treatment of CX4945 caused a significant G2/M cell cycle 
arrest. Apoptosis assay showed that CX4945 increased both 
early and late apoptotic populations compared with the 
control (Fig. 1c). For the observation of long-term toxicity, 
colony formation was performed with vehicle or 2.5  µM 
CX4945. As seen in Fig.  1d, CX4945 (2.5  µM) signifi-
cantly inhibited the colony formation ability of 22Rv1.

CX4945 inhibits PSA gene transcription and secretion

Prostate-specific antigen (PSA) is the most well-recognized 
biomarker and is widely used in clinics for diagnosis and 
treatment surveillance. Remarkably, elevated PSA levels 
after ADT implicate the emergence of recurrence and pro-
gression to CRPC. Although AR-V7 lacks the ligand-bind-
ing domain compared to full-length AR (AR-FL), previous 
research has shown that AR-V7 regulates the canonical AR 
target genes, including the PSA gene [20]. QPCR analy-
sis of PSA mRNA (Fig. 2a) indicated that CX4945 could 
significantly inhibit the transcription of the PSA gene in 
22Rv1. In addition, we detected the secreted PSA level in 
the conditioned culture medium of 22Rv1 cells. As shown 
in Fig. 2b, treatment with CX4945 significantly decreased 
the secreted PSA.

CX4945 downregulates AR-V7 expression and nuclear 
translocation by inhibiting NF-κB activity

Because AR-V7 plays a crucial role in CRPC cells under 
androgen depletion conditions, we conducted a series of 
experiments to assess the expression level and nuclear 
translocation of AR-V7 and AR-FL. As shown in Fig. 3a, 
CX4945 significantly downregulated the AR-V7 protein 
level both in 22Rv1 and VCaP, whereas the level of AR-FL 
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was barely affected. Consistent with the results of west-
ern blotting, qPCR analysis of AR-V7 and AR-FL mRNA 
levels in 22Rv1 showed that the transcription of AR-V7 
rather than AR-FL was significantly suppressed by CX4945 
(Fig. 3b). As transcription factors, AR-V7 and AR-FL only 
exhibit their transcription activities when located in the 
nucleus. Therefore, we examined whether CX4945 could 
influence the nuclear translocation of AR-V7 or AR-FL. 
We showed that CX4945 decreased the nuclear fraction of 
AR-V7, but not AR-FL in 22Rv1 (Fig. 3c).

Next, we sought to investigate through which pathway 
CX4945 downregulated AR-V7 expression and nuclear 
translocation. Previous studies suggested that CK2 could 
phosphorylate NF-κB p65 at ser529 specifically, and was 
closely associated with the aberrant activation of NF-κB 
in several cancers [21, 22]. The classical NF-κB pathway, 

which includes the p65/p50 heterodimer, has been demon-
strated to be involved in prostate cancer development, and 
the inhibition of NF-κB activity can restore the sensitivity 
of CRPC cells to traditional ADT therapy [23]. Therefore, 
we speculated that CX4945 may exert its inhibitory effect 
on AR-V7 through the NF-κB pathway. Figure  3d shows 
that CX4945 significantly reduced the phosphorylation of 
pNF-κB p65 at ser529 in 22Rv1. In addition, the nuclear 
translocation of p65 and p50 was inhibited by CX4945.

Inhibition of NF-κB suppresses CRPC cells by reducing 
AR-V7

To investigate whether inhibition of NF-κB could suppress 
the growth of CRPC cells, 22Rv1 cells were treated with 
selective NF-κB inhibitor QNZ. As shown in Fig. 4a, QNZ 

Fig. 1  Suppressive effect of CX4945 on CRPC cell lines. a 22Rv1 
and VCaP cells were seeded into 96-well plate, cultured with csFBS 
and then treated with different doses of CX4945 for 3, 5 and 7 days. 
b 22Rv1 cells were treated with CX4945 (0, 5 and 10 µM) for 24 h 
and then harvested for the analysis of the cell cycle as described 
in the text. c 22Rv1 cells were treated with CX4945 for 48  h and 
stained with Annexin V-FITC and PI. Apoptotic cells were counted 

as early (lower right) plus late (upper right) apoptotic cells. Data 
are shown as the mean  ±  SD of three independent experiments. d 
Approximately 500 cells per well of 22Rv1 were seeded in a six-well 
plate and incubated with CX4945 (2.5  µM) or DMSO for 2  weeks. 
Colonies were counted with more than 50 cells under microscopy. 
**P < 0.01, ***P < 0.001
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significantly reduced the cell viability of 22Rv1 in a dose-
dependent and time-dependent manner. We also meas-
ured the change of AR-FL/AR-V7 after treatment of QNZ. 
We found that inhibition of NF-κB by QNZ could reduce 
the expression of AR-V7, while little effect was found on 
AR-FL (Fig. 4b).

CX4945 resensitizes CRPC cells to anti-androgen 
therapy

As the inhibition of CK2 by CX4945 downregulated 
AR-V7 expression and nuclear translocation, we next 
investigated whether CX4945 treatment could restore the 
sensitivity of CRPC cells to conventional anti-androgen 
therapy. Bicalutamide alone had little suppressive effect 
on 22Rv1 and VCaP under androgen-depleted conditions 
with 5% csFBS (Fig. 5a, b). However, when combined with 
a sub-dose of CX4945, the viability of 22Rv1 and VCaP 
cells was significantly suppressed (Fig.  5c, d). The result 
of apoptotic assay using flow cytometry was in accord with 
the above cytotoxic experiment (Supplemental Figure S1A 
and B).

Discussion

CK2 is a highly conservative protein kinase that has a 
wide range of substrates. Many studies indicate that CK2 
is involved in various types of cellular processes in cancer, 
including the cell cycle, apoptosis, and metastasis. Several 
types of CK2 inhibitors have been improved, and one of the 
most specific inhibitors, CX4945, has recently progressed 

into Phase I and II clinical trials (ClinicalTrials.gov Identi-
fier: NCT02128282). The aberrant activity of CK2 is also 
closely associated with prostate cancer development and 
poor prognosis [16, 17, 24]. However, whether this effect of 
CK2 inhibition exists in ARV-driven CRPC cells remains 
unknown.

In the present study, we demonstrated for the first 
time that CX4945 could repress the proliferation abil-
ity of 22Rv1 and VCaP under ADT conditions. Both the 
22Rv1 and VCaP cell lines express abundant AR-V7, so 
they are ideal models to study the functions of ARVs [25]. 
CX4945 caused cell cycle arrest and induced the apopto-
sis of 22Rv1 cells. Unlike in AR-dependent prostate cancer 
cells, CX4945 did not influence the expression of AR-FL. 
Instead, CX4945 downregulated the mRNA and protein 
levels of AR-V7. As AR-V7 is predominantly located in 
the nucleus and is constitutively activated, we evaluated 
the changes in the nuclear fraction of AR-V7 after CX4945 
treatment. We showed that CX4945 attenuated the nuclear 
translocation of AR-V7, while little effect was observed on 
AR-FL. Moreover, both the transcriptional and secreted lev-
els of PSA decreased after CX4945 treatment. This further 
confirmed that CX4945 could inhibit the transcriptional 
activity of AR-V7 under ADT condition. Previous studies 
implicated that bicalutamide alone could not suppress the 
growth of CRPC cells, which are ARV positive [26, 27]. 
Considering the inhibitory effect on AR-V7 expression, we 
treated 22Rv1 and VCaP with bicalutamide plus CX4945. 
Significant inhibition of cell growth was observed. All of 
the above results suggested that CX4945 alone or com-
bined with traditional ADT may be a valuable therapeutic 
strategy against CRPC.

Fig. 2  CX4945 inhibits PSA gene transcription and secretion. a 
22Rv1 cells were treated with different concentrations of CX4945 
(0, 2.5 and 5 µM) for 24 h. The mRNA level of PSA was estimated 
by qRT-PCR. b 22Rv1 cells were treated with CX4945 (0, 2.5 and 

5 µM) for 12, 24 and 48 h. The relative concentrations were corrected 
for the cell number counted by a Beckman Z2 Coulter® Particle 
Count and Size Analyzer. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 3  CX4945 downregulates AR-V7 expression and nuclear trans-
location by inhibiting NF-κB activity. a 22Rv1 and VCaP cells were 
treated with CX4945 for 48 h. The proteins of the whole cell lysate 
were extracted and analyzed by western blotting. b 22Rv1 cells 
were treated with CX4945 for 24  h. The mRNA levels of AR-FL 

and AR-V7 were estimated by qRT-PCR. c 22Rv1 cells were treated 
with CX4945 for 48 h. The nuclear fractions of AR and AR-V7 were 
analyzed by western blotting. d 22Rv1 cells were incubated with 
CX4945 for 48 h. The whole cell lysates and nuclear proteins were 
isolated as mentioned in the text. *P < 0.05, **P < 0.01

Fig. 4  Inhibition of NF-κB suppresses CRPC cells by reducing AR-V7. a 22Rv1 cells were treated with different doses of QNZ for 3, 5 and 
7 days. b 22Rv1 cells were treated with 5 μM QNZ or DMSO for 48 h
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Multiple mechanisms have been demonstrated to be 
involved in CRPC progression and increasing attention 
has been paid to the ARVs, which are believed to be a 
driving force in CRPC development [12]. As these splice 
variants do not contain the LBD, traditional ADT that 
targeting AR LBD has little effect in CRPC patients. By 
far, the exact mechanism that contributes to ARV expres-
sion remains unknown. Sunita et  al. [28] conducted an 
integrative microarray analysis of pathways dysregu-
lated in metastatic prostate cancer. They found that the 
NF-κB (p50/p65) pathway was the most significant one. 
Other studies also implied that the aberrant activation of 
the NF-κB pathway was closely correlated with the pro-
gression to castration-resistant growth and metastasis in 
prostate cancer [29]. The inhibition of NF-κB signaling 
could suppress AR-V7 expression and restore respon-
siveness to anti-androgen treatment in CRPC cells [23]. 
In addition, previous studies implicated that CK2 could 
phosphorylate NF-κB p65 at ser529 specifically, and was 
closely associated with the aberrant activation of NF-κB 

pathway in several cancers [21, 22]. Therefore, we sup-
posed that the CK2 inhibitor CX4945 may exert its sup-
pressive effect by modulating NF-κB signaling. Consist-
ently, CX4945 treatment reduced the phosphorylation of 
p65 at ser529 and inhibited the nuclear translocation of 
p50 and p65. In addition, 22Rv1 cells treated with selec-
tive NF-κB inhibitor, QNZ, showed significant reduc-
tion in the cell viability and AR-V7 reduction similar to 
CX4945 did. These results indicated that CX4945 down-
regulated AR-V7 expression by inhibiting NF-κB activity 
(Fig. 6). Considering the small changes in AR-FL mRNA 
and protein levels, we supposed that some splice factors 
may have been downregulated by the inhibition of CK2 
through the NF-κB pathway. Meanwhile, the exact mech-
anism by which NF-κB modulates AR-V7 expression 
requires further investigation.

In spite of AR-V7, there are other AR variants, such as 
ARV567es that contribute to CRPC progression [30]. How-
ever the mechanism of the generation of these ARVs is still 
not clearly demonstrated. Therefore, whether inhibition of 

Fig. 5  CX4945 resensitizes CRPC cells to anti-androgen therapy. a, 
b 22Rv1 and VCaP cells were treated with indicated concentration of 
bicalutamide (Bic) without CX4945. c, d 22Rv1 and VCaP cells were 

treated with indicated concentration of bicalutamide (Bic) with a sub-
dose of CX4945 (3 or 5 μM). CCK8 assay was performed at 72 h to 
measure the cell viability. **P < 0.01, ***P < 0.001
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CK2 can reduce the expression of other ARVs requires fur-
ther investigation.

In summary, our data suggest that the inhibition of CK2 
by CX4945 can repress the viability of CRPC cells and 
restore their sensitivity to anti-androgen therapy by sup-
pressing AR-V7. This finding presents a potential therapy 
target for CRPC.
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