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Abstract The discovery and targeting of genes mediating
androgen-independence may lead to the development of
novel therapies that delay progression of hormone
refractory prostate cancer (HRPC). Clusterin is a stress-
associated cell survival gene that increases after andro-
gen ablation. Here, we review clusterin’s functional role
in apoptosis and the use of antisense oligonucleotides
(ASOs) against clusterin to enhance apoptosis in pros-
tate cancer models. Immunostaining of tissue micro-
arrays constructed from untreated and post-hormone
treated radical prostatectomy specimens confirm that
clusterin is highly expressed in virtually all HRPC cells,
80% of prostate cancer cells after neoadjuvant hormone
therapy, but is low or absent (<20%) in untreated
specimens. Overexpression of clusterin in LNCaP cells
confers resistance to both androgen ablation and che-
motherapy. Clusterin ASOs reduced clusterin levels in a
dose-dependent and sequence-specific manner. Adjuvant
treatment with murine clusterin ASOs after castration of
mice bearing Shionogi tumors decreased clusterin levels,
accelerated apoptotic tumor regression, and significantly
delayed the recurrence of androgen-independent tumors.
A human clusterin ASO targeting the translation initi-
ation site and incorporating MOE-gapmer backbone
(OGX-011) synergistically enhanced the cytotoxic effects
of paclitaxel in human xenografts of prostate, renal cell,
bladder, and lung cancer. Clusterin, is an anti-apoptosis
protein upregulated in an adaptive cell survival manner
by androgen ablation and chemotherapy that confers
resistance to various cell death triggers. Suppression of
clusterin levels using ASOs enhances cell death following
treatment with androgen ablation, radiation, and che-
motherapy.
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Androgen withdrawal is the only effective form of sys-
temic therapy for men with advanced prostate cancer,
producing a symptomatic and/or objective response in
80% of patients. Unfortunately, androgen-independent
(AI) progression and death occurs within a few years in
the majority of these cases [1, 2]. Two recently completed
phase III trials comparing docetaxel to mitoxantrone
report a 20% prolongation in survival, 45–50% PSA
response rates, delayed time to progression, and im-
proved pain responses in men with hormone refractory
prostate cancer (HRPC) [3, 4]. These improvements are
significant but modest, and novel therapeutic strategies
that target the molecular basis of androgen and chemo-
resistance are required. One rational treatment strategy
would incorporate agents that target stress-associated
increases in gene expression precipitated by androgen
withdrawal or chemotherapy in order to enhance treat-
ment-induced apoptosis and delay emergence of the
androgen-independent (AI) phenotype or progression of
HRPC.

Progression to androgen independence is a complex
process involving variable combinations of clonal
selection [5], adaptive upregulation of anti-apoptotic
survival genes [6, 7, 8, 9, 10], androgen receptor (AR)
transactivation in the absence of androgen from muta-
tions or increased levels of co-activators [11, 12] and
alternative growth factor pathways, including Her2/neu,
EGFR, and IGF-1 [12, 13, 14], leading to dysregulated
AR pathways [15, 16, 17]. Improved understanding of
specific mechanisms mediating AI progression and new
therapeutic strategies designed to inhibit the emergence
of this phenotype are needed before additional gains in
survival can be realized.

Resistance to various hormonal and chemotherapies
develops, in part, from alterations in the apoptotic
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machinery, due to increased activity of antiapoptotic
pathways or expression of antiapoptotic genes. Research
during the past decade has identified many gene prod-
ucts that may promote progression and resistance by
inhibiting apoptosis. Of special relevance to the devel-
opment of AI progression and HRPC are those survival
proteins upregulated after apoptotic triggers like
androgen ablation that function to inhibit cell death.
Proteins fulfilling these criteria include antiapoptotic
members of the Bcl-2 protein family, clusterin, Hsp27,
and IGFBP-2 and IGFBP-5. Bcl-2 levels increase after
androgen withdrawal and during AI progression [6, 18,
19, 20, 21, 22], and Bcl-2 antisense oligonucleotides
(ASOs) can enhance cancer cell death after treatment
with androgen withdrawal or chemotherapy [18, 23, 24].
Similar data has been published for the targeted sup-
pression of Hsp27 [25] and IGFBP-2 [10, 26] and IG-
FBP-5 [9, 26, 27]. In this review, we will summarize the
role of the apoptosis-associated protein, clusterin, in the
development of androgen- and chemoresistance, and
describe the preclinical pharmacology data and early
clinical trials of OGX-011, a second generation ASO
targeting clusterin.

Regulation of clusterin expression

Also known as testosterone-repressed prostate
message-2 (TRPM-2), apolipoprotein J, or sulfated
glycoprotein-2, clusterin is associated with a wide variety
of physiological and pathological processes, including

reproduction [28], Alzhiemer’s [29], renal diseases such
as membranous glomerulonephritis, gentamicin neph-
rotoxicity, and ureteric obstruction [30]. High levels of
clusterin are associated with numerous tumors including
prostate [31], lung [32], breast [33, 34], lymphoma [35],
and renal cell carcinoma [36]. Clusterin levels increase
dramatically during castration-induced apoptosis in rat
prostate epithelial cells [37], in AD Shionogi tumors [7,
8], and human prostate cancer CWR22 [38] and PC82
[39] xenografts. Moreover, clusterin levels increase and
decrease during each cycle of intermittent androgen
suppression in the Shionogi tumor model (Fig. 1).

In the prostate gland, clusterin mRNA was originally
cloned as TRPM-2 from regressing rat prostate where it
was subsequently shown by in situ hybridization to be
expressed in dying epithelial cells [40]. Subsequently,
however, clusterin was shown to be an apoptosis-asso-
ciated, rather than androgen-repressed, gene; clusterin
upregulation did not occur when calcium channel
blockers were used to inhibit castration-induced apop-
tosis and Shionogi tumor regression [7]. Support for
clusterin having an active role in promoting apoptosis is
largely derived implicitly from its direct association with
a great variety of dying tissues, such that measurement
of clusterin is an accepted marker of apoptotic cell death
[41, 42, 43, 44, 45, 46, 47].

Clusterin expression is transcriptionally activated by
heat shock factor (HSF)-1 [48], and hence increases
following a diverse variety of stressors, including cyto-
toxic chemotherapy [49], radiation [50], heat shock [48],
and androgen [7, 8] or estrogen [33] withdrawal in hor-
mone-dependent tumors. Criswell et al. [6] demonstrated
that P53, a tumor suppresser gene, can suppress sCLU
induction response, which goes well with the fact that
P53 is an activator of apoptosis, unlike sCLU [51]. Up-
regulation of CLU has been reported after treatment
with vitamin D analogues in various cell types in vitro,
including MCF-7 breast cancer and benign prostatic
cells [34, 52].

Clusterin as an inhibitor of apoptosis

Unraveling the function of clusterin has been an elusive
goal, as it has been ascribed many, and sometimes
contradictory, functions. Part of this ambiguity results
from existence of two functionally divergent isoforms.
The secreted glycosylated form (sCLU) is a highly con-
served disulfide-linked heterodimeric sulfated glycopro-
tein of 76–80 kDa comprised of a 40 and 60 kDa a and ß
subunits derived by translation from the first AUG co-
don of the full length CLU mRNA [53]. The other un-
glycosylated isoform is a �55 kDa protein that is
reported to be translocated from the cytoplasm to the
nucleus (nCLU) following certain cytotoxic events to
induce apoptosis. This shorter nCLU may be synthe-
sized from a second in-frame AUG codon and does not
undergo a or ß cleavage or extensive glycosylation.
nCLU interacts with Ku-70, and can act as a cell death

Fig. 1 Immunohistochemical analysis of clusterin protein expres-
sion in a tissue microarray of human prostate cancer tissues
obtained from radical prostatectomy specimens before and after
androgen withdrawal. Clusterin staining in specimens from NHT-
treated patients increased in intensity (+3–+4) in 80% of cancer
cells compared to absent (0) to low intensity staining (+1–+2) in
20% of cancer cells in non-NHT treated specimens
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signal in MCF-7 breast cancer cells transfected with
various GFP-tagged clusterin constructs [46].

Many recent studies provide strong evidence for an
anti-apoptotic function for sCLU. Because clusterin
binds to a wide variety of biological ligands [53, 54, 55],
and is regulated by transcription factor HSF1 [48], an
emerging view suggests that clusterin functions like a heat
shock protein to chaperone and stabilize conformations
of proteins at times of cell stress. Indeed, sCLU is themost
potent inhibitor of protein precipitation, and may func-
tion to help stressed cells cope with an increased load of
unfolded proteins. While accumulating data identify
mature sCLU as an inhibitor of apoptosis, precise site(s)
of action and binding proteins remain undefined.

The seemingly paradoxical roles for clusterin in
apoptosis are perhaps analogous to those ascribed to
two forms of Bcl-x that arise from alternative splicing
[56, 57, 58]. The smaller form, Bcl-xS, can act to inhibit
the protective effects of the larger form Bcl-xL as well as
Bcl-2 through an unknown mechanism. The mature
sCLU has a cytoprotective function [59, 60], while under
certain conditions proapoptotic signals may induce
intracellular forms through differential translation [46].
The various CLU isoforms may also arise from post-
translational modifications of a single mRNA transcript
[61]. Using a panel of antibodies directed against various
a- and b-chain epitopes of clusterin, Lakins et al. [62]
were able to immunologically distinguish the forms of

clusterin upregulated in dying cells from those synthe-
sized by surviving cells in regressing rat prostate. The
secreted mature and core proproteins are believed to
interact with glycoprotein 330, a cell surface receptor
[63]. Collectively, these reports suggest that the pro- and
anti-apoptotic functions of clusterin may be due to the
activity of different isoforms that arise through either
alternative splicing or post-translational modification of
the mRNA transcript.

Clusterin as a therapeutic target in prostate cancer

In prostate cancer, experimental and clinical studies
support the hypothesis that clusterin expression is asso-
ciated with AI progression and has a protective role
against apoptotic cell death. For example, the introduc-
tion of sCLU cDNA into LNCaP prostate cancer cells
increases resistance to apoptosis induced by tumor
necrosis factor (TNF) a treatment [64] and oxidative
stress [65]. Increased expression of clusterin in prostate
cancer is closely correlated with higher Gleason score [31]
and cancer prognosis [66]. Residual foci of cancer cells
from radical prostatectomy specimens treated with neo-
adjuvant androgen ablation stain strongly positive for
clusterin [67]. Clusterin staining in specimens from neo-
adjuvantly-treated patients increased in intensity (+3–
+4) in 80–90% of cancer cells compared to absent (0) to
low intensity staining (+1–+2) in 10–20% of cancer
cells in non-NHT treated specimens (Fig. 2). Clusterin
levels also increase in prostate and other cancer cells after
chemotherapy and radiation [49, 50, 68, 69, 70].

Clusterin overexpression confers
a resistant phenotype

To investigate the functional significance of clusterin
upregulation after treatments such as androgen
withdrawal or chemotherapy, androgen sensitive human

Fig 2 A Clusterin ASO treatment enhanced castration-induced
apoptosis and delayed androgen independence in the murine
Shionogi system, a model mimicking human prostate cancer
biology. Male mice bearing Shionogi tumors were castrated and
randomly selected for treatment with antisense clusterin versus
mismatch control ASO. Northern analysis (insert) shows reduced
clusterin mRNA levels from tumors harvested on day 3 after
castration plus ASO treatment. B Clusterin ASO treatment
enhanced paclitaxel-induced apoptosis and delayed the progression
of androgen independent human PC-3 prostate tumors. Mean
tumor volume in PC3 tumor-bearing mice treated with daily doses
of clusterin ASO plus paclitaxel or control ASO plus paclitaxel at
0.5 mg paclitaxel from days 10–14 and days 24–28, respectively
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prostate cancer LNCaP were stably overexpressed with
the sCLU cDNA expression vector and effects on time to
AI progression after androgen ablation and chemosensi-
tivity were evaluated. After castration in sCLU overex-
pressing LNCaP tumors, both tumor volume and serum
PSA levels increased fourfold faster compared to control
tumors [7]. Furthermore, overexpressing clusterin
LNCaP tumors were more resistant to paclitaxel than
control tumors [60]. These findings demonstrate that
clusterin is a cell survival gene upregulated by apoptotic
triggers (like androgen withdrawal, chemotherapy, radi-
ation) and confers resistance when overexpressed.

Antisense oligonucleotide strategies
to target relevant genes

Targeted therapies that have been approved for use in
the clinical setting typically involve the use of small
molecule inhibitors or antibodies. Unfortunately, many
potential therapeutic targets are not amenable to such
tactics, and therefore strategies to inhibit these targets at
the gene expression level are an attractive concept.
Antisense oligonucleotide (ASO) therapy is one such
strategy to specifically target functionally relevant genes.
ASOs are chemically modified stretches of single-strand
DNA complementary to mRNA regions of a target gene
that inhibit translation by forming RNA/DNA du-
plexes, thereby reducing mRNA and protein levels of the
target gene [71]. The specificity and efficacy of an ASO
relies on the precise targeting afforded by strand
hybridization, where only a perfect match between the
target mRNA sequence and the ASO will lead to
hybridization and inhibition of translation.

Phosphorothioate ASOs are water soluble, stable
agents resistant to nuclease digestion through substi-
tution of a non-bridging phosphoryl oxygen of DNA
with sulfur [72, 73]. ASOs targeting multiple different
oncogenes have been reported to specifically inhibit
the expression of these genes and delay progression in
several tumor types, and clinical trials are underway
for several of these compounds. In clinical trials,
continuous or frequent intravenous infusions are re-
quired to administer first generation phosphorothioate
ASOs because of their short tissue lives, which re-
mains a major technical limitation. Therefore, effort
has been made to improve the stability and efficacy
of ASO by modifications of the phophodiester-linkage,
the heterocycle, or the sugar. One such alteration
is the 2¢-O-(2-methoxy) ethyl (2¢-MOE) modification to
the 2¢-position of the carbohydrate moiety. 2¢MOE
ASOs form duplexes with RNA with a significantly
higher affinity relative to unmodified phosphorothioate
ASOs. This increased affinity has been shown to result
in improved antisense potency in vitro and in vivo. In
addition, 2¢MOE ASOs display significantly improved
resistance against nuclease-mediated metabolism rela-
tive to first generation phosphorothioate ASOs. This
property results in an improved tissue half-life in vivo,
which produces a longer duration of action and allows
for a more relaxed dosing regimen [74]. Finally,
2¢MOE ASOs have been reported to display a more
attractive safety profile relative to unmodified phosp-
horothioate ASOs [75]. Taken together, 2¢MOE ASOs
have the potential to be given as short infusions on a
weekly schedule, yet have the same or greater activity
as prolonged infusions of unmodified phosphorothio-
ate ASO.

Table 1 Overview of preclinical pharmacology studies of OGX-011. IP intraperitoneal, SC subcutaneous, IV intravenous

Type of study Species Indication/cell line Route of
implantation

Method of
administration

Dose/schedule
chemotherapy
regime

References

Primary pharmacodynamics
Antitumor activity Mouse Prostate/ In vivo IP

LNCaP Paclitaxel [7, 76]
PC-3 Paclitaxel, mitoxantrone [74, 76, 77]
PC-3 Radiation [50, 79]
Shionogi Pac, hormone therapy [7, 49]

Antitumor activity Mouse NSCLC/A549 In vivo IP Paclitaxel [70]
Antitumor activity Mouse Renal/CaKi-2 In vivo IP Paclitaxel [36, 69]
Antitumor activity Mouse Bladder/KoTCC-1 In vivo IP Gemcitabine, cisplatin,

methotrexate, adrioycin
[68]

Antitumor activity Mouse Breast/ IP Paclitaxel
MDA231 [33, 34]
MCF-7 M.E. Gleave

unpublished data
Antitumor activity Mouse Ovarian/Ovcar-3 IP Paclitaxel M.E. Gleave

unpublished data
Antitumor activity Mouse Melanoma/

518A2 IP Cisplatin Hoeffler et al. [81]
607B IP Cisplatin M.E. Gleave

unpublished data
Safety pharmacology

Mouse Clusterin knockout Null phenotype
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Using clusterin ASOs to enhance hormone sensitivity

Targeting cell survival genes upregulated by androgen
withdrawal may enhance castration-induced apoptosis
and thereby prolong time to overt recurrence. Murine
and human ASOs corresponding to the clusterin trans-
lation initiation site reduced clusterin levels in a dose-
dependent and sequence-specific manner [7, 76]. AD
Shionogi tumors regressed faster and complete regres-
sion occurred earlier after castration in mice treated with
clusterin ASO compared to controls. Clusterin ASO
treatment significantly delayed the recurrence of AI tu-
mors; tumor volume in the mismatch-treated control
group was six times greater than the ASO-treated group
by day 50 post-castration [8].

Enhancing chemo-sensitivity using clusterin ASOs

Clusterin ASOs also increased the cytotoxic effects of
mitoxanthrone and paclitaxel, reducing the IC50 of PC3
and Shionogi cells by 75%–90% [49, 76]. The induction
of apoptosis by 10 nM taxol, as demonstrated by DNA
laddering and PARP cleavage, could only be seen when
used with clusterin ASOs. Although clusterin ASO’s had
no effect on the growth of established AI Shionogi or
PC3 tumors, clusterin ASOs synergistically enhanced
paclitaxel-induced tumor regression in both the Shion-
ogi and human PC3 models [49, 76].

Clusterin may also play a role in mediating chemo-
resistance in renal cell carcinoma and other tumors. We
recently reported that inhibition of clusterin levels
chemosensitized various cancers including renal cell
carcinoma [69], urothelial [68], lung [70], and osteosar-
coma [77]. For example, pretreatment of Caki-2 cells
with clusterin ASOs decreased clusterin levels and sig-
nificantly enhanced chemosensitivity to paclitaxel in vi-
tro. In vivo administration of clusterin ASO
synergistically enhanced paclitaxel-induced Caki-2 tu-
mor regression and delayed tumor progression by 50%.
Similarly, clusterin siRNA enhanced the effects of
cytotoxic chemotherapy in human prostate PC3 and
osteosarcoma cell lines [77] (Table 1).

Enhancing radiation-sensitivity using clusterin ASOs

Little is known about the molecular mechanisms that
contribute to the intrinsic radioresistance characteristic
of prostate cancer. Bcl-2 overexpressing LNCaP cells
appear to be more resistant to radiation-induced apop-
tosis and tumorigenesis compared to parental cells (78).
Similarly, clusterin-overexpressing LNCaP cells were
less sensitive to irradiation with significantly lower cell-
death rates (23% after 8 Gy) compared to parental
LNCaP cells (50% after 8 Gy) 3 days after irradiation
[50, 79]. Clusterin expression in PC-3 cells after radiation
increased in a dose-dependent manner in vitro by 70%

up to 12 Gy and in vivo by >80%. Inhibition of clus-
terin expression in PC-3 cells using clusterin ASOs be-
fore radiation significantly decreased PC-3 cell growth
rate and plating efficiency, and enhanced radiation-in-
duced apoptosis. In vivo administration of clusterin
ASO before and after radiation significantly reduced
PC-3 tumor volume by 50% at 9 weeks as compared to
mismatch control oligonucleotides. These findings sup-
port the hypothesis that clusterin acts as a cell survival
protein that mediates radioresistance through the inhi-
bition of apoptosis.

Human trials with OGX-011

To identify the most potent ASO sequence to move into
human trials, the clusterin gene was walked with a series
of 80 ASO sequences. This gene walk identified a 21mer
targeting the AUG translational initiation site, the se-
quence used in all preclinical human xenografts, as the
most potent ASO sequence. This 21mer ASO was
incorporated into MOE-gapmer backbone and synthe-
sized for human trials as OGX-011 under a codevelop-
ment relationship between OncoGenex technologies
(Vancouver, BC, Canada) and Isis Pharmaceuticals
(Carlsbad, Calif, USA).

A phase I trial, NCIC IND.153, was recently com-
pleted with a 2¢MOE ASO targeted to clusterin mRNA
using OGX-011. This trial had a unique design in that
patients with localized prostate cancer were adminis-
tered the 2¢MOE ASO prior to radical prostatectomy,
and thus a pharmacodynamic endpoint (i.e. inhibition
of clusterin expression) could be evaluated for each
patient and dose level [80]. The OGX-011 was given as
a 2-hour intravenous infusion over 2 h on days 1, 3, 5,
8, 15, 22 and 29 with radical prostatectomy carried out
within 7 days of the last dose. Relevant concentrations
of OGX-011 could be achieved that inhibited expres-
sion of clusterin in human cancer tissue in a dose
dependent fashion, a notable first in the literature.
Concentrations of OGX-011 associated with preclinical
effect could be achieved in tumor tissue and a biolog-
ically effective dose of 640 mg based on clusterin target
suppression by up to 90% was identified. Furthermore,
a well tolerated phase II dose was established based on
biologic effectiveness, rather than the traditional phase
I endpoint of maximum tolerated dose which may not
be relevant for targeted therapeutics. Side effects in-
cluded fever and chills in the first week of infusions,
and transient myelosuppression and elevations of liver
enzyme tests that normalized despite continued ther-
apy. This phase I trial demonstrates that OGX-011 is
well tolerated and inhibits clusterin expression in
prostate cancers. The phase II dose for OGX-011 is
640 mg based on pharmacokinetic and target regula-
tion parameters. Phase II studies of OGX-011 in
combination with hormone and chemotherapy are
planned in patients with prostate, breast and lung
cancers (Table 2).
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Summary

The data reviewed above identify clusterin as an anti-
apoptosis protein upregulated in an adaptive cell sur-
vival manner by androgen ablation and chemotherapy
that confers resistance to various cell death triggers,
including hormone-, radiation-, and chemotherapy.
Inhibition of clusterin upregulation using clusterin ASOs
can enhance cell death following treatment with andro-
gen ablation and chemotherapy. Clinical trials using
ASOs confirm potent suppression of clusterin levels and
phase II studies of OGX-011 in combination with do-
cetaxel will begin in early 2005.
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