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Abstract

In the past, scientific communities obtained the dose—response only partially right. They correctly described responses at
high heavy metal (HM) doses, but ignored and mischaracterized the crucial response at low HM doses. Lower dosages of
non-essential heavy metals (HMs) in plants induced plant hormetic responses by triggering innocuous, beneficial, and growth-
promoting morpho-physio-biochemical reactions. Instead of creating toxic symptoms in plants, these low amounts of non-
essential HM or metalloid dosages improve or boost plants’ metabolism at morphological, physiological, and biochemical
levels. This review critically examines distinct non-essential HMs or metalloids-mediated hormetic effects inducing plant
morpho-physio-biochemical response characteristics (end points) at specified exposure duration in diverse plant species.
Additionally, the review highlights the details of hormesis inside the plant system along with non-essential heavy metal or
metalloids-induced morphological, physiological, and biochemical hormetic responses that were clearly risk free, safe, and
non-hazardous to plants’ bodies. These responses further ensured the plant’s fitness and long-term survival by strengthening
the plant’s immunity against subsequent future interactions with toxicants. The review study also looks over the potential
working possible mechanisms behind non-essential HMs or metalloids-induced phyto-hormesis phenomena, such as acti-
vation of a variety of plant tolerance mechanisms like phytohormone defence pathways, antioxidant system, stress-related
genes, and reactive oxygen species (ROS) homeostasis. All these all mechanisms and their cross talk might contribute to
plant growth and developmental processes under modest HMs or metalloids stress.
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Introduction

In the past, hormesis was one area where a toxicological
community had a partial grasp of the dose-response rela-
tionship (Calabrese 2005a, b). The reason this occurred was
because, in toxicology, the old way of thinking was based on
a sigmoidal or S-shaped dose-response (Calabrese 2009).
This means that as doses went down, responses would go
back to “noise” levels and be similar to control values (Cala-
brese 2005a, b, 2009). Consequently, this interpretation led
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to the idea that there might be thresholds at low dosages,
below which there would be no substantial effect (Calabrese
2005a, 2009). On the other hand, this perspective failed to
take into account the hormetic dosage response, which can
exhibit either a J-shaped curve or an inverted U-shaped
curve, showing that beneficial effects can be achieved at
low doses (Calabrese and Baldwin 1999). Therefore, such
kind of historical perspective leads to the right and wrong
interpretation of dose—response relationships under high
and lower doses of various toxic substances (Calabrese
2005a, 2009). Consequences of" this interpretation further
lead to the misconception of the hormesis phenomenon,
research, and regulatory practices that mainly concentrated
primarily on high doses and neglecting the benefits of lower
doses (Calabrese 2005a, b, 2009). This had repercussions
for the establishment of standards for the health of con-
sumers, workers, and the environment, as well as for the
administration of pharmacological substances (Calabrese
2005a, b, 2009). The significance of the statement about
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the scientific community’s partial accuracy in understanding
the dose—-response relationship relies on the realization that
traditional models, effective in high-dose scenarios, were
useful for certain high-dose applications, but failed to recog-
nize the complexity and potentially advantageous effects at
lower doses (Calabrese 2005a, b, 2008, 2009). This finding
has far-reaching consequences for the evaluation of hazards
and the comprehension of the complete range of impacts that
a toxic substance can have on biological systems (Calabrese
2003, 2005a, b; Calabrese and Baldwin 1999).

Due to this reason, non-essential elements for plant bio-
logical activities have long been recognized as extremely
toxic and potentially harmful to plants, even in small
amounts (Wu et al. 2010; Nagajyoti et al. 2010). However,
hormesis occurrences were so frequent in stress-related
studies that these have caused a quick comeback again in
the planning and designing of stress-related research ini-
tiatives (Sun et al. 2020). Additionally, a rising number of
recent investigatory studies have revealed that the response
of plants to non-essential HMs or metalloids depends upon
how much concentration of metal ion that plant is exposed
to (Muszyniska and Labudda 2019). For many plant spe-
cies, only very high concentrations of HMs or metalloids
hinder plant development and cause damage, while at lower
concentrations HMs or metalloids exposure does not harm
plants and may even cause them to perform better by actu-
ally improving the plant functions (Arif et al. 2016). This
phenomenon is called hormesis in which an organism’s body
reacts in two different ways to the same chemical, stressor, or
drug (Calabrese and Baldwin 2002; Kitchin 2002; Mattson
2008; Kendig et al. 2010). The basic idea behind hormesis
is that the reaction to a stimulus is non-linear and takes the
form of a U-or J-shaped curve (Kitchin 2002). This means
that the dose-response relationship is advantageous or
stimulatory at low concentration levels, but has the oppo-
site effect at larger or higher concentration levels (Mattson
2008; Kendig et al. 2010). Additionally, “Phytohormesis” is
a plant-specific hormetic reactional response (Godinez-Men-
doza et al. 2023; Shahid et al. 2020). This is the phenom-
enon in which plants respond positively to small amounts
of chemicals or stressors that would normally be harmful
in larger amounts (Godinez-Mendoza et al. 2023; Erofeeva
2022a, b, c; Shahid et al. 2020). This phenomenon holds
true for a variety of plant species where the low concentra-
tion of HMs enhanced various growth metrics (root/shoot
length, total biomass, fresh/dry weight, leaf area, etc.) (Liu
et al. 2023; Oliverira et al. 2021; Malkowski et al. 2020; Li
et al. 2019; Zhang et al. 2018; Miranda Pazcel et al. 2018),
photosynthetic parameters [pigments (chlorophyll a, b, a+b,
carotenoid) content, transpiration rate, stomatal conduct-
ance, photosynthetic rate, etc.] (Oliverira et al. 2021; Mal-
kowski et al. 2020; Miranda Pazcel et al. 2018), phenolic
compounds (Zhang et al. 2024; Malkowski et al. 2020), and
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various antioxidants (Yuebing et al. 2020). In addition to
this, low concentrations of a variety of stressors (natural
or anthropogenic) (Fig. 1) induce a favourable alteration in
morphological, physiological, and biochemical parameters
of several organisms (bacteria, algae, fungus, higher plants,
or animals), which finally leads to generating benefiting
responses in them (Camilo dos Santos et al. 2022; Agathok-
leous et al. 2019a, b, c; Pradhan et al. 2017; Calabrese and
Baldwin 2000).

As aresult of these factors, despite the fact that in the past
certain non-essential HMs were considered to be harmful,
they are now beginning to be recognized as beneficial and
are now being considered within the group of beneficial ele-
ments (Carvalho et al. 2020). Not all plants need beneficial
elements, but they can promote plant growth, and some plant
taxa often need them (Carvalho et al. 2020). Earlier, the fol-
lowing elements were put into the categories of beneficial
elements: aluminum (Al), cobalt (Co), cerium (Ce), iodine
(I), lanthanum (La), selenium (Se), sodium (Na), silicon
(Si), vanadium (V), and titanium (Ti), (Pilon-Smits et al.
2009). But presently, the following elements have been also
identified as beneficial in specified lower dosages: arsenic
(As), lead (Pb), mercury (Hg), cadmium (Cd), chromium
(Cr), etc., by various researchers and scientists (Tables 1, 2,
3,4,5,6,7, 8). These heavy metals or metalloids are now
relatively new to the list of beneficial elements. According to
the various sources of databases (Scopus, Web of Sciences,
Publons, Google Scholar, etc.), most of the research on vari-
ous heavy metals or metalloids with a hormetic effect has
been done and published in recent years with cadmium (Cd)
(being the most studied), lead (Pb), zinc (Zn), chromium
(Cr), arsenic (As), mercury (Hg), copper (Cu), manganese
(Mn), platinum (Pt), tungstate (W), nickel (Ni), selenium
(Se), lanthanum (La), tungstate (W), cerium (Ce), vanadium
(V), samarium (Sm), etc. In fact, low to moderate amounts
of heavy metal (Pb, Cd, Cr, Hg, Pt, W, Ni, Se, La, Ce, V,
Sm, etc.) pollution is more likely to happen in nature than
unrealistically high to excessively high amounts, which are
often impossible. So, it is a significantly important research
to know how plants react morphologically, physiologically,
and biochemically to low levels of heavy metals (Pd, Cd, Cr,
etc.), how these plants are able to maintain or even increase
their performance under heavy metal exposure, and how the
hormetic growth stimulatory mechanism actually works.

Hormesis in Plants: Occurrence

The hormesis phenomenon has been increasingly proven
and observed across a wide range of biological organiza-
tion levels (i.e. cell, tissue, organism, or species, popula-
tion and communities) in various categories of organisms
(like bacteria, animals, and plants) (Erofeeva 2022b). This
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Fig. 1 General illustration of
phytohormesis occurrences
through various stressors
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phenomenon has also been reported with various kinds of
toxicants (non-essential heavy metals, pesticides, herbicides,
fungicides, chemical mixtures, advanced new emerging
environmental pollutants like micro/nanomaterials, etc.) and
with various living organisms (bacteria, fungus, animals,
and plants) (Camilo dos Santos et al. 2022; Agathokleous
et al. 2019a, b, c; Pradhan et al. 2017; Calabrese 2004; Cala-
brese and Baldwin 2000).

Inside plants, the hormesis phenomenon is found in diverse
groups ranging from lower plants algae to higher herbaceous/
woody plants angiosperm and also has been found in all phases
of plant growth ranging from seed, seedling, vegetative, and
flowering to ripening plants (Erofeeva 2021, 2022b). Moreo-
ver, hormesis inside the plant system is caused by a variety of
low doses of stressors that could be of natural or anthropogenic
origin (also shown in Fig. 1), including newly emerging micro/
nano stressors such as nanoparticles, nanotubes, and various
other chemical mixtures. Phyto-hormesis occurs through
natural stressors including both abiotic (soil temperature/

> Elicitors
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moisture, air temperature, mineral nutrients, light intensity,
ionizing/non-ionizing radiation, etc.) and biotic stressors
(allelochemicals, secondary metabolites, elicitor, etc.) (Ero-
feeva 2022c). Also, phyto-hormesis occursg through anthro-
pogenic stressors including heavy metals, rare earth metals,
herbicides, pesticides, insecticides, fungicides, silver iodine,
organic acids, hydrocarbons, formaldehyde, engine fuels, anti-
biotics, endocrine-disturbing chemicals, nanomaterials, micro/
nano-plastic, smoke/smoke water, chemical mixtures, etc. (also
shown in Fig. 1) (Erofeeva 2022c). All the aforementioned
variables (natural and anthropogenic) affect plant metabolism
in unique ways. However, they all have the ability to induce
phyto-hormesis in some way or other.

@ Springer



Journal of Plant Growth Regulation

(8100)
"€ 10 [99ZJ BPUBIIA

(8107) 'Te 2 Sueyz

(8107) "I® 10 YAzoremomId

(6107) weyney) pue zeeN

(6100) T8 I'T

(0T0T) 'T& 19 DISMONRIN

(0202) T8 19 DISMONRIN

(1707) 'Te 19 BIRAIIQ

(1202) T¢ 10 BILALIO

[108

juejnyjod-qq ur umoid

] DINUIULSIIED ]

JO SSBWOIq [BLIOE Ul
asearour JueoyuSig

[011u09 03 paredwod se
JyS1om Ysaif Jo0ys pue
y13uQ[ 1001 pasueyuy
Jy3rom AIp 100YS
PUE JOOI SOSBAIOUT
qdINW ST 9[rym
ISUQ[ JOOI Ul ASBAIOUL
oy} sesned AW S°Q
[0TIU0D pajeanun
01 uostredwod ur eare
pue jySom AIp Je|
9y3rom AI1p J00ys IO
j001 ‘YISu9] Jooys
J0 1001 9} UT ASBAIOU]
suor aures Kue Jno
-m qd, 8y Sw 008
s pojean syuerd o)
paredwod se ‘A[oAn
-o0adsar ‘yy3rom ysai
pue jy3roy juerd ur
9SBAIOUT %] PUB %¢€T
suorn
-e3U0[9 JOOYS UI0D Y}
ur 9seaIoul JueoyIusig
uono3s 9[ndoa[od uI0d
Ur 9SBaI0Ul p[ojom) Y
[onuod
9 03 paredwoo se
%199 01 dn (p3ud]
JO0I 9} UT JUSWIOU]
[OTUO0D pIjeaIIun Y}
0} uostredwod ur eare
Jeo[ Ul 9SBaIOUl 9%/ +¢

(wd)s pue
SOARJ[) SSBWOIQ [RLIY

MA
jooys pue YISua[ 100y

JyStom AIp Jooys
pue joo1 ‘y)3ud J001

BOIR pUE
JySrom AIp Jes[ ‘yIrom
KIp 1004s 10 001

‘q3Suaf J00YS IO 100y

yS1oy
pue 1yS1em ysaig jue[q

suoneSuo[a 100ys UI0)

uone3uoe Jooys

3u9f J00y

BaIe Jea|

palsaATey uay ‘ur

-lwoo[q [[1 [ros juen|

-Tod q4 ur umoi3 Ajuo
SeM T DINUIUIS2IIS]

papraoxd jou eleq

(shep 9g) syjoom §

skep 09

skep 06

skep

Uvc

sypuowr 9

syuowr 9

Bale I9)JoWs

Surpokoar A19)7eq WOIJ
[ros jueinyiod q4 pasn

winjjadadsppuLiaop

-0YLL] pUR S2P10]]oULD

~112400N Y Y)IAPIIUSU
-3neorqqq 3y Sw 001

INW [ pue ¢°0

133 Sw OGT pue ¢T[

Suol L&) pue,eN
9%ST°0 YIM uoneuiq
-wod ut qd | _8Y Sur 008

ad N1 §

ad M 0001

qd Jo
133 Sw 76T pue 96

qd Jo |_8 Sw 9¢g

qd

qd

qad

qad

qd

qd

qad

qd

qad

(oedoe
-I0ISY) PInuiuis21a30],

(oeooROISSRIY)
puvypyy sisdopiqniy

(9eaoeqey)
pLDLUNAST]KYIUY

(ovoeoISseag)vaoun/
DoISSDAG

(ordoe)
-UBIWIY) DS]DS DPIDNG

(evaor0y) sdvw vaz

(ewaoroq) sdvw vaz

(Seaoeqey)
SNIDAINISNAADI0YOUOT

(9eaoeqe)
SMIDLINISNAIDIOYIUOT

SOOURIRYY

asuodsar A1oje[numg

parenyead jutod pug

wm amsodxyg

S9SOp SISQWIOH  (S]NH) [e1ow AABSH

(Aqruurey

0} 3uo[aq) saroads jue[d ‘ou 'S

[e1owr AAeaY JO SISOp MO] Jopun sa10ads sjuefd snorrea jo sasuodsai [eordojoydiow onoulIoy | 3jqel

pringer

AQs



Journal of Plant Growth Regulation

(T200) Te W EN

(6007) Te 3o Suey,

(0107) T8 10 peseid

(¥107) eAS9J01g
(S100)

‘[€ 30 OTUOJUY-9qRUIog

(0102) "Te 10 Suepm

Apanoadsar ‘o461
pue ‘L1 ‘¢ Aq Sur[poos
AINUI pue 001 J00Ys
Ay} Jo 1yS1om Ysalj pue
BOIE JEO[ UT 9SBaIOUT
ue sem Y} ‘(pD
1=33 Sw () [onUOd
9y} 03 uostredwod uy
[onuod
o) 03 paredwoo se
1m0I3 1001 %8°8¢ pue
‘UImoI3 J00Ys %€ [
paanput-p) WM
pue 1moi3 1001 %9°¢ct
‘UImoI3 100Ys %G 0f
pasnput uz A 90¢
‘UImoI3 1001 %7 ¢f
‘UIMoI3 100YS %[ L]
paonput qd M 8¢
sordures syuerd
pajeanun o) paredwod
se sjue[d peyean-qq
pue -1D yjoq ut saroads
jurw Jo ySrom Kip
JOOI ‘SSBWOIq YSAIJ Ul
JUSWAOUBYUD JUBOYTUSIS

[onu09 03 paredwod

se jue[d 1By A\ U}

Jo 3Su9[ J00ys pue

JOOI [10q paje[nuins

) 13 L01XS0°0

searoyMm [3Sua[ J00I Ul

9SBAIOUIL ) paje[nwins

qd;- 138 91°0 ‘W3ud]

JOOUS UT asearout
ad,_ 18910 ‘80°0 ‘400

SSBWIOIQ UT 9SBIOU]
sjuerd pajeanun
0} paredwoo se

Jy31oy juerd ur asearouy

JySom
USQIJ puE BaIe Jeo]

y)MoI3 J00ys pue Jooy

JySrom
KIp 1001 ‘sseworq Yysai

)3UI[ JOOyS pue 100y

sseworg

yStey Jueld

skep 1

skep 81

skep z01[

skep §

ske 0¢

skep 0z

PO -3y Sw e

pD M 7 pue
uz AN 90¢ ‘qd N 8%

1—3 Sw (9 pue O¢

1

3 01X S0°0 pueqd
1~ 1391°0°80°0 ‘Y00
qQdINW (¢ pue
DANW QT

38w 06T

PO

PO ‘UZ ‘ad

1D pue qd

(oeooeOIsselq) (,,NIXNOK,,
IBAI[ND) DIIDAI]O DIISSDLE

(ora0R0IS
-serq) youelq vipmound

siqpay

(oeooR
-twe]) pidadidvyuapy

n) pue qq (9I0ROJ) WNANSILWNINLL],

1) pue qd

ad

(oeooRIq

-toydng) svo.und vydojvp

(evaoeqR) PgDfDIdIA

cl

4!

€l

1!

1

01

SOOURIRYNY

asuodsar L1ojenumg

parenyead jutod pug

qwmn amsodxyg

S9SOp SISQWIOH  (S]NH) [81ew AABSH

(AJruuey

0} 3uo[aq) sarads jue[d ‘ou 'S

(ponunuoo) | sjqey

pringer

As



Journal of Plant Growth Regulation

(6007) T® 10 seA[eduoD
(6007) Te 12 saaTeduOD

(0100) T8 10 nqIqry

(1102) 'Te 19 1noyz

(2100) T8 10 uery
(e€107) Te 10 NI

(S107) Te @ NI

(S100) e W 1T

(8100) Te 1@ npm

(8102) "Te 30 duuain

amsodxa pD AN 00T
pue AN 001 Woq
J& paseaIoul JyJrom
KIp 100Us BORIRIA!
TeAn)no ojejod oy
searoym ‘PO JAM 001
Je pasealour Jy3rom
KIp J00yS X1IISY
Teanno ojejod ayJ,
JyIrom
KIp 1001 UI 9SBAIOUT
SSeWOIq J00yS pue
1001 Ut aseaIout WIS

[onuod
a3 0) paredwod se
jyS1oy juerd pue
‘ssewolq juerd 9oor 10
soAed] KIp Ul uore[NUWNG
syueld pajeanun
0} paredwod se Y)Su9[
JOOI Ul JUSWAdUBYUH
yIrom AIp
JOOUS 1001 UI 9SBaIOU]
y13u9y Jo01
ur 9seaI0ul JUBOYIuSIS
sjuerd pajeanun
0) paredwod se JyIrom
KIp pue (%8°C1 pue
%6'11) W3toy yuerd
Ul 9SBAIOUT JUBDYIUSIS
[onuod
Ay 03 paredwod se
saroads juerd ay) [e
Jo ssewolq Jooys ur
aseaour JuedyrudIs

[onuod 0y pared
-WIO0D S JUSWOUBYUD
SSBUWOIq J00YS -J00Y

Jy3rom AIp Jooys
JyStom AIp j00y

(ssewo1q jooys
pue j00y) ssewoiq jue[d

STy
jueld pue ‘ssewroiq
juerd 3001 10 SoARY[ A1

uonesuo? Jooy
Jy3rom A1q

ISu9[ Jo0y

JySrom
K1p pue Y31y jue[q

SSBWOIq J00YS

SSBUWOIq J00YS—]00Y

skep 7z
skep 7z

skep G

skep ¢

(shep $1) syoom ¢
skep 06

skep 8¢

skep 87

s&ep 09

skep 8¢

PO
AN 00T PUE pD AN 001

WM 001

PO, 13w |

- 18wg

— TN gz pue g

1= Sw O

(13w g pue g0

18w g pue g

-8y 3wg

I uRS

PO

PO

PO

PO

PO

PO

PO

PO

PO

PO

(9eoorUR[OS)

BORORJA] PUR XLID)SY ‘AD
T WNS042GqNIUUNUD]OS

(9B20RUR[0S) BORORIA
"AD ] WNSOLIGNIUNUD]OS

(9e20R0{) YyseN
(*1) Sap101UD2IZDI42A1IIA

(eeooerjojride))
‘quny [, poruodpl 122107

(eeooerioyride)))
‘quny [, poruodpl p1221uoT

(eeooerjojride))
‘quny [, voruodpl 12210y

(eeooeriojde))
‘quny [, voruodpl D120y

(eeooerioyride)))
‘quny ], poruodpl p12o1uoT

(evooryURIRWY )PAIUISID
DIS0]2)) ‘DIDISILD DISO]2))
pue (aBadeATRIN) PIjOf
-1quIoYIDpIS “Dijofipun;
-0UDAIDIA ‘DASLIDDAID I
(ord0ISselg) (2oun.dy]
‘SPOUUWISSTDINT ) PLUSY
§7 Uva T sndpu pI1SSvLg

ST

e

€

T

‘0T

61

‘81

L1

91

SOOURIRYNY

asuodsar L1ojenumg

parenyead jutod pug

qwmn amsodxyg

S9SOp SISQWIOH  (S]NH) [81ew AABSH

(AJruuey

0} 3uo[aq) sarads jue[d ‘ou 'S

(ponunuoo) | sjqey

pringer

AQs



Journal of Plant Growth Regulation

(€100) Te 10 rewed

(€107) Te 1 Yrewed

(€£107) Te ¥ yrewed

(S100) 'Te 10 WI@PN

(LO0D) T8 12 WeS

(£007) ‘T8 12 suasooy

(¥007) T8 10 Bs0Y ©[ 9p

(L002) Te @ yes

(8002) T 12 y1es

[onuo0d 0) paredwod
se y)Suo[ 1001 d)e[NWNS
Jouuew juspuadop
-UOTJRIUAOUOD B Ul
13uQ[ J00I Ae[NUNS
Jouuew Jud
-puadop-uonenuadu0d
e ur y)Sua[ 1001 |
-nwins y ¢ pue ‘gl
‘g ‘¢ 103 syuAWIRAL 1D
[01u095 03 uostredwod
Se I AW [ 18 9seaIoul
wNWIxew yPIm JyIrom
KIp 100ys 1001 pue
Sa1J JOOUS UI 9SBaIOU]

amsodxa

(A) sV NN 0 1opun

sseworq juerd ur juowt

-90UBYUD %()€ pue

amsodxa (T]) pD NV 1

Jopun ssewoiq juerd
Ur JUSWOdURYUD 9%G7

[onu0d 03 uostredwod
ur ssewolq jueld [ej0)
ur ostI %G/ ‘oImsodxo
PD Jo skep ¢ 1opun
pue ssewolq jued [ej0)
ur ostI 9,/ ¢ ‘oImsodxo
PO Jo skep 1 1opun
sjueld pejeanun
0} paredwod se juow
-Q0UBYUD SSBW J00I 9%/ 9

[01u0d 0)
30adsar yjim ssewoiq
juerd ur JuowaoueyuUy

[onuod
oy} 03 paredwoo se
J00US JO SSEWwoIq
AIp Ul S9SBAIOUT %8¢
puE JOOI JO SSeWoIq
AIp ur soseaIoul %87

qI3uQ[ J00y

3uQ[ Jooy

y13ua] J00y

jooys
pue 1001 Jo JyS1om
KIp pue ysa1j Jooys

(sseworq
[Sa1J) ssewolq juerd

ssewolq jueld [ejoJ,

JyStom AIp j00y

(sseworq
(saIj) ssewolq jue[q

(3ooys
pue jooI) ssewolq A1

skep ¢

Kep |

qyTeroe

(sy00m ¢) skep 17

Kep |

SKep ¢ pue p|

skep G

skep

skep 1

AN STI

WM 00T
‘00T ‘0S ‘ST ‘S'TT “ST°9

M 00T

‘001 “0S ‘ST ‘ST ST9

INW [ pue ¢°(

(A sV

AN 0T pue (1) pD AT |

TN ¢

- 13wz

W10

AN 0T

D

D

D

D

SV Pue pp

PO

PO

PO

PO

(se0rr) 1 pdod Wiy

(evooeI[IY) 1 pdad wniyy

(se0rrY) 1 pd2d wnl)y

(oeooe
-UR[0S) WNISIUWNUD]OS

(oro0R1Y)
v21ysidjodpapoads

(oro0ROI1S

-se1q) suaosapniavo1dsopy |

(ordoR)
-UBIRWY) 1]DY D]OS|DS

(oedd
eIy )v21y48]0dp]apoands

(eraovoIsseaq)vaoun/
Do1SSDAG

ve

€e

e

e

0¢

‘6C

‘8¢

LT

9¢

SOOURIRYNY

asuodsar L1ojenumg

parenyead jutod pug

qwmn amsodxyg

S9SOp SISQWIOH  (S]NH) [81ew AABSH

(AJruuey

0} 3uo[aq) sarads jue[d ‘ou 'S

(ponunuoo) | sjqey

pringer

As



Journal of Plant Growth Regulation

[onuo0d 0y paredwoo se

(1007) ‘Te 12 NA\  S[[D JO YIMOIS pasearou]

(€007) Te 30 SuednQ
(9002) Te 0 Suaz
(6002) "Te 3 oummby,p

(Q€102) TR NI

(S102) T8 19 BIPATO 9P

9100) "Te 30 NIWYdS

(6100)
Z00ZY PUE ‘POOMEB(]

(8107) 'Te 19 esuoImen

(L00T) 'Te 19 onse)

(2100 T80 uaYD

(€100) T 10 yrewed

[onuod 0y paredwod
S 1MO0I3 [[90 PaseaIdu]

JyS1oy jueyd pasearou]
13UQ[ J00I paseaIdu]

[onu0d 03 paredwos

SE 1001 JO JyS1om ysoly
pue [ISus[ pasearou|

qrdures syuerd

pareanun o) paredwod
se )Suo[ 1001 Ut 9sry

[onuod
03 paredwoo se onjer
JOOYS—J00I puE Ssew

-o1q Jued ur asearouy
juerd
pro skep (g Jo 1ySrom
K1p pue ysaij ‘yqr3uo|

J00YS 10 J00I ) UT STy

syuerd

[onuod 0y pareduwoos se
y3SuQ[ 1001 %G°¢ pue
BaIR JBI 9% ¢ ‘(uerd

oYM %7 +3001
%Yt +9N2801 %6)
Jy3rom Aip ‘(uerd
aloym %691 +
S)001 % + 9339501
%S'CT) WSToM Ysaly
pasearour p) AN G
[onuod 0y uosLredwod
ur JySrom ysaij pue
13U Joo1 ‘aFejuaorad
UOTRUTULIOS UT 9SBAIOU]

[o1uo0d 0)
uostredwod ur JyIrom
AIp ur uonenuims %06

34015 1001 oY) UI
JUSWAOUBYUD JUBOYTUSIS

moIs 9D
yImoiI3 [[D
yStey Jueld
I3uQ[ Jooy
1001 JOo

JyS1om ysa1y pue ISua

y13uo] Jo0y

sseworq juerd [e10],

JySrom AIp pue ysaiy
‘qISu9[ J00Ys pue 100y

BAIR JRo[ pue ‘YISuQ[
3001 “ySrom AIp I0 Ysar]

JySrom
ysa1j pue y)3uQ[ 1001
‘a3ejuadiad uorjeUTIIIAN

yStom A1q

IMOI3 Jo0y

skep z¢

skep O¢

skep O¢
skep 6

skep €1

sKep 87

(sKep 1) syoom ¢

skep (¢

(3399 ©) sKep p1
(yStom ysa1y) sAep 01
(yp3u9) 1001) SABp G
(eSejuaorad
uonjeuruIag) skep §

sKep O¢

101em dey

ym porrad A1on0091
Kep-1 & uay) ‘Aep |

NN 8°¢ pue ¢'Z

-l o 10°0
va_ 3w (¢
W 100

(- 1o ¢0°0

JAURS

TINW T

=S BWQr6T

Wri¢z

WM 001

WM 01

NN STl

]

e
e
e

]

L8t

v

d

D

D

D

(ord
OBXE] )SISUIUDUUNKSNXD ], Of

(QeooeyOU
©QOIQ))D]0I11IISIPIYIUDIST) S
(eBa0RO])PANIDSD2L4(0) B
(9va0RO{) WNANP WNINLL] 5%

(ewaoroq)vanpszLi() 47

(evo0eqRy) XD 2UIIAID) Bt

(ora0e00]
dwAg)aipmorundsorojduds oF

(oeooeoIsselq) 1 vo1vil
“TeA D2ODA2]O DIISSDAG '6€

(ora0R0IS
-serq) punijpy sisdopiqnay ‘8¢

(ora0R0IS
-serq) punijpy sisdopignay ‘L€

(9B22R0()
TUMIDIAIAUNIIUD] ‘9¢

(seadel|rY) 1 pdad wnyjly  G¢

SOOURIRYNY

asuodsar L1ojenumg

parenyead jutod pug

qwmn amsodxyg

S9SOp SISQWIOH  (S]NH) [81ew AABSH

(AJruuey
0} 3uo[aq) sarads jue[d ‘ou 'S

(ponunuoo) | sjqey

pringer

AQs



Journal of Plant Growth Regulation

Hormesis: General Principles or Universal
Characteristics

Hormesis is regarded as a universal phenomenon that is
widespread in nature, which occurs regardless of stressor
type, the organism in which it happens, or what kind of
physiological processes that organism undergoes (Shahid
et al. 2020; Agathokleous et al. 2019a). This is because
hormesis is prevalent in nature and does not depend on
these factors. In addition to this, one of the most important
fundamental adaptations in the organism (plant, animals,
fungi, bacteria, etc.) during the low amount of (biotic or
abiotic) stressor are biological plasticity (Calabrese and
Mattson 2011), specificity, super-compensation, second-
ary adaptation, intermittency, and stress oscillation (detail
shown in Fig. 2) (Calabrese 2008; Shi et al. 2016). It is
revealed that a plant or any other organism must experi-
ence some level of stress to achieve optimal fitness through
these universal biological principles.

Furthermore, hormesis is often observed and widely
represented when the study design meets the predeter-
mined conditions, i.e. a clearly defined NOAEL (no
observed adverse effect level), second dosage below
NOAEL, exposure time, parameter end point, and statis-
tical analysis techniques (Calabrese and Baldwin 2001).
Additionally, hormesis is also thought to have common
global quantitative characteristics (a thorough explana-
tion may be seen in Fig. 3) that can lead to hormetic pre-
conditioning (Erofeeva 2022c). Hormetic pre-conditioning
is a process that occurs when low-dose exposures build
organism resistance to later high-dose exposures (Erofeeva
2022a). Hormetic conditioning (pre-conditioning (espe-
cially in the case of plants) or post-conditioning) is thor-
oughly researched and well studied at the organism level
(plant or animals) in response to low doses of the stressor
(Erofeeva 2022c; Agathokleous and Calabrese 2020).
In agriculture, pre-conditioning (also called priming) is
used to boost plant yield and resilience to environmental
stresses (Wiszniewska 2021). Hormesis includes different
positive responses at a dose below the NOAEL and nega-
tive effects at a dose greater than the NOAEL (Agathokle-
ous et al. 2022). This indicates that stress-induced inhi-
bition and hormetic stimulation are both global adaptive
responses in plants (Agathokleous and Calabrese 2020).
The hormesis phenomenon is thought to be the reason
why it is so common among plants because of its capac-
ity to overcompensate for plant characteristics and hence
induce pre-conditioning and hormetic adaptive responses
(Poschenrieder et al. 2013). Because of these general char-
acteristics, stressed plants are better equipped to deal with
unstable environmental changes, uncertainty, and future
challenges.

Haghighi et al. (2023)

References

plant weight and plant
height as compared to

Rise in the root or shoot
the control

Stimulatory response
length, fresh or dry

fresh or dry plant
weight and plant

Root or shoot length,
height

End point evaluated

Exposure time
21 days

Heavy metal (HMs) Hormesis doses
2500 uM

Sm and Ce

Triticumastivum(cv. Arta
&Bahara) (Poaceae)

family)

S.no. Plant species (belong to

Table 1 (continued)
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Table 2 (continued)

18

Hormesis Curves for Different
g Morpho-Physio-Biochemical Parameter
g Measures in Plants
<
% § In plants, the hormesis phenomenon displays various
= = types of curves for different parameters measured like
% % inverted U- or J-shape, U- or J-shape, non-monotonic
~ = types of curves (Erofeeva 2014), and two dents horme-
& L2 g = sis curve (Shahid et al. 2020; Jia et al. 2015; Tang et al.
E 5 E é %E g 2009) (as shown in the Figs. 4, 5, and 6). Generally, an
f 9;73 % % % ; g 3 inverted U- or J-shape curve is the most common type
E 2 u\% g f: 5 %’ FE’ S 8 of hormesis curve (Calabrese 2004; Kendig et al. 2010),
g2 9 @ g ~ 2 % % g which has been observed in all the plant growth indica-
é ‘i E g2 § &7 E § tors like root or shoot length, fresh or dry weight, total
£Elg==°2~3s> biomass, plant height, leaves area/number, pigment (chlo-
rophyll (a,b,a+b), carotenoids), and various other photo-
. synthetic parameters (Calabrese and Blain 2009; Shahid
3 95’ et al. 2020). Moreover, U- or J-shaped hormesis curves
% E " have been observed for plant defence mechanisms, such as
§ E E the surplus production of reactive radicals (i.e. hydroxyl
é & é radical, hydrogen peroxide, superoxide anion content, lipid
B =83 peroxidation, and electrolyte leakage) and the activation
= © of various antioxidants (enzymatic and non-enzymatic)
(Shahid et al. 2020) (Fig. 4). In addition to this, the two
dent hormesis curve is observed for various plant growth
. g parameters such as total biomass, root biomass, chloro-
g 3 phyll, and stomatal conductance (Shahid et al. 2020; Jia
g 2,1 et al. 2015; Tang et al. 2009) (Fig. 5), while non-mono-
g § tonic types of the curve are observed for plant parameters
& 0 such as fresh/dry weight, root/shoot length, photosynthetic
pigments, and lipid peroxidation (Erofeeva 2014) (Fig. 6).
2
}'2 Impact of Different Factors
s 1= on Phyto-Hormesis (Concentration, Time,
RN Species Type, or End Point)
s Hormesis’s presence and magnitude (observable effect)
§ depend on numerous factors. These factors serve as a
§ potential source of variation. Hormesis responses in
= plants induced through various natural or anthropogenic
5:3 = stressors are species dependent, time dependent as well
as concentration dependent (as shown in Figs. 7, 8, and
«ED 9). Hormesis response in plants is species dependent,
g . meaning depending on the type of plant species, stressor
2 k= dosages may either stimulate or hinder growth (Fig. 9)
& § - (Agathokleous et al. 2020a; Belz and Sinkkonen 2021).
§§ £ 3 Thus, these responses vary among different plant spe-
ERE § E cies. Time-dependent hormetic response, referred to as
SR A the hormesis response measured minutes after the stressor
g dosage exposure, noticeably differs from that measured
wn
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Table 3 (continued)

References

Hormetic response in

plants

End point evaluated

Exposure time

Heavy metal (HMs) Hormesis doses

S.no. Plant species (belong to

family)

Haghighi et al. (2023)

The maximum decrease

H,O, content

21 days

15,000 uM

Triticum astivum (cv. Arta) Ce

in H,O, content at

15,000 uM Ce
The maximum decrease

(Poaceae)

Haghighi et al. (2023)

10,000 uM 21 days H,0, content

Ce

Triticum astivum (cv.

in H,O, content at

10,000 uM Ce
The maximum decrease

Bahara) (Poaceae)

Haghighi et al. (2023)

H,0, content

15,000 uM 21 days

Sm

Triticum astivum (cv. Arta

in H,O, content at
15,000 uM Sm

&Bahara) (Poaceae)

after hours, days, or even weeks (Fig. 8) (Zulfiqar et al.
2019). In addition to this, inside plants, the MAX (maxi-
mum stimulation) produced by some contaminants (trace
elements, nanomaterials, chemical mixtures, ozone, and
lanthanum) rises after a few hours to around 140-150%
of the untreated control and then reduces after a month to
120-130% of the control (Agathokleous et al. 2020a; Li
et al. 2022; Erofeeva 2022b). The gap between the MAX
dosage and the NOAEL is also expected to expand with
time (Agathokleous et al. 2020a). Moreover, different plant
growth stages, such as seedling, vegetative, or fully adult
flowering stages, are thought to have different responding
abilities when it comes to hormesis due to variate differ-
ences in stress resilience (Erofeeva 2021). For instance,
exposure to the herbicide 2,4-D choline salt at stage B4
(flower bud development) results in an increase in cot-
ton output, whereas exposure at stage V4 (vegetative
stage) results in a loss in yield and exposure at stage C4
(box cracking stage) and has no effect on this parameter
(Marques et al. 2021). Also, the hormetic phenomenon is
concentration dependent simply means that the toxicity of
a natural or anthropogenic stressor depends on the expo-
sure’s dosage (Fig. 7) (Poschenrieder et al. 2013). Para-
celsus (1493-1541) also stated that ‘The poison is in the
dose’. According to him, the correct dosage is what distin-
guishes a poison from a curative treatment (Poschenrieder
et al. 2013). In addition to these dependent factors, horme-
sis is also influenced by various other factors. One of these
is the parameter end point calculated (that means the end
point that is measured for the different parameters within
the same plant species); for example, the same quantity
of phytotoxin dosage may have no effect on root growth
while promoting shoot growth (Velini et al. 2008; Belz and
Duke 2017). According to Velini et al. (2008) the optimal
hormetic dose of glyphosate to stimulate root growth of
Pinus caribaea Morelet was 2 g ha™!, while the optimal
hormetic dose for stimulating leaf growth was 20 g ha™".
Therefore, the hormetic dosage can change depending on
several parameters within the same plant species.

In summary, heavy metal exposure in plants may offer
certain advantages, notably in the realm of environmental
remediation, occurrences of phytohormesis phenomenon
in plants, etc. However, the drawbacks are also substantial,
especially when the plants are exposed to higher amounts
of heavy metals for a longer duration of time. Therefore,
the exact effects of heavy metals on plants rely on many
factors, such as the type and amount of metal present, the
length of exposure, the type of plant involved, the plant
developmental stage, and the various other conditions in
the environment.

@ Springer
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Table 4 (continued)

References

Stimulatory response

Exposure time Endpoint evaluated

Heavy metal (HMs) Hormesis doses

S. no. Plant species (belong to

family)

Haghighi et al. (2023)

The maximum increase

Protein content

21 days

2500 and 5000 uM

Ce

Triticum astivum (cv. Arta

in protein content at

andBahara) (Poaceae)

5000 uM Ce in both the
wheat plant cultivars
5000 uM Sm increased

Haghighi et al. (2023)

Protein content

21 days

2500 and 5000 pM

Sm

Triticum astivum (cv. Arta

protein content to the

&Bahara) (Poaceae)

maximum in Arta wheat
cultivar, while 2500 uM

Sm increased protein

content to the maximum

in Bahara wheat cultivar

Heavy Metal-Induced Hormetic Effects
on Plants’ Morpho-Physio-Biochemical
and Molecular Parameters

Recent experimental studies have shed a great amount
of light on the phenomena of hormesis. According to
these experimental studies, there is a lot of significant
data showing that the hormesis phenomenon induced by
a different kind of mild stressors (heavy metal and other
toxic chemicals) has been responsible for improving inte-
gral end points (i.e. morphological, physiological, and
molecular parameters) of the organisms (bacteria, plants,
or animal) that describe essential biological processes
(growth, development, reproduction, and resistance to
stressors) (Calabrese and Baldwin 2000) (Tables 1, 2, 3,
4,5, 6,7, 8). Researchers believe that when plants are
subjected to hormetic stimulation, a low level of HMs acti-
vates non-specific defence mechanisms that protect plants
from severe stresses (Agathokleous et al. 2020a). These
non-specific defence systems include biochemical or bio-
active chemical compounds, stress hormones, enzymatic
or non-enzymatic antioxidant defences, various second-
ary metabolites, osmolytes, and stress protein synthesis.
Furthermore, scientists who are genuinely interested in
hormesis inside plant systems have most frequently stud-
ied the morpho-physiological markers such as growth,
photosynthesis-related parameters, and oxidative stress
markers (Oliveira et al. 2021; Malkowski et al. 2020; Li
et al. 2019).

Technological advancements in the field of omics,
including genomics, miRNAomics, transcriptomics, pro-
teomics, metabolomics, and phenomics, have consider-
ably contributed to deepening our understanding of these
hormetic responses (Raza et al. 2023; Rico-Chévez et al.
2022). These technologies reveal the complex networks
and mechanistic processes by which an organism controls
and regulates their response to minor stimuli by diving
deeper into hormesis’ cellular and molecular basis (Raza
et al. 2023; Rico-Chavez et al. 2022). This multifaceted
approach highlights the potential applicability of these dis-
coveries to agricultural and environmental management,
while also highlighting the unique nature of hormetic
responses. Omics-based exploration of hormesis in plants
has the potential to change the face of sustainable agricul-
ture by helping scientists find ways to make plants more
resilient and productive (Raza et al. 2023; Rico-Chévez
et al. 2022). Thus, integrating omics technologies into the
morpho-physio-biochemical studies in plant hormesis is
a major step towards understanding the complex relation-
ship between organisms and mild environmental stressors,
which could be used to improve plant health and growth in
changing environments.

@ Springer
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Fig. 2 Illustration of the general

principle involved in hormesis
(a concept derived from refer-
ence sources: Furrer et al. 2023;

Biological Plasticity

» Any organism adapts more than we imagine. Long-lasting
change is possible.

Kim et al. 2018; Calabrese

2015; Calabrese and Mattson
2011)

Specificity |»

Advantages experienced by stress depend on time and
location. This principle is also called SAID (Specific
Adaptation to Imposed Demand).

General

Supercompensation

Hormesis originates from homeostasis i.e., resisting stress
» and maintaining balance. Yet when taken in a hormetic dose
and supplemented, the end outcome is an overall

Principles

enhancement in power and abilities.

of

Hormesis

Secondary adaptation

‘ Hormesis stress can provide short-term benefits on minute to
hours of time exposure, but sustained changes usually take

weeks or longer.

Intermittency |»

It's a slow and time-taken process.

138 38 3 33

stress oscillation

Hormesis phenomenon is varied with time, the concentration
» of toxicant, species taken, and parameter endpoints
calculated.

Heavy Metal-Induced Alteration in Plant
Morphology

The interaction of heavy metals (HMs) with plant mor-
phological traits tells a complicated story that goes beyond
toxicity. As noted by Candido et al. (2020), HMs have a
harmful effect on plant morphological characteristics (like
plant height, root or shoot length, fresh or dry weight,
leaf number/area, total biomass, etc.). This discovery is
aligned with the knowledge that heavy metals (HMs),
which serve no biological purpose in plants, are mostly
responsible for unfavorable consequences (Mengel and

A Inverted U or J-curve
MAX (Maximal stimulating effect)
12
]
|
8
o
o=
. ya—— ol——
g Hormetic zone effect e
& ————————aX T o o o -
s = 1
S
3 | % =3
8 =~ g
= R 3 N\
2 NG \
1 Adverse
| effects
|
Low to high concentration of stressor >

Fig.3 Heavy metal or other toxic chemical-induced plant hormesis
showing common global quantitative characteristics (adapted from
reference source: Agathokleous et al. 2019a)

@ Springer

Kirkby 2001). These all-morphological characteristics
are well observable through the naked eye (as shown in
Fig. 10). The majority of HMs accumulation occurs inside
various plant parts, which predominantly interferes with
essential biological processes including plant growth and
cell division. Particularly, it is recognized that metals such
as Cd, Hg, Cr, and Se have the ability to accumulate within
plant components, thereby hindering growth via diverse
mechanisms.

On the other hand, the relationship between plants and
HMs is not entirely antagonistic. According to the research,
hormetic stimulation in morphological parameters (plant
height, root or shoot length, fresh or dry weight, leaf num-
ber/area, total biomass, etc.) was also observed in plants
treated with a low concentration of heavy metals as com-
pared to the untreated plants (as shown in Fig. 10 and
Table 1). Table 1 shows the heavy metal-induced hormetic
effect on the morphological parameters of various plant spe-
cies. This hormesis effect points to a complex interaction
in which HMs, at amounts below what is considered toxic,
may cause adaptive responses that lead to an increase in
certain growth parameters. The hormetic response shows
that plants can tolerate and possibly benefit from low-level
HM exposure by upregulating stress response pathways or
improving nutrient uptake (Singhal et al. 2023). This dual-
ity emphasises the relevance of context in analyzing HM on
plant physiology (Muszyiiska and Labudda 2019). There-
fore, it is essential to have a full understanding of the par-
ticular conditions in which HMs shift from being hormetic
to poisonous to conduct an in-depth analysis of their impact
on the environment and to devise measures to alleviate the
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Fig.4 Heavy metal or other
toxic chemicals induced: a

(Such curve is displayed by all the growth-related parameters)

Inverted U or J-curve

inverted U- or J-shape hormesis

curve; b U- or J-shape hormesis

MAX (Maximal stimulating effect) ‘

curves. The Y-axis shows the
percent change (maximum
stimulatory response (MAX)
value) of the response variable
(i.e. the parameter measure)

as compared to the untreated
control. X-axis shows the differ-
ent concentrations of the heavy
metal or any other stressor

NOAEL (No-
observed adverse
effect level)

Adverse
effects

Low to high concentration of stressor

(a)

U or J-shape hormesis curve
(Such type of curve display by plant defense mechanisms like overproduction of
reactive radicles (i.e. hydroxyl radical, hydrogen peroxide, superoxide anion content,
lipid peroxidation and electrolyte Leakage) and the activation of various antioxidants

(enzymatic and nonenzymatic)

NOAEL (No-
observed adverse
effect level)

Low to high concentration of stressor

negative impacts that they have on plant life (Muszyriska
and Labudda 2019).

Plant Photosynthetic Hormesis

The complex interaction between different concentrations
of heavy metals (HMs) and plant photosynthetic machinery
is an important field of research in plant physiology and
environmental stress biology. It has been known that higher
concentrations of HMs stress can cause damage to photosyn-
thetic apparatus (Parmar et al. 2013). Since then, numerous
experimental studies have revealed a decrease in a variety
of photosynthetic parameters [like pigment (chlorophyll,
carotenoid, xanthophyll) content, gas exchange parameters

(b)

(photosynthetic rate, intercellular carbon, transpiration rate,
stomatal conductance), and various other chlorophyll fluo-
rescence parameters] in plants under high doses of HMs
stress (Cunha Neto et al. 2020; Souri et al. 2019).

In plant systems, the photosynthesis process mainly
relies on chlorophyll. Plants, under high doses of HMs
stress, undergo chlorophyll breakdown, which is a cata-
bolic process. It happens when dying cells need to get rid
of potentially phototoxic pigments and recycle nutrients.
Besides this, chlorophyll catabolites were reported to have
a physiological role in plant defence against plant stressors
(Hortensteiner and Kréutler 2011). It was reported that chlo-
rophyllase, an enzyme that catalyses the degradation of chlo-
rophyll to create chlorophyllide (which is more hydrophilic,

@ Springer
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Fig.5 Heavy metal or other
toxic chemical induced (a)

Two dents hormesis curve
(Such curve is displayed by all the growth-related parameters)

and (b) two dents hormesis
curves. The Y-axis shows the

percent change (maximum

MAX (Maximal stimulating effect) |

stimulatory response (MAX)
value) of the response variable
(i.e. the parameter measure)

as compared to the untreated
control. X-axis shows the differ-
ent concentrations of the heavy
metal or any other stressor

NOAEL (No-
observed adverse
effect level)

Adverse
effects

Low to high concentration of stressor

(a)

Two dents hormesis curve
(Such curve is displayed by all the growth-related parameters)

MAX (Maximal stimulating effect) |

NOAEL (No-
observed adverse
effect level)

Adverse
effects

Low to high concentration of stressor

i.e. water loving in nature) plays an essential part in plant
defensive mechanism against herbivores (Hu et al. 2015).
It is interesting to note that the interaction between HMs
and the process of photosynthesis is not solely a negative
one. Scientific investigations have also revealed a hormetic
response, in which modest amounts of HM improve photo-
synthesis and general plant health (Table 2). Investigatory
reports have also shown that chloroplasts are redox sen-
sors that trigger acclamatory or stress-resistant hormetic
responses in plants (Stamelou et al. 2021). Inside plant’s
chloroplast, during the process of photosynthesis, photo-
system II (PS II) utilizes light energy to convert water
(H,0) into molecular oxygen (O,) and provides electrons
(e—) and protons (H+). Under low doses of HMs, PS II

@ Springer

(b)

initiates a hormetic response through the non-photochemi-
cal fluorescence quenching (NPQ) mechanism (Moustakas
et al. 2022). This mechanism serves to safeguard the pho-
tosynthetic apparatus from photo-oxidative damage by dis-
persing surplus light energy in the form of heat instead of
creating reactive oxygen species (ROS). Moreover, under
lower doses of HMs, an increase in NPQ will lower the
electron transport rate (ETR), which will limit the produc-
tion of ROS (Li et al. 2002; Takahashi and Badger 2011).
Thus, the lower to moderate production of ROS levels
inside the cells are regulated by NPQ’s photoprotective
mechanism (Adamakis et al. 2020a, b; Agathokleous et al.
2019b; Czarnocka and Karpinski 2018; Mittler 2017).
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Fig. 6 Heavy metal or other
toxic chemical induced (a) and

Non monotonic type of hormesis curve
(Such curve is displayed by all the growth-related parameters)

(b) non-monotonic types of
hormesis curves. The Y-axis
shows the percent change

(maximum stimulatory response
(MAX) value) of the response

MAX (Maximal stimulating effect) |

variable (i.e. the parameter
measure) as compared to the
untreated control. X-axis shows
the different concentrations of
the heavy metal or any other
stressor (adapted from reference
source: Erofeeva 2014)

NOAEL (No-
observed adverse
effect level)

Control

| _Adverse
effects

Low to high concentration of stressor

(a)

Non-monotonic type of hormesis curve
(Such type of curve is displayed by plants reactive radicles (i.e. hydroxyl
radical, hydrogen peroxide, superoxide anion content, lipid peroxidation, and
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observed adverse
effect level)

Low to high concentration of stressor

The photoprotective effectiveness of NPQ, which is
dependent on the xanthophyll cycle, particularly zeaxanthin,
and the PsbS (PSII subunit S) protein, highlights the ability
of the plant to adapt and alleviate the potentially detrimen-
tal consequences of HMs (Ruban and Wilson 2021; Welc
et al. 2021). Furthermore, the utilization of pulse ampli-
tude-modulated (PAM) chlorophyll fluorometers provides a
sophisticated method of monitoring PSII performance under
stress, which in turn provides insights into the distribution of
energy within the photosystem (Murchie and Lawson 2013;
McAusland et al. 2019).

Further supporting photosynthetic hormesis, evidence
suggests that low-level HMs stress can boost plant perfor-
mance and photosystem II activity (Adamakis et al. 2020b;

(b)

Agathokleous 2018, 2021; Agathokleous et al. 2020b),
which in turn is responsible for increasing the various
plant photosynthetic parameters (such as pigments (chlo-
rophyll, carotenoid, xanthophyll) content, gas exchange
parameters (photosynthetic rate, intercellular carbon, tran-
spiration rate, stomatal conductance), and various other
chlorophyll fluorescence parameters) (Table 2). The fact
that chlorophylls are frequently stimulated by low-level
stressors suggests that they are important constituents of
stress biology, and their higher concentration under low-
level stress suggests that they are necessary for normal
plant functioning (Agathokleous et al. 2020b). Increased
chlorophyll content in response to low-level stress may
provide plant systems with a greater capacity to defend
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Fig.7 Illustration of concen-
tration-dependent hormetic
response in plants. Y-axis shows
the percentage change in the
hormetic response as compared
to the untreated or control plant.
X-axis shows the low to high
concentrations of the heavy
metal or any other stressor as
compared to the untreated or
control plant

Control or
untreated
plant

Hormetic responsein plants

Concentration-dependent Hormetic Responsein Plants

Low to high doses of ny natural or anthropogenic stressor

Fig. 8 Illustration of time-
dependent hormetic response

in plants. Y-axis shows the
percentage change in the hor-
metic response as compared to
the untreated or control plant of
different developmental stages
(seedling stage, young plant, or
mature plant). X-axis shows the
low concentrations of the heavy
metal or any other chemical
stressor-treated or -untreated
plants of different developmen-
tal stages. A Untreated or con-
trol plant and B plant subjected
to any kind of low amount of
stress, such as heavy metal
exposure, pesticide or herbicide
treatment, etc.

Hormeticresponsein different
developmental stagesof plants

Time-dependent Hormetic Responsein Plants

—

Young plant

Any chemical stressor treated or untreated plants

against high level of HMs threats within specified time
periods (Agathokleous 2021).

Oxidative Stress Markers-Induced Hormesis

Plants produce ROS immediately after being exposed to
HMs. Plant cells either survive or die, and such fate of
the plant cell under heavy metal stress is decided by the
amount of reactive oxygen species (ROS) generated inside
the plant cells. A low amount of ROS in plant’s cell is essen-
tially important for plant’s appropriate cellular functioning.

@ Springer

Furthermore, hormetic responses can be triggered by a
slightly elevated level (i.e. low to moderate amount) of ROS
in the plant cell, which induces potentially positive benefi-
cial effects in plants (Moustakas et al. 2022).

Additionally, to stop HMs from producing ROS, which
is further harmful, a sophisticated network of antioxidant
enzymes situated in various plant cell organelles is activated.
This system allows plants keep up balances and harmless
ROS gradients, which further act as powerful warning sig-
nals to turn on more defence systems and stress-related
genes (Mittler et al. 2004). ROS, and particularly hydrogen
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Fig.9 Illustration of species-dependent hormetic response in two
different plant species showing each species has a different hor-
metic response. Y-axis shows the percentage change in the hormetic
response of two plant species, i.e. plant species I and II as compared
to the untreated or control plant species I and II. X-axis shows the low
to high concentrations of the heavy metal or any other stressor-treated
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peroxide, act as powerful signals that initiate the activation
of genes mainly involved in the production of antioxidants
and other stress-related genes. ROS may have a hormetic
effect by stimulating antioxidant defences in an organism
(plants and animals) (Poschenrieder et al. 2013; Pastori and

Foyer 2002; Ye and Gressel 2000). It has been claimed that
the mitochondria of animal cells are the sites where hor-
metic responses are induced in response to mild oxidative
stress (Li et al. 2012). PUMPs, which stand for mitochon-
drial uncoupling proteins, have also been found in plants.
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The PUMP genes can be activated in response to a number
of different stimuli, both biotic and abiotic (Vercesi et al.
2006). However, till date, plant hormetic responses have not
been linked to uncoupling proteins by any plant researcher.
Besides this, presently, there is abundant experimental proof
demonstrating the specificity of ROS generation in response
to stress and signalling caused by the absolute control and
regulation of the synthesis and activity of respiratory burst
oxidase (Rboh) homologous genes. Several developmental
processes and stress responses are under the control of the
various isoforms of the respiratory burst oxidases (Rboh)
gene (Suzuki et al. 2011). Rboh gene isoforms D and F
(AtRbohD, F) are reported to be involved in Arabidopsis
thaliana’s pathogen response and leaf stomatal control and
regulation. However, AtRbohD seems to be activated by
injury, systemic attacks, or abiotic stress (Poschenrieder
et al. 2013; Suzuki et al. 2011). On the other hand, high
concentrations of HMs in the plant tissues (much above the
toxicity limit) cause a large amount of ROS to get accumu-
late inside plant cells, i.e. outside acceptable limits. This
will cause deleterious effects on the plant cell’s ability to
function normally (Moustakas et al. 2022), deactivated anti-
oxidant system, plant growth suppression, and finally lead to
plant programmed cell death.

However, the minor concentration of HMs leads to the
production of a low to moderate amount of ROS, which fur-
ther causes the activation of various stress signalling path-
ways like hormonal defence signalling pathways, antioxidant
defence system, and various other stress-related genes that
finally help the stressed plant to induce hormetic adaptive

Heavy metals (such
as Cd, Pb, As, Hg,

et&
e
e **ﬂl'

3

growth responses (Fig. 11). Therefore, in plants’ reactions to
heavy metal stress, ROS plays a multifaceted function. They
can be agents of cellular damage in situations of extreme
stress or crucial signalling molecules for stress adaptation. It
is essential for the plant to have the capacity to finely adjust
ROS production and signalling to successfully navigate the
thin line that separates survival and death when exposed to
HM. Table 3 shows the low to moderate production of vari-
ous oxidative stress markers in various plant species under
low doses of heavy metals stress.

Hormetic Effects on Proteins

In plants, an excessive amount of HMs exposure for an
extended period of time causes metal homeostasis disrup-
tions that lead to the development of stress and toxicity
symptoms, which will finally lead to lowering the protein
content. The mechanism underlying this reduction involves
protein oxidative modification, in which ROS can damage
protein functioning by direct oxidation of amino acid side
chains or through secondary interactions with aldehydic
products of lipid peroxidation (Reinheckel et al. 1998).
to further elucidate this mechanism, Palma et al. (2002)
discovered that HM-induced oxidative stress causes pro-
tein oxidation to occur more quickly, which in turn leads
to proteolysis and fragmentation. This finding highlights
the detrimental effect that HMs have on the proteome. On
the other hand, researchers have not done much research
on plant hormesis, especially when it comes to how pro-
teins react to low levels of HMs. However, there are many
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Figure. 11 Stress signalling cross talk involved in HMs-induced hormesis
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investigatory reports showing lower doses of HMs-induced
hormetic stimulation in plant protein in various plant species
(Table 4). The lower doses of HMs trigger the production
of a variety of plant stress-associated proteins that might be
responsible for increasing the protein content (Di Toppi and
Gabbrielli 1999). Demple (1991) showed that roughly 40
proteins were activated in prokaryotes when they were under
oxidative stress. Stress-associated proteins are mainly made
up of antioxidant enzymes, phytochelatins (PCs) and glu-
tathione (GSH)-producing enzymes and heat shock proteins.
Additionally, soluble proteins have the potential to serve as
osmoprotective agents that help to keep the structure and
function of cells stable under stress conditions (Wei et al.
2022; Abbas and Mobin 2016). The plants’ ability to tolerate
metals at lower concentrations and initial exposure times is
evidence of defence adaptation facilitated by these kinds of
stress-associated proteins. Table 4 shows the various experi-
mental reports of hormesis effects on protein stimulation in
various plant species under low doses of heavy metal stress.
Therefore, undoubtedly, elevated levels of HMs disrupt pro-
tein functionality and diminish protein content, resulting in
symptoms of toxicity and stress. Conversely, reduced HMs
concentrations may stimulate hormetic responses that stim-
ulate stress-associated proteins. These proteins protect the
plant against HM exposure and boost its defences, allowing
it to survive and adapt under sub-toxic stress (Di Toppi and
Gabbrielli 1999). This dual role of proteins under HM stress
highlights the complexity of plant responses to environmen-
tal challenges, emphasizing the relevance of dose, exposure
length, and plant adaptability in crossing the delicate line
between stress and survival.

Hormetic Effects on the Antioxidant System

Plant adaptation to heavy metal (HM) stress requires
sophisticated modulation of antioxidative systems, which
are essential for managing the oxidative stress caused by
fluctuating HM concentrations. The plant responses to low
and high doses of HMs were frequently connected with the
up or downregulation of adaptation mechanisms, particu-
larly those involving antioxidative (enzymatic and non-
enzymatic) processes. These associations were observed in
a number of different plant species (Table 5). Recent stud-
ies confirmed moderate activation of antioxidant enzymes
(catalase, superoxide dismutases, peroxidases, etc.) and an
increase in non-enzymatic antioxidative compounds (such as
alpha-tocopherol, flavonoids, phenolic compounds, reduced
glutathione, ascorbic acid, etc.) (Erofeeva 2022b). However,
the degree to which these antioxidative enzymes showed
inhibition or stimulation depends directly on the proportion
of HM concentration present in the plant sample (Sardar
et al. 2007). However, it has been noted that the activity
of antioxidant enzymes is affected not only by the type of

HMs, but also by the contamination method and incubation
period (Fang et al. 2017). Catalase activity was reported to
be boosted by low HMs concentration, but decreased when
the HM concentration was increased beyond the tolerance
limit of the plants (Table 5). The increase in catalase activity
at the lowest HMs concentration in plants was considered
to have an associated link with the higher plant growth and
development observed at the low doses of HMs treatments
(Calabrese and Agathokleous 2021). Catalase may play
an essential role in early triggered adaptive responses that
occur in lower concentrations of HMs-treated plants that
do not show any visible symptoms of toxicity. In addition
to this, other antioxidants (enzymatic and non-enzymatic)
such as superoxide dismutase (SOD), ascorbate peroxidase
(APOX), glutathione peroxidase (GPOX), reduced glu-
tathione (GSH), ascorbic acid, and a-tocopherol have also
shown an increase. An increase in these antioxidants under
lower doses of HMs alleviates the damaging effects by caus-
ing the removal of ROS, whereas a higher concentration of
HMs might cause damage to the antioxidative system, thus
inhibiting enzymatic or non-enzymatic activity and therefore
lead to minimizing the resistances against ROS production
(Zhao et al. 2019). Glutathione reductase (GR), ascorbate
peroxidase (APX), reduced glutathione (GSH), and ascor-
bate are major components of the ascorbate—glutathione
cycle and are responsible for the elimination of H,O, from
different parts of cells (Rodriguez-Serrano et al. 2009). On
the other hand, interestingly, several recent investigations
found growth hormesis in the absence of alterations or even
a reduction in various antioxidant enzymatic activities, for
example, in the case of wheat plants’ exposure to graphene
oxide (Ren et al. 2020) or Ag@CoFe204 nanoparticles
(Lopez-Luna et al. 2020). Further, cadmium metal makes
soybeans grow faster, but it also causes enzyme antioxidant
defence to go down and non-enzyme antioxidant levels to go
up (Francischini et al. 2020). Similarly, hormetic dosages of
atmospheric Hg reduced SOD (superoxide dismutase) activ-
ity, while increasing glutathione levels in the moss Tilland-
sia usneoides (Sun et al. 2021). Such kind of previous inves-
tigation reveals that non-enzyme antioxidants might play a
prominent role in certain types of hormesis as compared to
enzymatic antioxidants.

Moreover, research has clearly shown that the majority
of cellular GSH is found in the mitochondria, where it plays
an essentially important role in maintaining the redox equi-
librium and homeostasis of metal ions (Koffler et al. 2013).
Ascorbic acid (AsA) and glutathione (GSH) are reported
to be one of the essential antioxidants that can maintain
intracellular redox equilibrium as well as safeguard the
plasma membrane from oxidation (Wei et al. 2022; Apel
and Hirt 2004). Glutathione not only functions as a stress
signalling molecule and an essential component of the anti-
oxidant defence system, but also chelates metals and acts as
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a precursor for the synthesis of phytochelatins (Jozefczak
et al. 2012).

GSH is crucially important for the production of phyto-
chelatins (PC), which are capable of combining with heavy
metals to form PC-HM complexes and play a key part in
the process of HMs detoxification through vacuolar seques-
tration of the PC-HM complexes (Shi et al. 2021). All of
these actions of GSH make GSH a crucial component in
the regulation of proteins that shield plants from the dam-
aging effects of HMs. Table 5 describes the antioxidative
defence response in various plant species under low doses
of heavy metal stress. In summary, the way in which plants
react to HM stress involves a nuanced equilibrium between
the induction of antioxidative defence mechanisms and the
avoidance of toxicity thresholds. The ability of plants to
respond to different levels of HM is based on the complex
regulation of enzymatic and non-enzymatic antioxidants.
This shows how adaptable and resilient plants are in the
face of environmental stressors.

Hormetic Effect on Phenolic Compounds

Plants’ phenolic compounds display antioxidative behav-
iours under HM stress (Michalak 2006). The antioxidant
action of the phenolic compound is mainly due to the pres-
ence of hydroxy (—OH) and carboxyl (-COOH) groups
in their chemical structures which are able to bind metals
(Michalak 2006). Flavonoids are ubiquitous in plant king-
doms and are the most common type of phenolic compound
(Michalak 2006). Phenylalanine ammonia-lyase (PAL) is
the primary enzyme involved in regulating the conversion
of phenylalanine into secondary metabolites such as phe-
nolic substances, flavonoids, anthocyanin, etc. (Dong et al.
2010). Activation of phenylalanine ammonia-lyase (PAL)
may account for the greater phenolic and flavonoid contents
at lower HMs doses, which may account further for scaveng-
ing the ROS to counterbalance the direct harmful impact of
HMs on plant growth. Chen in 2015 reported the highest
PAL enzymatic activity under low to moderate Ce doses
(0.5-1.0 mM), which is in line with the fact that the amount
of flavonoids or other secondary metabolites in Ginkgo sus-
pension cells increased. Thus, HMs can raise the concentra-
tion of phenolic or flavonoid compounds by boosting PAL
activity. These phenolic or flavonoid compounds may rep-
resent a self-protective mechanism employed by the plants
for itself to cope with metallic stress. Numerous researchers
have shed light on the phenols’ and flavonoids’ antioxidant
potential by demonstrating their ability to chelate metal
ions, sequestration, metal uptake, and reduction of ROS
production through the transfer of electrons to free radicals
(Haghighi et al. 2023). Moreover, HMs have the ability to
reduce lipid hydroperoxide (LOOH) by breaking the (O-O)
bond through haemolysis. This leads to the formation of
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lipid alkoxyl radicals and free-radical oxidized chains that
ultimately cause lipid peroxidation, which finally results
in plant cell and membrane damage. Flavonoids and phe-
nolic substances have the ability to encapsulate these lipid
alkoxyl radicals, which stops the process of lipid peroxi-
dation (Michalak 2006). Additionally, HMs encourage the
transcription of important metabolic genes, which results in
an increase in the production of secondary metabolites that
support the plant’s entire defence mechanism. Despites this
insight, the whole molecular level process by which HMs
are taken up by plants, its effects inside the plant cell, and
biochemical physiology of stress plant cells under the lower
concentration of HMs remain to be further investigated.
Table 6 shows the hormesis effect on plant phenolic com-
pounds in various plant species under low doses of heavy
metal stress.

Hormetic Effect on Osmoprotectants

Low doses of HMs treatments contribute to osmoregula-
tion by enhancing amino acid biosynthesis and carbohydrate
metabolism. Hormetic doses of various stressors, such as
veterinary antibiotics, silicon, etc., increase the levels of
soluble sugars like glucose (Tasho et al. 2018; Trejo-Téllez
et al. 2020). This investigatory report showed the possibility
of glucose signalling being involved in the process of horme-
sis and also suggesting its central role in modulating plant
growth and stress response. Sugar signalling works through
complex networks that interact with growth-promoting phy-
tohormones (such as auxins, cytokinins, brassinosteroids,
etc.) either through Hexokinase 1-dependent or -independ-
ent mechanism pathways (Saksena et al. 2020). Prado et al.
(2010) also discovered that mild concentrations of heavy
metals boosted carbohydrate metabolic processes. Both hex-
oses and sucrose were reported to increase the activity of
genes involved in growth and decrease the activity of genes
involved in stress (Rosa et al. 2009).

Moreover, increased amino acid synthesis, like proline,
contributes mainly to the osmotic homeostasis of stress
plant cells (Trejo-Téllez et al. 2020). However, there are
few experimental reports that also show a decrease in pro-
line content at lower doses of heavy metals (Haghighi et al.
2023). This might be due to the fact that in some plant spe-
cies, an appropriate quantity (low to moderate amount) of
proline has been shown to improve plant stress tolerance,
but in large quantities, it can produce phytotoxicities (Hayat
et al. 2012). On the other hand, some plants use an increase
in their proline content as a form of defence against stressors.
Some of the functions that proline can perform are function-
ing as a carbon—nitrogen source, ROS scavenger, minimiz-
ing electrolytic leakage, hydraulic buffer, osmoprotectant,
a powerful antioxidant, and membrane stabilizer (Hare and
Cress 1997). Plants exposed to higher concentrations of
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HMs have been shown to have more proline, which may be
related to their improved ability to inhibit reactive oxygen
species (ROS) and protect their cells from oxidative stress
(Haghighi et al. 2023). Table 8 shows hormesis effects on the
osmolyte content of various plant species under low doses of
heavy metals stress. These findings highlight the relevance
of understanding plant species’ metabolic and physiologi-
cal responses to HM stress to improve plant resilience and
growth under environmental constraints.

Hormetic Effects on Plant Mineral Nutrient Content
After Low Doses of Metal Uptake

Since the late nineteenth and early twentieth centuries, sci-
entists have been able to get a lot of information about the
relationship between the availability of plant macronutri-
ents (Mg, Ca, N, K) and micronutrients (Mn, Cu, Fe, Zn)
and plant growth and development (Calabrese and Baldwin
2000). These elements are critical to plant development, reg-
ulating a variety of physiological and biochemical processes.
Subsequent investigations (Table 8) confirmed that plant
micro- and macronutrients could elicit hormesis in many
plants under lower doses of HMs. Essential micro/macronu-
trients at lower doses of HMs boosted plant growth markers,
root/shoot ratios, yield, and chlorophyll content relative to
controls while decreasing lipid peroxidation rates (Erofeeva
2021). Mineral nutrient content rises inside various plant
species under HMs exposure might be the reason for hor-
metic enhancement in plant morphology and various plants’
photosynthetic parameters (Tables 1, 2). This shows that
under HM stress, plants can use higher mineral resources to
boost their physiological capabilities, resulting in enhanced
root activity, as seen in Vetiveria zizanioides with lower
cadmium (Cd) levels (Aibibu et al. 2010). Enhanced root
activity is an indicator of a plant’s ability to absorb nutrients
and water more efficiently. Specifically, Fe content increase
in plants exposed to lower concentrations of HM is notable
for its roles in heme and chlorophyll production, because
this nutrient regulates the rate of aminolevulinic acid crea-
tion, a universal precursor of these biosynthetic processes
(Cakmak et al. 2010). This biological process helps plants
maintain and improve photosynthetic capacity (Cakmak
et al. 2010). Furthermore, the increase in copper content
may cause a rise in the concentration of plastocyanin, which
in turn stimulates the activity of photosystem I (PS I) and the
synthesis of quinine. This, in turn, leads to an increase in the
activity of photosystem II (PS II) and the transfer of electron
energy between the two photosystems (Cakmak et al. 2010),
highlighting the interconnectedness between the supply of
nutrients and the efficiency of photosynthesis. Table 8 shows
various investigatory reports of the hormesis effects on plant
mineral nutrient content after low doses of metal uptake.
Here, the hormesis phenomenon demonstrates the potential

of subtle concentrations of HMs to elicit favourable physi-
ological reactions that further highlight the ability of plants
to employ stressors as signals to improve growth and activate
defence mechanisms. It shows how plants balance nutrient
absorption, metabolic changes, and stress mitigation to max-
imize growth and development under lower doses of HMs.

Hormetic Effects on Other Biochemical Compounds

Hormesis also seems to alter the amounts of endogenous
stress hormone levels inside the plant body. Lactuca sativa
plants exposed to low amounts of wastewater stimulated
root development and reduced the amount of ABA (Abscisic
acid), which is a growth inhibitor (McGinnis et al. 2019).
This drop in ABA, a stress hormone that stops plants from
growing when they are under a lot of stress, shows how
hormesis might be able to lessen stress reactions and help
plants grow (McGinnis et al. 2019). In addition, a higher
amount of auxin, which acts as a growth stimulant, was
found in maize plants that had been subjected to lead and
cadmium metal (Matkowski et al. 2020). Auxins, especially
indole-3-acetic acid (IAA), are very important for cell
growth, division, and differentiation. This means that HM-
induced stress can actually help plants grow in some ways by
changing the amounts of phytohormones (Matkowski et al.
2020). Bisphenol A has also been reported to stimulate plant
growth by increasing IAA (indole-3-acetic acid) and zeatin
content as well as a decrease the ratios of ABA/IAA, ABA/
GA (gibberellic acid), ABA/zeatin, ethylene/IAA, ethylene/
GA and ethylene/zeatin (Li et al. 2017; Qiu et al. 2013). This
emphasizes the significance of altering the ratio of endog-
enous phytohormones for growth hormesis, which refers
to the predominance of growth-stimulating factors over
growth-inhibiting factors.

Furthermore, non-protein thiols (NP-SH), a type of metal
chelator, are also known to exhibit hormetic response under
lower doses of Cd (10, 20, and 40 uM) exposure (14 days)
in Brassica juncea plants, where the content of NP-SH
decreases after a considerable increase up to 40 uM Cd (Seth
et al. 2008). Phytochelatin content also displays hormetic
response under lower doses of Cd (10, 20, 40, and 80 pM)
exposure (14 days) in Brassica juncea plants, where the con-
tent of phytochelatin decreases after a significant increase
up to 80 uM Cd (Seth et al. 2008). Therefore, plants may
utilize low-level stress exposures to drive favourable growth
responses by fine-tuning phytohormone balances and acti-
vating specific biochemical pathways, demonstrating the
complicated strategies plants use to flourish in stress situa-
tions. Overall, high doses of HMs were reported to reduce
the plant morpho-physio-biochemical compounds, while
lower doses of HMs also called beneficial elements (espe-
cially Cd, Hg, Pb, or As) increased the plant morpho-physio-
biochemical compounds that further causes the activation
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of various cellular signalling pathways responsible for the
hormetic effect (Fig. 12).

Omics-Based Exploration of Hormesis in Plants

To fully understand, how hormesis improves the growth,
quality, and productivity of any plant’s species, especially
crop plants, is attained mainly by becoming aware of the
importance of reading, understanding, and processing exper-
imental data and literature about gene expression, protein
biosynthesis, metabolites biosynthesis, genome and so on
(Rico-Chéavez et al. 2022). Therefore, we can learn all we
need to know about how plants react to modest levels of
heavy metal stress by studying hormesis mainly via the
prism of omics technologies, which mainly include genom-
ics, miRNAomics, transcriptomics, proteomics, metabo-
lomics, and phenomics (Raza et al. 2023; Rico-Chavez et al.
2022).

Genetic and expression-level alterations in plants can be
better understood with the use of genomics and transcrip-
tomics, which show how stress modulates particular genes
and pathways (Xu et al. 2023; Wang et al. 2023; Ma et al.
2022). Xu et al.’s (2023) experimental study reveals that
quantitative real-time PCR and transcriptomic analysis
revealed that the photosynthesis—antenna proteins path-
way was essential for the hormesis effect and that LHCB7
(light-harvesting complex B7) and LHCP from this pathway
were the most responsive to acephate hormesis. Addition-
ally, according to physiological and transcriptomic analy-
ses, juvenile peppermint plants exposed to low levels of

cadmium experienced hormesis due to the constant acti-
vation of antioxidant activity. (Wang et al. 2023). Another
transcriptomic analysis revealed that plant hormone signal-
ling and secondary metabolism, particularly glucosinolate
homeostasis, ethylene, and auxin signalling pathways, react
in a manner that is opposite to that of low vs high levels of
cadmium, indicating that these pathways are involved in the
process of hormesis and the detoxification of cadmium (Ma
et al. 2022). In addition to this, research into microRNAs’
function in post-transcriptional regulation (miRNAomics)
adds another layer to our understanding of how plants adapt
their gene expression to environmental stress (Raza et al.
2023).

Proteomics takes this omics research a step further by
revealing which proteins are involved in detoxification, the
plant’s reaction to stress, and its metabolic pathways, among
other important functions (L6pez-Bucio et al. 2022; Anani
et al. 2022; Gressel and Dodds 2013; Randié¢ and Estrada
2005). According to the findings of one study, heavy metal
chromium (Cr (V1)) has two different effects on plants: low
levels make them grow faster and better handle stress, while
high levels stop them from growing and cause oxidative
stress (Lopez-Bucio et al. 2022). In this research, proteomic
studies revealed changes in proteins linked to reactive oxy-
gen species (ROS) detoxification, metabolism, and defence
whereas transcriptomic studies revealed activation of genes
involved in transport, detoxification, and stress response
(Lépez-Bucio et al. 2022).

Further, metabolomics supplements these omics
approaches by analysing the tiny molecule metabolites
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produced by stressed plants, which can reveal physiological
states and adaptive responses (Anani et al. 2022; Gressel and
Dodds 2013). According to the findings of one investiga-
tion based on plant proteomic and metabolomic responses
to metal stress that mainly highlight the processes that crop
plants use to withstand and detoxify metal stress, such as the
overexpression of certain proteins and metabolites that che-
late metals, boost antioxidant defences, and maintain cellular
balance (Anani et al. 2022). This research also highlights
that phytochelatins, metallothioneins, and certain transporter
proteins are some of the methods that are used to keep met-
als out of cellular processes that are sensitive and make it
easier for them to be stored or thrown out of the cell (Anani
et al. 2022).

Phenomics, one of the important omics analyses in the
field of hormesis which examines phenotypic qualities at
different scales (from the cell to the whole plant), is crucial
because it allows us to see and measure these reactions, con-
necting the dots between the molecular alterations and the
visible traits (Rico-Chavez et al. 2022). A study that was
based on phenomic and metabolomic analysis discovered
that the low-Cd rice cultivar (TY816) improved its tolerance
to Cd-induced oxidative stress through a number of different
strategies (Liu et al. 2021). These strategies included adjust-
ing the architecture of the root system, modifying the turno-
ver of membrane lipids, and releasing secondary metabolites
for the purpose of preventing lipid peroxidation and metal
chelation (Liu et al. 2021). By employing image-based phe-
notyping and sophisticated sensors, scientists are capable
of identifying hormetic fluctuations in growth patterns,
physiological processes (e.g. photosynthesis and transpira-
tion), and morphology (Raza et al. 2023; Rico-Chavez et al.
2022). This integrative omics approach provides a holistic
understanding of plant hormetic effects and suggests ways
to improve crop resilience and yield under environmental
stress (Raza et al. 2023).

Future Prospective

Environmental agencies such as the World Health Organi-
zation (WHO), the United States Environmental Protection
Agency (US EPA), and the Bureau of Indian Standards (BIS)
establish a threshold limit for each heavy metal beyond
which these heavy metals are considered toxic (Dhiman et al.
2023; Karthik et al. 2022; Shuja 2016). However, these non-
essential HMs, such as cadmium, lead, mercury, and arsenic,
which were once thought toxic but are nowadays included in
the group of beneficial elements. These beneficial elements
have been emerging as a surprising source for growth and
development and also in regaining the ability to assist the
plant in withstanding a variety of stresses, both biotic and
abiotic. Non-essential HMs such as arsenic, lead, mercury,

cadmium, etc., are relatively new to the list of beneficial
elements, yet, research indicating their favourable influence
has been available for quite some time. Despite this, their use
is not as valuable and widely acceptable as essential HMs.
However the results of these recent studies have encouraged
scientists and researchers to learn more about these benefi-
cial HMs and keep looking for other unusual toxic elements
that might also be beneficial. Such kinds of toxicants will
probably join the group of beneficial elements in the future.
In addition, there are many new areas of focus in the field
of phyto-hormesis research, such as trace element-induced
phyto-hormesis, molecular mechanisms of phyto-hormetic
responses, chemical genomics, plant chemical biology, and
microbial phyto-hormesis.

The implementation of the hormesis phenomena in the
agriculture sector has the potential to transform future meth-
ods for increasing the productivity and resilience of food
crops. The more we learn about how low doses of stressors
affect plants, the more we will understand and accept con-
trolled stress as a useful tool in crop management. Hormetic
dosages of heavy metals and other agricultural chemicals
have the ability to improve crop quality and productivity
while simultaneously making crops more resistant to pests
and diseases (Vazquez-Hernandez et al. 2019; Vargas-Her-
nandez et al. 2017). By carefully monitoring the exposure of
crops to these stressors, we are able to harness the eustress,
also known as the beneficial stress, to induce desirable traits
or advantageous features in food crops (Vazquez-Hernandez
et al. 2019). These traits include the synthesis of specialized
metabolites or improved stress tolerance in plants, which
allows us to optimize the growth conditions and output of
these crops (Aguirre-Becerra et al. 2021).

To better understand hormesis, future research should aim
to increase our understanding of the underlying genomic,
transcriptomic, proteomic, phenomic, miRNAomics, and
metabolomic alterations under lower doses of stressors.
To figure out such complicated molecular processes that
allow plants to do well in controlled stress situations, we
will need to use advanced data analysis and interpretation
(Rico-Chavez et al. 2022). To improve crop performance in a
sustainable way, we need to learn how to activate the plant’s
natural defensive systems by applying specific stress lev-
els. To summarize, the future of research on plant hormesis
holds a great deal of potential for the revolutionary transfor-
mation of agricultural methods. We can improve food secu-
rity and sustainability on a global scale by discovering inno-
vative ways to make stress work for our crops, through the
strategic use of stressor components or chemicals. This will
lead to higher yields, better quality, and greater resilience.

The exact and complete detailed explanatory mechanism
through which HMs generate plant hormesis is still in its
infant stages. It is necessary to clarify the mechanistic regu-
latory processes in which these milder concentrations of
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HMs or other chemical toxicants are involved in plant condi-
tion, growth, photosynthesis, and development to determine
their potential stress-relieving effects. Such a goal will not be
attainable without additional research done on the morpho-
logical, physiological, and biochemical parameters. If such
additional research is not done, then it will not be possible
to completely explore these HMs’/metalloids’/any other
chemical toxicant’s regulatory molecula- level mechanistic
processes with respect to enhancing plant growth, resistance,
and productivity. In the same way, we do not fully under-
stand how different plant species can tolerate different HMs
or any other chemical toxicants, as the HMs or toxicants
concentration varies greatly between plant species and also
there is a variation in the plant morpho-physio-biochemical
end points evaluated. For this reason, morphological, physi-
ological, biochemical, and finally molecular-level detailed
study is essentially important for a better understanding of
the mechanisms behind HMs-induced plant hormesis. In
addition to this, the exact levels of these hazardous HMs
that are beneficial/stimulatory to the plant body are not
completely understood. Moreover, this beneficial/stimula-
tory level in plants can also be affected by the features of the
substrate (soil or any other media) on which they are grown.
The importance of ROS in plants’ various biological pro-
cesses and stress responses is widely understood. However,
not much is known about ROS homeostasis or induced levels
of ROS in particular kinds of cells, organelles, or tissues
when they are exposed to low levels of toxicants. To help
better understand the mechanisms of phyto-hormesis, the
development of new methods that are capable of effectively
analysing ROS levels under low levels of HMs will be of
immense help. Also, sensitive redox proteomics methods are
being developed to shed light on how proteins control the
production and removal of ROS in living beings.

Conclusion

In this review, an ample number of reports have been exam-
ined, and the majority of those scientific reports have pro-
duced positive results, but there are still certain knowledge
gaps that need to be filled to cultivate a complete under-
standing of HMs or other toxicants-induced plant hormetic
responses. Moreover, the available literature on HM-induced
hormetic response is quite limited. This is because in the
past (during the first half of the twentieth century), scien-
tific communities only partially correctly characterized the
dose-response concept (Calabrese 2005a, b). They were
right about how plants responded to high doses of HMs,
but wrong about the most important plant response at low
doses of HMs. Although in the current scenario, some pro-
gress has been made, further research is needed to clearly
and completely understand the lower doses of HMs or other
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toxicants-induced plant responses at all levels (i.e. morpho-
logical, physiological, biochemical, and molecular). Fur-
thermore, laboratory-based morphological, biochemical,
and physiological methodologies were considered the basis
of studying the details of plant hormesis and its mechanistic
aspects. Thus, there is still a great deal of work to be done
in this area to understand the morphological, physiological,
biochemical, and, finally, molecular mechanisms of HM-
induced phytohormetic responses under lower dosages of
HMs. Furthermore, these HMs, now included in the cat-
egory of beneficial elements, will continue to be a conten-
tious issue until additional literature information showing
their absolute significance in improving the plant’s chance
of survival is released publicly. Until then, the topic will
remain contentious.

Environmental Implication

HMs are hazardous in nature, but the lethality of HMs was
determined by how much concentration of HMs was con-
sumed by the organism. Additionally, as a matter of fact,
low to moderate levels of heavy metal contamination more
frequently occurs in nature than unrealistically high to exces-
sive higher concentrations, which are often impractical. So,
studying how plants react to low levels of heavy metals, i.e.
hormetic growth stimulatory mechanism, is crucial. Plant
morphological, physiological, and biochemical experimental
studies can help to achieve this goal. These studies further
help in understanding a complete picture of the molecular
mechanistic pathways that are linked with a minor dosage of
heavy metal-induced plant hormetic responses.

The effects and risks on the environment of heavy metal-
induced hormesis are big, and they change how we evaluate
risks to both human health and the environment. Horme-
sis is biphasic, which makes ecological risk assessments
more complicated because the good effects of low doses
may hide the risks of higher doses, which makes it harder to
set regulatory threshold limits (Schalie and Gentile 2000).
Additionally, as a result of species-specific responses, even
low concentrations of heavy metals can upset ecological bal-
ances, which in turn impacts biodiversity and the dynamics
of ecosystems (Poschenrieder et al. 2013). It is necessary
to give careful consideration to environmental manage-
ment and public health policies to properly reduce potential
dangers due to the dual nature of hormetic reactions, which
are beneficial at low concentrations and dangerous at large
doses.
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