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Abstract
Homeodomain-Leucine Zipper (HD-Zip) proteins are important ubiquitous and diverse molecular chaperones in plants. We 
characterized a gene CaATHB-12 derived from HD-Zip I subfamily which was intensively induced by exogenous abscisic 
acid (ABA), salt, and mannitol applications in a pepper cultivar. Efficient gene silencing lines were created from pepper, 
and stable heterologous overexpression lines were created from Arabidopsis to achieve a comprehensive exploration of gene 
function. The functional study of CaATHB-12 in pepper increased plant sensitivity to ABA stress, while the over-expressing 
CaATHB-12 in Arabidopsis lines revealed that tolerance to ABA, salt, and mannitol stresses was decreased. Furthermore, 
CaATHB-12 plays a fundamental role in elevating the tolerance to these stresses through the increased expression of other 
stress related genes, increasing the activities of antioxidant enzymes and scavenging the reactive oxygen species. The studied 
functions of the CaATHB-12 gene may provide some insights in exquisite molecular detail by pursuing signal transduction 
mechanisms that converge on gene expression patterns.
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Introduction

Plants produce substantial amount reactive oxygen species 
(ROS) to carry out key cellular functions in normal con-
ditions as well as in response to stresses caused by biotic 
and abiotic factors (Foyer 2020; Khan and Khan 2017). 
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Environmental stresses affect the plant growth, develop-
ment and reduce the yield, nutrition, and quality of the 
crops. To cope up with these environmental stresses, plants 
have developed sophisticated defense mechanisms, including 
antioxidant enzyme systems (glutathione peroxidase, GPX; 
superoxide dismutase, SOD; catalase, CAT; peroxidase, 
POD; ascorbate peroxidase, APX) and bioactive substances 
(phenolic compounds, flavonoids, carotenoids, tocopherols) 
(Gill and Tuteja 2010; Nafees et al. 2011). The homeodo-
main-leucine zipper (HD-Zip) proteins with a highly con-
served and unique sequence which plays an extremely key 
role in the growth and development of plants (Ariel et al. 
2007; Ré et al. 2014). The homeobox gene acts as a major 
regulator of all aspects of plant development, while some 
HD-Zip proteins participate in fruit development and also 
responds to different abiotic stimuli (Ariel et al. 2007). The 
HD-Zip proteins (I–IV) are pressure-sensitive HD-Zip I 
proteins and are studied in recent years (Ariel et al. 2007; 
Henriksson et al. 2005; Hjellstrom et al. 2003). The ATHB6, 
ATHB7, and ATHB12 showed an up-regulation to externally 
applied ABA and water-deficit treatments, suggesting their 
important roles in regulating crops responses to drought 
stress (Olsson et al. 2004; Soderman et al. 1996). Similar 
findings were observed in the model plant Arabidopsis, 
where overexpression of ATHB-7 facilitated photosynthesis, 
increased chlorophyll content and leaf growth (Hjellstrom 
et al. 2003; Soderman et al. 1996). Studies on ATHB-12 gene 
in response to stress in the Arabidopsis (Olsson et al. 2004; 
Ré et al. 2014), and many of the studies focused on salt 
stress and water deficit induction (Henriksson et al. 2005). In 
the Craterostigma plantagineum, CpHB4–CpHB7 genes are 
reported to show response to drought stress. The expression 
CpHB6 and CpHB7 were induced by ABA treatment and 
drought stress, while CpHB4 have showed down-regulation 
to ABA treatment (Deng et al. 2002; Frank et al. 1998). 
In rice, the HD-Zip I gene Oshox22 mediated drought and 
salt stresses following the ABA-mediated signal transduc-
tion pathway (Zhang et al. 2012). The sunflower HD-Zip 
I protein Hahb-4 was reported for the improved drought 
tolerance in Arabidopsis (Manavella et al. 2006). Recently, 
MtHB1, a Medicago truncatula HD-Zip I protein has shown 
an induced expression in response to salinity stress (Ariel 
et al. 2010). Although many HD-Zip I genes have been 
studied, no systematic study of HD-Zip I proteins has been 
conducted in pepper.

Abscisic acid (ABA), as a stress signal, enhances the plants 
tolerance to several environmental stresses (Yu et al. 2006), 
including extreme temperatures (Verslues and Zhu 2005), 
drought (Bartels and Sunkar 2005), and salinity (Ahuja et al. 
2010). Exogenous application of ABA can regulate the accu-
mulation of secondary metabolites in fruits (Satoru et al. 2009; 
Zhu et al. 2012). It has also been shown that ABA treatment 
increased carotenoid and chlorophyll concentrations in tomato 

leaves and fruit (Barickman et al. 2014). Previous studies have 
shown that the stress tolerance of plants against adverse envi-
ronmental conditions is affected by ABA, which is the key 
regulator in response to environmental stresses (Taylor et al. 
1988). It can greatly improve the resistance of higher plants 
to adversities (Bartels and Sunkar 2005). It has been reported 
that ABA treatment can lead to a sharp increase in POD activ-
ity, while POD can neutralize part of H2O2 and reduce the 
damage of H2O2 in plants (Bueno et al. 1998). Under drought 
stress, ABA treatment can reduce the active oxygen species 
in maize and further improve its antioxidant capacity (Jiang 
and Zhang 2002). ABA treatment can also affect the accumu-
lation of carotenoids in tomato (Barickman et al. 2014; Zhu 
et al. 2012). Furthermore, due of its function as a signaling 
molecule, ABA can stimulate the change of fruit color. Exog-
enous ABA treatment of grapes resulted in quicker carotenoid 
production in the peel (Coombe and Hale 1973). Recently, 
Tian et al. (2016) reported that exogenously ABA (150 mgL−1) 
treated fruits of pepper, resulted in a significant increase the 
Capsaicin synthesis. A 150 mg L−1 of ABA treatment was 
used by Xiao (2014) to treat pepper leaves, resulting in a rapid 
decrease in chlorophyll and yellowing of leaves. It has also 
been found that treating tomato fruits with ABA (100 mg L−1) 
during ripening stimulates an increase in lycopene content, 
which is mainly affected by the negative effect of ABA on the 
GA3 content (Yu et al. 2016).

In higher plants, carotenoids are composed of the skeleton 
C40, which is cleaved to form ABA (Zhang et al. 2009). ABA 
regulates the expression of some chlorophyll degradation-
related genes and accelerates the decomposition of chlorophyll 
(Li et al. 2015). Similar investigations have been conducted in 
apples and tomatoes (Sun et al. 2012; Yu et al. 2016). Simul-
taneously,, the endogenous ABA treatment was also up-reg-
ulated the carotenoid synthesis pathway genes in grapevine 
(Enoki et al. 2017). There are currently very few research find-
ings on whether ABA can prevent the formation of carotenoids 
in pepper fruits or not.

Our previous studies have shown that CaATHB-12 gene 
could regulates carotenoid content under cold stress, and 
potential associated with oxygen scavenging mechanism 
(Zhang et al. 2020). Here, our aim to explored the func-
tion of CaATHB-12 using overexpression (OE) and virus-
induced gene silencing (VIGS) in both Arabidopsis and pep-
per. Our results provide further insights into the function of 
CaATHB-12 in plant ABA, salt, and osmotic stresses response.

Materials and Methods

Plant Materials and Growth Conditions

The gene silencing lines were created from Capsicum 
annuum and the overexpressed lines were created from 
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Arabidopsis thaliana to explore the CaATHB-12 gene 
function from both positive and negative aspects. Two 
plant materials were used. Capsicum annuum cv. R24 was 
obtained from the pepper research group, College of Horti-
culture, Northwest A&F University, P.R. China. Seedlings 
of pepper were maintained in a growth chamber under 16 h 
light at 25 °C and 8 h dark cycles at 20 °C as following in 
(Ul Haq et al. (2019). Fruit was harvested at 25, 35, and 
50 days post full blooming of flowers. Fruit samples were 
stored in frozen form in liquid nitrogen for later chemical 
analysis and gene expression analysis through quantitative 
real-time PCR (RT-qPCR). Arabidopsis thaliana ecotypes 
Columbia-0 was procured from College of Horticulture, 
Northwest A&F University, P.R. China, and maintained 
temperatures at 22 °C to light and 18 °C at night and a 65% 
of relative humidity (Wang et al. 2017).

Sequence and Phylogenetic Analysis of CaATHB‑12 
in Pepper

The CaATHB-12 sequence analysis was performed using 
the NCBI BLASTp program (Available online: http://​blast.​
ncbi.​nlm.​nih.​gov/​Blast.​cgi). The protein sequences were 
analyzed for finding the HD-Zip domain with other plant 
species by using the CLUSTALW following the methods 
of Guo et al. (2016). The alignment of CaATHB-12 pro-
teins with other plant species were done through the DNA-
MAN (Version 5.0) software and the phylogenetic tree 
was generated by the MEGA 6.0 program with the default 
parameters as described by Benson (Benson et al. 2000). 
Other physico-chemical properties such as the molecular 
weight (MW) and isoelectric point (PI) of the CaATHB-12 
were determined by EXPASY program (Available online: 
https://​www.​expasy.​org/) according to the method of He 
et al. (2018).

Expression of CaATHB‑12 Gene in Different Tissues 
of Pepper Using RNA‑Seq Data

The RNA-seq database (Version 1.5) of CM334 was 
used for analyzing the tissue-specific expression (http://​
peppe​rhub.​hzau.​edu.​cn/​index.​php, Kim et al. 2014). Data 
regarding RPKM (reads per kilo base per million mapped 
reads) of the CaATHB-12 gene for different organs includ-
ing leaves, stems, roots, as well as for the placenta and 
pericarp at 6 days post anthesis, 16 days post anthesis, 
and 25 days post anthesis was recorded and normalized 
at log2 while a the heatmap was constructed by program 
ImageGP (Available online: http://​www.​ehbio.​com/​Image​
GP/) as described by Huo et al. (2019).

VIGS Assay of CaATHB‑12 in Pepper Fruits

The tobacco rattle virus (TRV) based silencing method was 
used to knockdown the CaATHB-12 gene in pepper fruits 
(cv. ‘R24’). Tobacco rattle virus RNA1 (TRV1) and RNA2 
(TRV2) sequences were used as vectors in the pepper plant 
(Macfarlane 1999). A 307 bp portion of the CaATHB-12 
ORF was sequenced confirmed from pepper cDNA using 
the specific primer pair (Supplementary Table S1) with the 
restriction enzymes sites XbaI and KpnI. Special primers 
of CaATHB-12 and CaPDS were designed and then the 
target genes were injected into the TRV vector to gener-
ate TRV2:CaATHB-12 and TRV2:CaPDS (phytoene 
desaturase gene, the positive control) (Tian et al. 2014). 
The TRV:00 was acted as a negative control. The TRV1, 
TRV2 and TRV2:CaATHB-12 vectors were injected into 
the target fruits by using the Agrobacterium tumefaciens 
strain GV3101. The suspensions with Agrobacterium and 
TRV1, TRV2, and TRV2:CaATHB-12 (OD600 = 1.0) were 
injected into the green mature stage of pepper fruits (25 days 
after full bloom). The fruits were packed in sterilized filter 
papers in a clean and sterilized container and were placed 
in a growth chamber in dark condition for 48 h maintain the 
temperature at 18 °C with 35% of relative humidity. After 
2 days in the dark, the treated pepper fruits were shifted 
to 16 h/23°C on light day and 8 h/20 °C a dark day, fol-
lowing the methods of Tian et al. (2014). The control and 
silenced fruits were used for further analysis after 15 days 
of treatment as described by Tian et al. (2014). To reduce 
experimental error, all the experiments were independently 
repeated three times.

CaATHB‑12 Transgenic Arabidopsis Lines

The full-length ORF of the CaATHB-12 was cloned from 
pepper cDNA with specific primer pairs having restriction 
enzymes site XbaI and KpnI (Supplementary Table S1). The 
transgenic plants were grown on Murashige and Skoog (MS) 
medium supplemented with 50 mmol/L kanamycin and their 
screening was done through PCR. For further experiments, 
the third generation (T3) Arabidopsis seeds were used fol-
lowing the method of Zhang et al. (2020).

Stress Treatments and Sample Collection

To investigate the response of CaATHB-12 to abiotic 
stresses, leaf discs of 0.5 cm in diameter were collected 
from the CaATHB-12-overexpressed Arabidopsis leaves 
and floated in different concentrations of ABA (0, 50, 100, 
150, 200 and 250 mg L−1). The excised leaf discs of the 
CaATHB-12 overexpressed plants exposed to ABA stresses 
were put in a control environment at 26 °C with continuous 
fluorescent light for 3 days, and the method of Xiao et al. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.expasy.org/
http://pepperhub.hzau.edu.cn/index.php
http://pepperhub.hzau.edu.cn/index.php
http://www.ehbio.com/ImageGP/
http://www.ehbio.com/ImageGP/
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(2014) was followed to conduct the treatments with a little 
modification.

The selected TRV2:CaATHB-12 and TRV2:00 detached 
fruits were sprayed with 150 mg L−1 ABA following the 
methods of Zhang (2016) and Tian et al. (2016) with a lit-
tle modification. Fruit samples collection was conducted at 
0, 6, 12, 24 and 48-hours post treatment. Three independ-
ent biological replicates were conducted for each treatment 
experiments.

Additionally, the 3-week-old CaATHB-12 overexpressed 
(OE1 and OE2) and WT lines of A. thaliana were selected 
to further analyze their ABA, salt, and mannitol stress tol-
erance. For ABA stress, the seedlings (raised under normal 
growing conditions) were sprayed with 150 mg L−1 ABA 
and leaf samples were collected at 48 h. And then, the MDA, 
superoxide anion free radical, antioxidant enzymes activi-
ties, chlorophyll and carotenoid contents were measured. For 
salt stress, seedlings were watered 150 mM NaCl every two 
days for 7 days. For mannitol stress, seedlings were watered 
200 mM mannitol every two days for 7 days. Arabidopsis 
seedlings incubated under normal conditions were calcu-
lated as the following the control. Three separate seedlings 
samples were collected randomly, immediately kept in liquid 
nitrogen and stored at − 80 °C. Three independent biological 
replicates were used in experiments.

Fruit Color Measurement

Color measurement of the fruit samples were conducted 
according to the method of Michael et al. (1997), and the 
colorimetric system (CR-400, KONICA MINOLTA, Japan) 
was used to record the L, a, b, and C values of the fruits 
(Hunter 1987). The above-mentioned parameters represent 
respectively the “luminance”, “degree of red/green”, “degree 
of yellow/blue”, and “Chroma (saturation or vividness of 
color); Chroma= (a2 + b2)1/2”. After measurement of each 
fruit, the instrument was recalibrated and for reading the 
fruits were directly put on the diam aperture. These experi-
ments were conducted in three biological replicates.

RNA Extraction and Quantitative Real‑Time PCR 
(RT‑qPCR) Analysis

The total RNA extraction, synthesis of cDNA and RT-qPCR 
was done according to the methods of (Guo et al. 2014; 
Khan et al. 2018). The ubiquitin binding gene (CaUBI3) of 
pepper (Wan et al. 2011), and AtActin2 gene of Arabidopsis 
were correspondingly used as reference genes. NCBI Primer 
BLAST was used to design all the primer pairs (Supplemen-
tary Table S1) for RT-qPCR. Relative gene expression levels 
were determined following the 2−△△CT method (Schmittgen 
and Livak 2008).

Measurement of the Contributed Parameters 
in Pepper Silenced Fruits and Transgenic Arabidopsis

The lipid peroxidation in cell plasma membranes of pep-
per fruits and Arabidopsis lines were assessed by measur-
ing the antioxidant system and antioxidant substances. The 
malonaldehyde (MDA) content was measured using 0.5% 
2-thiobarbituric acid (TBA) containing 5% (w/v) trichlo-
roacetic acid reaction following the method of Buege and 
Aust (1978). The chlorophyll and carotenoid contents were 
quantified and calculated by the method described by Porra 
et al. (1989). Anthocyanins content was measured according 
to the method of Christie et al. (1994). The determination 
of total phenols and flavonoids were measured according 
to the method of Rodov et al. (2010) with slight modifica-
tion, we used (OD280/g) and (OD325/g) to indicate the rela-
tive amounts of total phenols and flavonoids, respectively, 
while the catalase (CAT) activity was determined using the 
method of Aebi (1984), superoxide dismutase (SOD) and 
peroxidase (POD) activities were measured following the 
method of Stewart and Bewley (1980), glutathione peroxi-
dase (GPX) activity was measured according to Flohé and 
Günzler (1984), ascorbate peroxidase (APX) activity was 
determined the protocol of Nakano and Asada (1987), super-
oxide anion free radical (O2

−·) accumulation was determined 
as described previously by Zweier (1988), hydrogen perox-
ide (H2O2) content was measured by the method of Brennan 
and Frenkel (1977).

Statistical Analysis

Statistical analysis was executed through Statistical Analy-
sis System software (IBM SPSS Statistics 19.0, USA) for 
analysis of variance (ANOVA). A least significant difference 
(P ≤ 0.05) test was used to identify significant differences 
among the treatments. All experiments were performed and 
analyzed with three independently biological replicates.

Results

Expression of CaATHB‑12 at Different 
Developmental Stages and Analysis of Color 
Parameters of Pepper Fruit

To illuminate the function of CaATHB-12, with tissue-
specific analysis of the vegetative (roots, stems, and 
leaves) and reproductive parts (three different develop-
mental stages of pericarp and placenta) were conducted 
using the Pepper Hub from the pepper CM334 (http://​
peppe​rhub.​hzau.​edu.​cn/​index.​php, Kim et  al. 2014). 
As revealed in Supplementary Fig. S1, at 6 days post-
anthesis (DPA) of the pericarp (PC) displayed the highest 

http://pepperhub.hzau.edu.cn/index.php
http://pepperhub.hzau.edu.cn/index.php
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expression of CaATHB-12 gene, followed by stems, 
PC-16 DPA, roots, and PL-6 DPA, while leaves had the 
lowest expression at PL-25 DPA. However, there were no 
obvious changes in the expression profile of carotenoid-
biosynthetic genes. The transcriptomic results indicated 
that the expression of CaATHB-12 was higher in the peri-
carp development process. Furthermore, the transcript 
levels of CaATHB-12 under normal condition in three 
continuous developmental stages of ‘R24’ pepper fruit 
(Fig. 1A) was investigated by RT-qPCR. Results obtained 
showed that “L” (represented “luminance”), “b” and 
“C” values initially decreased, followed by an increase 
at the final stage of fruit ripening, while the “a” value 
increased in the whole period of fruit ripening (Fig. 1B). 
CaATHB-12 transcripts were detectable in all stages, with 
Stage 3 (50 days after full bloom) and Stage 2 (35 days 
after full bloom) having the highest expression level, 
and the least expression at stage 1 (25 after full bloom) 
(Fig. 1C). These dynamic changes in the above-mentioned 
parameters proposed that fruit color change follows the 
rule: green, bottle green, light-colored, and red.

Virus‑Induced Gene Silencing (VIGS) of CaATHB‑12 
in Pepper Detached Fruit

TRV2 vector carrying the CaATHB-12 gene was vaccinated 
into the Capsicum annuum cv. R24 detached fruits. 15 days 
post-inoculation, different colors were noted in the CaATHB-
12-silenced fruits as compared to the control (Fig. 2A). The 
color of the CaATHB-12-slienced fruits changed from green 
to yellow, while that of the control fruits were from green to 
red color. Simultaneously, the TRV2:CaPDS (positive con-
trol) detached fruits were green to orange-yellow color. Fur-
thermore, silencing efficiency measured through RT-qPCR 
affirmed that CaATHB-12 transcript level in the silenced 
fruits were 86% lower as compared to the control (Fig. 2B). 
Similarly, the carotenoids content in the silenced fruit was 
also significantly lower than the control fruit (Fig. 2C).

Effect of ABA Stress on CaATHB‑12 Silenced Pepper Fruit

Further investigated the function of CaATHB-12 under 
ABA treatment, the CaATHB-12-silenced and control fruits 
were treated with ABA solution (150 mg L−1). To study the 
silencing effect of CaATHB-12 in pepper fruits, the ROS, 

Fig. 1   Dynamics of change of 
color parameters in pepper R 24 
fruits at three stages 25, 35, and 
45 days after full bloom denoted 
as Stage 1, Stage 2 and stage 3, 
respectively. A Fruit pheno-
types. Scale bar represents 
1 cm B Colorimetric L value 
(luminescence), a value (degree 
of red/green), b value (degree of 
yellow/blue) and C value (satu-
ration or vividness of color) 
at the three different stages of 
fruit development. C Expres-
sion of CaATHB-12 gene in 
the three development stages. 
Error bars represent standard 
error for three replicates, and 
the different letters indicate the 
significant level at the P > 0.05
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MDA contents, chlorophyll contents, and ROS scaveng-
ing antioxidants enzymes were measured at different time 
points (0, 6, 12, 24 and 48 h) post treatment in pepper fruits. 
The H2O2 content of the empty vector (control) fruits were 
significantly higher (4 folds) at 48 h than the CaATHB-
12-silenced fruits (Fig. 3A). Correspondingly, the malon-
dialdehyde (MDA) and O2

−· levels followed similar trend 
of increment after ABA treatment in both the control and 
silenced fruits (Fig. 3B, C).

The antioxidant enzyme system of the pepper plants was 
stimulated in response to stress in order to mitigate the ROS 
associated damage. The activities of CAT, POD, SOD and 
APX gradually increased at each time point (Fig. 4). How-
ever, the antioxidant enzyme activities of the above-men-
tioned enzymes were significantly higher in the CaATHB-
12-silenced fruits than the control. The POD activity 

increased at all time points and reached their peaks in both 
TRV2:00 and TRV2:CaATHB-12 at 48 h, which was about 
4-fold and 5.8-fold respectively (Fig. 4A). Both the SOD and 
POD activities levels followed the same trends of enhance-
ment after ABA treatment in both control and silenced pep-
per fruits, but their respective peaks were higher than control 
fruits (Fig. 4B, C). Though the GPX activity significantly 
increased up to 24 h post stress in the CaATHB-12-silenced 
fruit and then decreased at 48 h (Fig. 4D).

Thus, we measured the total carotenoid, anthocyanin, 
flavonoid and total phenolic contents from both CaATHB-
12-silencedand control pepper fruits at different time points. 
In control fruits, a slight increase in total carotenoid con-
tents was noted until 48 h post-treatment, whereas in the 
CaATHB-12-silenced fruits, the ABA treatment caused a 
significant and dynamic increase in the total carotenoid 

Fig. 2   Effect of CaATHB-12 gene silencing on the pepper fruit 
color. A  Phenotypical changes of pepper fruits. WT-fruit, no injec-
tion treatment in pepper fruits; TRV2:00, pepper fruits injected with 
the TRV empty vector; TRV2:CaATHB-12, pepper fruits injected 
with the TRV vector carrying CaATHB-12 gene; TRV2:CaPDS, pep-
per fruits injected with the TRV vector carrying CaPDS gene, used 

as positive control. B The relative expression of CaATHB-12 in fruits 
of CaATHB-12-silenced and control (TRV2:00) fruits. C Carotenoid 
content in the fruits of CaATHB-12-silenced and control (TRV2:00). 
Error bars denote standard deviation for three replicates. The letters 
in lowercase indicate significantly different levels at P > 0.05
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contents (Fig. 5A). Similarly, the measured anthocyanin 
contents at 48 h were also almost significantly higher (7 
folds) in the silenced fruits as compared to the control fruit 
(4.5 folds) (Fig. 5B). Flavonoid and total phenolic contents 
followed the similar trend of increment after ABA stress in 
both silenced and control pepper fruits. In addition, after 
ABA stress the flavonoid at 24 h and total phenolic contents 
at 12 h were significantly higher in the silenced fruits com-
pared to control, and then a bit decrease was recorded in the 
silenced fruits, but they were still significantly higher than 
control fruits (Fig. 5C, D).

Additionally, exogenous application of ABA (150 mg 
L−1) induced the transcript level of CaATHB-12 in the 
both silenced and control fruits, but the expression level 
of the silenced fruits was lesser than that in the control 
fruits at 0 and 6 h, while its expression abruptly increased 
at 12 h, reached to maximum at 48 h, and was significantly 
higher than the control (Fig. 6A). The carotenoid synthe-
sis related genes (CaPSY, CaZEP, CaBCH, CaLCYB) were 
also differentially induced, and their expression levels were 

significantly higher in the CaATHB-12-silenced fruits than 
that in the control at 48 h, expect CaLCYB gene (Fig. 6B, 
E). Furthermore, the transcript levels of the defense-related 
genes (CaPOD, CaSOD and CaMYB44) were significantly 
higher at 24 and 48 h in the CaATHB-12-silenced fruits as 
compared to the control except CaSOD which reached to 
peak at 12 h (Fig. 6F, H). These results partially revealed 
that CaATHB-12 played a negative role in the plant defense 
response against ABA osmosis stress.

Effect of CaATHB‑12 Overexpressing on Transgenic 
Arabidopsis

To further explore the function of CaATHB-12, the 
CaATHB-12-overexpressed transgenic lines of Arabidopsis 
were generated. Under normal growth conditions, there are 
no discernible differences between CaATHB-12-overex-
pressed lines (CaATHB-12-OE) and wild type Arabidopsis 
plants (Fig. 7A). Furthermore, the yellowing symptoms 
in leaf discs of both transgenic and WT lines aggravated 

Fig. 3   Effect of CaATHB-12 silencing on pepper tolerance to ABA stress. A H2O2 Content B Level of O2-· C MDA content under ABA stress. 
Error bars denote standard deviation for three replicates. The letters in lowercase indicate significantly different levels at P > 0.05
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as the ABA concentration increases (Supplementary Fig. 
S2A). Though, as compared to the transgenic lines, the 
carotenoid content was significantly reduced in WT lines 
when treated with ABA, while the chlorophyll content of 
the transgenic lines displayed lower levels than that in WT, 
and the highest variation was noted with 150 mg L−1 ABA 
solution, where transgenic lines provided approximately 
0.2 mg/g and WT lines provided 0.83 mg/g chlorophyll 
content, the former being 75% lower than the latter (Sup-
plementary Fig. S2B-C). After treated with exogenous 
ABA (150 mg L−1) treatment at 48 h, no difference was 
detected in the withering symptom of both transgenic and 
WT lines (Fig. 7A). Interestingly, the carotenoid and total 
chlorophyll contents in OE lines were lower than that of 
the wild type (Fig. 7B-C). However, the ROS included 

H2O2 contents and O2
−· levels in OE lines were higher 

than that of the wide type (Fig. 7D-E). Furthermore, the 
MDA content of the WT lines was slightly increased and 
was higher than transgenic seedlings (Fig. 7F). Further-
more, the CAT, POD, SOD, APX and GPX activities of 
the transgenic seedlings were significantly lower than the 
WT (Fig. 8), and a significant difference was found in the 
above-mentioned antioxidant enzymes activities of the 
transgenic lines and wild type Arabidopsis. Meanwhile, 
the transgenic Arabidopsis thaliana showed dehydration 
and wilting with weak growth under salt and mannitol 
treatment (Fig.  9A). However, the WT plants showed 
a slight yellowing phenotype with lower MDA, H2O2, 
O2

−·content and higher CAT, POD activities than OE lines 
(Fig. 9B–F).

Fig. 4   The effect of 
CaATHB-12 silencing on 
antioxidant enzymes under 
ABA stress in pepper. A POD 
activity; B SOD activity; 
C APX activity; D GPX activ-
ity; E CAT activity. Error bars 
denote standard deviation for 
three replicates. The letters in 
lowercase indicate significantly 
different levels at P > 0.05
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Discussion

As sessile organisms, plants are exposed to various envi-
ronmental stresses during growth and development. If sub-
jected to adversity environments such as drought, high salt 
and abscisic acid, the membrane integrity of the plants will 
be disrupted, resulting in adverse effects such as low pho-
tosynthetic rate and cell dysfunction, which will eventually 
lead to crop yield reduction (Wei et al. 2016), it will also 
lead to the formation of ROS, cell damage, metabolic dis-
orders, and aging processes (Jaleel et al. 2009). The ROS 
in low concentrations are important signaling molecules, 
but the increased quantities of ROS result in the generation 
of oxidative secondary stress (Bailey-Serres and Mittler 
2006). In higher plants, abiotic stressors (extremes heat/
cold, salt) are due to the imbalance between pro-oxidants 
and antioxidants resulting in oxidative stress (Sreenivasulu 
et al. 2007). HD-Zip I transcription factors were involved 
in response to various environmental stresses such as low 
temperature, salt, and ABA in regulating fruit development 
(Jiang et al. 2017; Zhang et al. 2020), by regulating the 
expression of downstream related genes to promote plant 
oxidation stress response (Ariel et al. 2010; Harris et al. 
2011). On the other hand, the HD-Zip transcription factors 
also help in the synthesis of color pigments such as chlo-
rophyll and carotenoids (Lu et al. 2014; Manavella et al. 
2008). In our previous studies, we identified and cloned 
the CaATHB-12 gene of the HD-Zip I subfamily which 

includes corresponding conserved HD and Zip motifs 
(Zhang et al. 2020), interact in vitro with the pseudo-pal-
indromic sequence CAAT(A/T)ATTG (Ariel et al. 2010), 
and were involved in the tolerance to exogenous ABA 
application (Ribichich et al. 2013).

Previously, it was reported that the expression of photo-
synthesis-related gene was regulated by the HD-Zip tran-
scription factor HAHB4 in sunflower, which further regu-
lated the synthesis of carotenoids in transgenic Arabidopsis 
(Manavella et al. 2008). This gene interacted with MYB, 
bHLH and WD40 partners in the cytoplasm and participates 
in the regulation of related pigment accumulation (Jiang 
et al. 2017). The stability and integrity of the cell mem-
brane is an important foundation for plant to grow (Rui et al. 
2010). The production of MDA in plants has an important 
impact on the normal function of the cell membrane. The 
chlorophyll content is reduced by the influence of excess 
reactive oxygen, which approximately measures the degree 
of stress damage in the plant (Choudhury et al. 2017). Under 
normal growth conditions, ROS such as H2O2 and O2

−· are 
in dynamic balance, but under abiotic stress, the balance 
is broken, and excess reactive oxygen will damage the cell 
structure and corresponding functional proteins in the cell. 
In this experiment, the control fruit accumulated more H2O2 
and O2

−· than CaATHB-12-silenced fruit, and the amount 
of H2O2 and O2

−· of the OE plants were found significantly 
higher than that of WT. Our results revealed that the pep-
per CaATHB-12 gene plays a regulatory role in improving 

Fig. 5   The effect of 
CaATHB-12 silencing on pig-
ment content under ABA stress 
in pepper. A total carotenoid 
content, B anthocyanin con-
tent, C flavonoid content and 
D total phenolic content under 
ABA stress. Error bars denote 
standard deviation for three rep-
licates. The letters in lowercase 
indicate significantly different 
levels at P > 0.05
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the scavenging capacity of ROS and lowering the oxidative 
stress.

Abscisic acid (ABA) being a “stress hormones” (Brandt 
et al. 2014), while the induction of exogenous ABA toler-
ance could be due to elevating the activities of the anti-
oxidant enzymes system, which helped to reduce the ROS 
accumulation and protect the membrane structure from 
oxidative damage (Yu et al. 2019). Higher plants possess a 

sophisticated and complex system of antioxidant enzymes 
and non-enzymatic systems in response to various stresses 
(Ali et al. 2008), in which SOD acts as a large number of 
antioxidants (SOD, CAT, POD, APX, and GPX) can decom-
pose O2

−· into H2O2, which is further removed by POD and 
APX (Choudhury et al. 2017). On the other hand, non-
enzymatic active oxygen scavenging systems mainly con-
tain bioactive substances such as carotenoids, anthocyanins, 

Fig. 6   Expression profiles of 
carotenoid synthesis regulatory 
genes and antioxidant enzyme 
related genes in response to 
ABA stress. The expression lev-
els of A CaATHB-12, B CaPSY, 
C CaZEP, D CaBCH, E CaL-
CYB, F CaPOD, G CaSOD, 
H CaMYB44 were investigated 
by RT-qPCR. Error bars denote 
standard deviation for three rep-
licates. The letters in lowercase 
indicate significantly different 
levels at P > 0.05
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polyphenols and flavonoids (Gill and Tuteja 2010). Relevant 
research reported that the ATHB-12 gene in Arabidopsis 
negatively regulates the elongation of plant stems and is 
induced by NaCl and ABA treatments (Olsson et al. 2004). 
Previously, we found that the expression of CaATHB-12 
could be modulated significantly during cold stress (Zhang 
et al. 2020). In this study, the CaATHB-12 gene was hetero-
geneously expressed in Arabidopsis thaliana. After ABA 
(150 mg L−1) treatment, the activities of GPX, SOD, APX 
and POD in the transgenic lines were lower than that of WT, 
while the activity of CAT was contrary to the law. We specu-
late that overexpression of A. thaliana leads to a reduction in 
the activity of most antioxidant enzymes in plants, and the 
MDA content is higher than that of WT, indicated that the 
extent of cell membrane damage in transgenic plants caused 
by abiotic stress was higher than in WT plants. Although 
CAT is an important enzyme for removing H2O2 (Karpinski 
and Muhlenbock 2007; Lee et al. 2007), due to the reduction 
in the activity of other important antioxidant enzymes, it is 
not enough to remove excess O2

−·, which in turn reduced 

the ability of the expression strain to clear ROS reduces the 
stress resistance of the plant.

The antioxidant capacity of plants is manifested through 
the synergistic effect of various antioxidants. Bioactive 
substances (such as total phenols, flavonoids, carotenoids, 
and anthocyanins) as antioxidants have a crucial role in 
improving plant resistance (Chang et al. 2019; Singh et al. 
2017). Wang et al. (2020) reported that exogenous applica-
tion of ABA (150 mg L−1) had a forceful inhibitory effect 
on the nitrogen accumulation of fruit, resulting in disorders 
of nitrogen metabolism, so affecting pigmentation in ‘Red 
Fuji’ apple fruit. At the same time participate in the con-
struction of photosynthetic complex protein PSI and main-
tain the stability of thylakoid membrane (Gill et al. 2011; 
Niyogi et al. 2001). Havaux (2014) reported that carot-
enoids function as an oxidative stress signaling molecule. 
β-carotene is the main component of carotenoids, that can 
interact with hydrogen peroxide (H2O2), superoxide radicals 
(O2

−·) accumulation, free radical reaction (Mahapatra et al. 
2013), at sufficiently high concentrations, carotenoids are 

Fig. 7   Over-expression of the 
CaATHB-12 reduced ABA 
stress tolerance in Arabidopsis. 
A Phenotypes of the Arabidop-
sis thaliana (wild type OE1 and 
OE2) after ABA (150 mg L−1) 
treatments; B total carotenoid 
content of Arabidopsis trans-
genic lines; C total chlorophyll 
content; D H2O2 content; 
E Level of O2

−· and F MDA 
content under ABA stress. Scale 
bar represents 1 cm. Error bars 
denote standard deviation for 
three replicates. The letters in 
lowercase indicate significantly 
different levels at P > 0.05
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more effective in protecting lipids from peroxidative damage 
(Ahmad et al. 2010). Because of their unique structure, fla-
vonoids can locate free radical molecules in cells and at the 
same time scavenge free radicals, making them important for 
plants under harsh environmental conditions (Løvdal et al. 
2010). Studies have reported that the concentration of fla-
vonoids will increase under conditions of cold damage, low 
temperature, and lack of hormones (Winkel-Shirley 2002). 
At the same time, it was found that flavonoids have good 
nitrogen tolerance under the condition of nitrogen deficiency 
(Peng et al. 2008). Interestingly, polyphenols are directly 
involved in the process of plant antioxidant stress response, 
and has the function of metal chelating agent (Ksouri et al. 
2008). Studies have shown that the antioxidant activity of 
blueberries is closely related to the total phenolic content 
and anthocyanin content (Ehlenfeldt and Prior 2001), and 
the high content of total phenol and anthocyanin content 

improves the antioxidant activity of plants (Kalt et  al. 
2000). In our study, silencing the CaATHB-12 reduced the 
carotenoid content, and the expression levels of the related 
gene involved in carotenoid regulation were also reduced 
compared to the control fruit (Fig. 6). Previous studies also 
showed that RhHB1 (HD-Zip I) impacted the flower color of 
rose (Rosa hybrida) (Lu et al. 2014). Similarly, Jiang et al. 
(2017) showed that silencing of MdHB1 (HD-Zip I) caused 
the accumulation of anthocyanin in ‘Granny Smith’ flesh 
apple, whereas its overexpression reduced the flesh content 
of pigment in ‘Ballerina’ (red-fleshed apple). After exog-
enous ABA treatment, the carotenoid synthesis rate of the 
silenced fruits was significantly higher than that of the con-
trol fruits, while the contents of total phenol and flavonoids 
were higher than that of the control fruit (Fig. 5). On the 
other hand, after ABA treatment, the carotenoid content of 
the CaATHB-12-overexpressed lines was slightly lower than 

Fig. 8   The levels of antioxidant 
enzymes in WT and CaATHB-
12-OE lines under ABA stress. 
A CAT activity; B POD activ-
ity; C SOD activity; D APX 
activity; E GPX activity. Error 
bars denote standard devia-
tion for three replicates. The 
letters in lowercase indicate 
significantly different levels at 
P > 0.05
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that of WT (Fig. 7). We speculated that the CaATHB-12 
gene of pepper is involved in inducing the production of 
related bioactive substances and regulating the resistance 
of plants to abiotic stress.

Exogenous ABA also modulates the expression of gene 
networks that control other ameliorative and adaptive stress 

responses in plants (Lim et al. 2015). In previous studies, 
ABA responses have a wide and various range of down-
stream effects, and their network of the hormonal pathways 
is further complicated by interactions with ROS (Pinheiro 
and Chaves 2011). So, CaATHB-12 could become funda-
mental part of the ROS-mediated ABA signaling cascade in 

Fig. 9   The salt, and drought resistance of CaATHB-12-OE and 
control Arabidopsis plants. A  Phenotypes of wild-type (WT) and 
CaATHB-12-OE Arabidopsis, B  MDA content, C  CAT activ-
ity, D  SOD activity, E  H2O2 content, and F  the O2

− · of WT and 

CaATHB-12-OE Arabidopsis plants for 7 days with containing 150 
mM NaCl and 200 mM mannitol, respectively. Error bars denote 
standard deviation for three replicates. The letters in lowercase indi-
cate significantly different levels at P > 0.05
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plants. On the other hand, loss-of-function ATHB12 mutants 
have illustrated that the gene activates clade a protein phos-
phatases 2 C (PP2C) genes to interact with proteins of the 
basal transcriptional machinery and repress AHG3 (Protein 
Phosphatase 2CA), ABI2 (ABA Insensitive 2), and ABI1 
(ABA Insensitive 1) (Ma et al. 2009; Rubio et al. 2009), 
thus acting as negative regulators of ABA signaling net-
works, meanwhile the binding of some of these targets is 
ABA-dependent for ATHB12 (Valdés et al. 2012). In addi-
tion, ATHB20 and ATHB5 act as negative regulators of 
ABA sensitivity in germinating plants (Barrero et al. 2010; 
Johannesson et al. 2003) and ATHB6 has also been proposed 
as negative modulator of the ABA response (Himmelbach 
et al. 2002; Reyes et al. 2006). Moreover, over-expression 
of CpHB-7 isolated from Craterostigma plantagineum in 
Arabidopsis resulted in reduced sensitivity towards ABA 
treatment (Deng et al. 2006). Many stress-related genes in 
plants generally mediate the response of plants to stress. For 
example, AtMYB44 gene can regulate ABA signal-mediated 
plant response to NaCl and drought stress (Nguyen et al. 
2019), AtDREB2A as an ABA signal response gene can be 
induced by low temperature expression (Nakashima et al. 
2000), Mn-SOD and POD, as marker genes related to the 
antioxidant system, are involved in responding to various 
stresses (Guo et al. 2012). Rai et al. (2013) study revealed 
that under the control of stress-inducing factor (RD29A), the 
overexpression of AtDREB1A in tomatoes showed enhanced 
levels of antioxidant enzymes and antioxidant substances, 
and the ability to drought-induced oxidative stress greatly 
enhanced. Our research shows that after ABA treatment, the 
content of POD and SOD in the CaATHB-12-silenced fruits 
are higher than that of the control fruits. Altogether, our 
study indicating that the CaATHB-12 gene is involved in 
the regulation of ABA-mediated oxidative stress response, 
which is further induced by exogenous ABA, but the exact 
molecular regulatory mechanisms need further study. There-
fore, reduced tolerance to ABA stresses of the CaATHB-
12-overexpressed plants may be due to partially impeded 
expression of these genes. Furthermore, this research will 
closely focus on fundamental insights for future studies to 
precisely explore the role of the CaATHB-12 gene in regula-
tory pathways.

Conclusions

Taken together, we characterized a gene CaATHB-12 
derived from HD-Zip I subfamily which was intensively 
induced by exogenous ABA, salt, and mannitol applications. 
Efficient gene silencing lines were created from pepper, 
and stable heterologous overexpression lines were created 
from Arabidopsis to achieve a comprehensive exploration 
of gene function. The functional study of CaATHB-12 in 

pepper increased plant sensitivity to ABA stress, while the 
over-expressing CaATHB-12 in Arabidopsis lines revealed 
that tolerance to ABA, salt, and mannitol stresses was 
decreased. Furthermore, CaATHB-12 plays a fundamental 
role in elevating the tolerance to these stresses through the 
increased expression of other stress related genes, increas-
ing the activities of anti-oxidant enzymes and scavenging 
the ROS. The studied functions of the CaATHB-12 gene 
may provide some insights in exquisite molecular detail by 
pursuing signal transduction mechanisms that converge on 
gene expression patterns.
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