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Abstract
Punica granatum belongs to the Lythraceae family is one of the most important subtropical fruits native to Iran. Although 
the production of fruit has increased recently, there is still a gap between demand and supply. Improper handling, trans-
portation, packaging and storage, mechanical damage, and susceptibility to chilling injury and its related physiological 
disorders during long-term storage are the most important causes of pomegranate postharvest losses. Fruit quality is lost 
with visible symptoms such as weight loss, shriveling, husk scald, fungal rot, aril color degradation, and off-flavor during 
long-term storage. Preserving the quality is the most important goal of the postharvest physiology industry. To minimize 
both qualitative and quantitative postharvest losses, it is crucial to apply appropriate knowledge and technologies during both 
the harvest and postharvest stages of pomegranate production. This helps to maintain the quality and shelf life of the fruit. 
This paper reviewed recent studies that used simple, eco-friendly, synthetic and organic plant growth regulator treatments 
in underdeveloped and developing countries, including proper packaging according to consumer demand and safe preserva-
tives application, which significantly reduces postharvest losses and improves overall quality of pomegranate fruit and arils.
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Introduction

Daily consumption of fruits and vegetables is essential for 
human health due to their nutritional and bioactive com-
pounds (Fraga et al. 2019). Pomegranate is an edible and 
medicinal fruit with high economic and nutritional value and 
rich in phenolic compounds, antioxidants, sugars, vitamins, 
organic acids, unsaturated fatty acids (unSFAs), minerals, 
and fiber (Mahesar et al. 2019; El-Mahdy et al. 2022). Pome-
granate has an anti-inflammatory effect and reduces high 
blood pressure (Barati Boldaji et al. 2020; Pfohl et al. 2021), 
and also effective in preventing heart diseases, diabetes, and 

cancer (Kushwaha et al. 2020; Stawarska et al. 2020; Chaves 
et al. 2020).

Fresh fruit losses are increasing in post-harvest processes 
(FAO 2019). Pomegranate fruits show chilling injury (CI) 
symptoms at temperatures below 5 °C, including rotting, 
browning, and cracking of the peel. In addition to CI, weight 
loss during storage causes the hardness of the peel and seeds, 
wrinkling, and senescence (Caleb et al. 2012, 2013). Weight 
loss and microbial decay due to transpiration and respira-
tion are among the main problems of post-harvest storage 
(Kahramanoglu 2017). Long-term storage of pomegranate 
arils causes more weight loss due to lower resistance of the 
cell membrane against water loss (Belay et al. 2018). Fruit 
water loss during storage results in husk browning (Nerya 
et al. 2006). Additionally, polyphenol oxidase (PPO) and 
peroxidase (POD) activity enhances the brown superficial 
discoloration of pomegranate fruits (Baghel et al. 2021), 
which is the primary cause of quality decrease (Ioannou 
and Ghoul 2013). Weight loss increases CI symptoms by 
destroying the membrane integrity (Maghoumi et al. 2023). 
Damage to the membrane structures and a lack of resistance 
to cold are results of the decrease in unSFAs content and 

Handling Editor: Nicola Busatto.

 * Farid Moradinezhad 
 fmoradinezhad@birjand.ac.ir

1 Department of Horticultural Science, School of Agriculture, 
Birjand University, Birjand, Iran

2 Pistachio Research Center, Agriculture Research Education 
and Extension Organization (AREEO), Horticultural Science 
Research Institute, Rafsanjan, Iran

http://orcid.org/0000-0002-8300-2276
http://crossmark.crossref.org/dialog/?doi=10.1007/s00344-023-11189-4&domain=pdf


1369Journal of Plant Growth Regulation (2024) 43:1368–1383 

1 3

membrane fluidity, and it has been reported electrolyte leak-
age in the pomegranate peel has been linked to CI symptoms 
(Casares et al. 2019). Packaging and edible coatings reduces 
the vapor pressure difference between the surface and envi-
ronment of the product by maintaining the relative humidity 
around the fruit, accordingly reducing the water loss of the 
product (Ngcobo et al. 2013). Also, nanoparticle technology 
helps to increase shelf life and reduce waste due to the con-
trolled release of nutrients (Ding et al. 2022). Nano-elements 
can maintain antioxidant capacity with their antibacterial 
effects in food packaging (Sirelkhatim et al. 2015; Saba and 
Amini 2017). In addition, plant growth regulators improve 
tolerance to abiotic stresses by scavenging or reducing the 
accumulation of active oxygen species (AOS), electrolyte 
leakage, and expression of stress-specific genes (Rachap-
panavar et al. 2022).

Pomegranate has a short ripening period with low stora-
bility (Ozdemir and Gokmen 2017; Melgarejo-Sanchez et al. 
2021), and considering the nutritional value of pomegranate, 
maintaining its quality and nutrients is a research priority. 
The requirement to increase the shelf life of fresh fruits is to 
minimize the rate of biochemical reactions and enzymatic 
and microbial degradation (Kirandeep et al. 2018; Kumar 
et al. 2020). Therefore, this review aimed to investigate the 
mechanism of action of the main practical post-harvest treat-
ments, which influence the quality and storage life of pome-
granate fruit (Table 1).

Post‑Harvest Management

Packaging Films

Food packaging preserves nutritional value by preventing 
contact with spoilage agents such as microorganisms, oxy-
gen, and moisture (Khan et al. 2021). Films to improve the 
physicochemical properties and shelf life of fruits devel-
oped, and the usage of synthetic and semi-synthetic poly-
mers is common (Ferreira et al. 2020; Shen et al. 2020). 
Polymer films are used for packaging due to their low pro-
duction cost and excellent barrier properties against mois-
ture and gases (Azeem et al. 2022; Dissanayake et al. 2022). 
The polymer film was successfully used on pomegranate 
fruit and improved overall quality and storage life of arils 
(Moradinezhad et al. 2018, 2020). Packaging fruit with 
micro- and macro-perforation high-density polyethylene 
(HDPE) reduced postharvest losses by minimizing moisture 
condensation, fruit rot, and shriveling (Lufu et al. 2021). 
Fruit packaged in the micro-perforated Xtend® had the 
most negligible weight loss and respiration rates compared 
to unpacked fruit (Kawhena et al. 2022). Arils packed with 
Xtend® maintained phenol, anthocyanin, ascorbic acid, and 
antioxidants compared to low-density polyethylene (LDPE) 

and polypropylene (PP). Also, the organoleptic quality 
increased due to the reduction of water loss and preserva-
tion of color (Dhineshkumar et al. 2017). Arils packed in the 
semi-permeable films had high polyphenols, anthocyanins 
contents, enzymatic activity (superoxide dismutase (SOD), 
catalase (CAT), and ascorbate peroxidase (APX)), and low 
PPO and POD activity (Adiletta et al. 2019). In a similar 
study, silver nano-bag maintained the taste, aroma, over-
all acceptability, anthocyanin, vitamin C, and antioxidant 
activity and reduced pectinase activity compared with Xtend 
bag, polyethylene bag, and polypropylene bag (EL-Eryan 
2020). Passive modified atmosphere using XTend™ bags 
increased the anthocyanin concentration in the peel and arils 
and delayed the symptoms of CI (Valdenegro et al. 2022). In 
addition, vacuum (Moradinezhad et al. 2019) and modified 
atmosphere (Dorostkar and Moradinezhad 2022) packag-
ing using LDPE bags significantly maintained fruit quality 
and reduced losses of pomegranate fruit cultivar Shishe-
Kab. Reduction of microbial contamination and maintain 
the quality of arils was observed in polyethylene-polyester 
bilayer film compared to polypropylene biaxial orienta-
tion (Ranjbar and Ramezanian 2022). Packaging can lead 
to structure preservation, less tissue damage and extending 
shelf life of aril due to increased vapor pressure and reduced 
cell wall polysaccharides degradation (Zhao et al. 2019) 
(Table 1 and Fig. 1A).

Edible Coatings

Edible coatings can maintain quality by creating a semi-
permeable barrier against gas and moisture exchange. Also, 
they may carry active components such as nanoparticles that 
have antimicrobial or antioxidant activity against bacteria 
and ultraviolet (UV) rays, respectively, to improve the prop-
erties of coatings (Aristizabal-Gil et al. 2019; Sharma et al. 
2020; Firdous et al. 2023). Nano-stimulants can be natural or 
chemical plant extracts, nanocomposites containing macro-
nutrients, micronutrients, or chitosan. Polysaccharide-based 
coatings are colorless and have low calories with antioxidant 
and antibacterial characteristics (Harkin et al. 2019).

Post-harvest application of chitosan coating reduced 
respiration rate, weight loss, and shriveling symptoms of 
the pericarp surface of pomegranate fruit (Varasteh et al. 
2018). Combination of modified atmosphere packaging 
and chitosan coating significantly reduced weight loss and 
husk scald symptoms (Candir et al. 2018). Similarly, CH-
24-epibrassinolide coating reduced weight loss, respiration 
rate, electrolyte leakage, and microbial spoilage, followed by 
delayed texture, color, and total soluble solids (TSS) deg-
radation (Mwelase and Fawole 2022). Combined chitosan 
and potassium sorbate (PS) decreased the CI symptoms, 
electrolyte leakage, and malondialdehyde (MDA) contents 
of fruit peel. Furthermore, it enhanced the activity of DPPH 
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Table 1  Physiological and molecular mechanisms involved in maintaining post-harvest quality of pomegranate

Treatment Physiological and molecular mechanisms References

Packaging films Decreasing respiration rate and ethylene production, 
and delay ripening; Reducing weight loss and husk 
scald; Less chilling injury (CI), Increase of antioxidant 
activity; lower changes in acidity and soluble solids 
content; Inhibition of microbial activity by reducing 
pH and intracellular activities

Selçuk and Erkan (2015), Candir et al. (2018), Serry 
(2019)

Edible coatings Inhibiting oxidative reactions, decreasing respiration 
rate, enzymatic browning, and release of volatile 
compounds, increasing the content of phytochemicals 
and delaying senescence, maintaining the balance of 
intracellular oxidation metabolism due to the ability 
to remove cytotoxic compounds through enzymatic 
antioxidants and non-enzymatic antioxidants;

Palma-Guerrero et al. (2010), Lopez-Moya et al. (2015), 
Sayyari et al. (2016), Beatrice et al. (2017), Kumar 
et al. (2017), Munhuweyi et al. (2017b), Wang et al. 
(2017), Liu et al. (2018), Resende et al. (2018), Adil-
etta et al. (2021), Hira et al. (2022)

Effect on germination and hyphae morphology of fungal 
pathogens, preventing the growth of pathogenic and 
mycoparasitic fungi by increasing the permeability of 
the plasma membrane and nutrient limitation carbon 
and nitrogen and as a result cell wall structure with 
low branching and membranes rich in free polyunsatu-
rated fatty acids such as linolenic acid; Regulating the 
expression of genes related to the glycolysis pathway 
and controlling the balance of aerobic-anaerobic 
metabolism and reducing genes related to ethylene 
production and ripening, expression of pathogenesis-
related proteins

Micronutrients Accumulation of enzymatic and non-enzymatic antioxi-
dants; Protection against pathogens by biosynthesis of 
proteins, carbohydrates and regulation of hormones, 
delay completion of cell division and growth cycle of 
microorganisms

Broadley et al. (2007), Saba and Amini (2017)

Melatonin Induction of cold resistance through the oxidative 
pentose phosphate pathway, regulation of phenolic 
metabolism and increasing capacity inhibiting DPPH 
and reducing oxidative damage, stimulation of ROS, 
followed by enhancement of antioxidants, improves 
the activity of APX and GR, and reducing the ROS; 
Reduction of CI by decreasing the activity of PPO 
and membrane-degrading enzymes D (PLD) and LOX 
and increasing PAL, CAT, APX and SOD, supply of 
intracellular NADPH by promoting the activities of 
G6PDH and 6PGDH, increasing expression of antioxi-
dant genes and positive regulation of gene expression 
of essential enzymes responsible for phenylpropanoid 
pathways such as PAL, CHS1, CHS2 and PSH and 
accumulation of phenols and flavonoids for cold resist-
ance, expression of membrane fatty acid-inducing 
genes, such as FAD3 and FAD7 genes contributes 
to a higher unSFA/SFA ratio and increases mem-
brane integrity, encoding calcium-dependent protein 
kinases (CDPK) and mitogen-activated protein kinases 
(MAPK), induction of  Ca2+ signaling pathways, acti-
vation of C-repeat binding factors (CBFs) as transcrip-
tion factors for cold resistance, delay senescence by 
suppressing the expression of ethylene biosynthesis 
genes PcACS1 and PcACO1, increasing disease 
resistance by upregulating genes related to jasmonic 
acid synthesis (VaLOX, VaAOS, and VaAOC), genes 
related to pathogenesis proteins (VaGLU and VaCHT) 
and genes related to phenylpropane metabolism 
(VaPAL, VaC4H, Va4CL, VaCAD, VaPPO, and VaD)

Sun et al. (2016), Gao et al. (2018), Zhai et al. (2018), 
Jannatizadeh (2019), Aghdam et al. (2020a), Madebo 
et al. (2021), Qu et al. (2022)
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Table 1  (continued)

Treatment Physiological and molecular mechanisms References

Salicylic acid Induction of defense responses including upregulation of 
resistance genes to cause systemic acquired resistance 
(SAR), regulation of expression of genes related to 
pathogenesis; CI resistance by inducing the expression 
of different sHSPs (class I and II families) and high 
molecular weight HSPs with stabilizing function on 
the cell

Ding et al. (2001), Santisree et al. (2020)

Methyl jasmonate Activation of the antioxidant system and defense com-
pounds (such as phenolic compounds and heat shock 
proteins); Reducing membrane damage caused by 
decreasing the activity of LOX, the enzyme respon-
sible for the production of superoxide free radicals, 
reduction of lipid peroxidation, MDA accumulation 
and electrolyte leakage; Inducing the expression of 
proteins related to pathogenesis and enzymes related 
to defense such as chitinase and β-1,3-glucanase and 
changes in phenolic biochemistry; Regulating the 
expression of genes encoding secondary metabolite 
biosynthesis enzymes including polyamine, glu-
tathione and anthocyanins for CI resistance; Expres-
sion of jasmonate-related genes (JAZ, AOS1, AOC, 
LOX2, and COI1), interactions with other plant hor-
mones (ABA, ET, SA, GA, IAA, and BR), and interac-
tion with TFs (MYC2 and bHLH148), expression 
of MYC TFs and cold-responsive genes (MaCBF1, 
MaCBF2, MaKIN2, MaCOR1, MaRD2, MaRD5)

Jin et al. (2009), Zhao et al. (2013), Jiang et al. (2015), 
Hu et al. (2017), Yang et al. (2019)

Oxalic acid Induction of cold resistance with physiological and 
biochemical changes in the metabolism of fatty acids, 
antioxidants and proline, increasing the expression 
of proline biosynthesis genes and inhibiting proline 
degradation genes

Awad et al. (2013)

Sodium nitroprusside Reducing ethylene synthesis by inhibiting the enzymes 
1-aminocyclopropane-1-carboxylic acid synthase 
(ACS), 1-aminocyclopropane-1-carboxylic acid 
oxidase (ACO) and S-adenosylmethionine synthetase 
(SAMS) through nitrosylation and reducing sensitiv-
ity to ethylene and delaying senescence; Reducing 
oxidative stress by inducing enzymes such as SOD, 
POD and CAT and suppressing LOX; Reduction 
of CI by S-nitrosylation of proteins and modulation 
of antioxidant response, regulating the AsA-GSH 
circulatory system to balance redox and reducing the 
accumulation of ROS and lipid peroxidation; Induc-
tion of stress-related gene expression by synergistic 
interaction with signaling molecules, such as  Ca2+, 
ET, SA and JA; Inducing the activity of enzymes 
involved in energy metabolism; Maintaining quality 
by reducing the gene expression of the xyloglucan 
endotransglucosylase/hydrolase (XTH) family and 
reducing the activity of cell wall hydrolyzes enzymes 
such as polygalacturonase, xyloglucan endoglycosyl-
transferase, cellulase and β-galactosidase; Regulation 
of lipid metabolism by increasing expression of genes 
encoding sn-Glycerol-3-phosphate acyltransferase, 
β-ketoacyl-ACP synthase, phosphatidylinositol bis-
phosphate and long-chain acyl-CoA dehydrogenase; 
Disease resistance by inducing PAL, 4-coumarate–
CoA ligase, and cinnamic acid 4-hydroxylase enzyme 
activity, accumulation of antifungal compounds (such 
as phenylpropanoic acids, flavonoids, phenolics, and 
lignin) and induction of  H2O2 accumulation

Ma et al. (2019), Yan et al. (2019), Zhao et al. (2021), 
Zuccarelli et al. (2021), Liu et al. (2023)
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radical scavenging and antioxidant enzymes of arils and 
exhibited the lowest decay and weight loss (Molaei et al. 
2021). It has been reported that the application of chitosan 
after organic acids treatment such as ascorbic, malic, and 
oxalic was practical for maintaining bioactive compounds, 
and antioxidant activity, reducing microbial spoilage and 
CI of pomegranate fruit during storage (Sayyari et al. 2016; 
Ozdemir and Gokmen 2017; Ehteshami et al. 2020). Also, 
emulsions and films of chitosan-oregano or cinnamon exhib-
ited a complete inhibition against pathogens (Munhuweyi 
et al. 2017a). Coated fruits with chitosan and thymol had 
lower weight loss and higher anthocyanin, total phenol, 
flavonoid content, and sensory characteristics (Malekshahi 
and ValizadehKaji 2021). Chitosan nanoparticles containing 
clove essential oil also maintained fresh weight, TSS, and 
antioxidant activity and increased the shelf life and sensory 
quality of aril by reducing fungal contamination (Hashem-
inejad and Khodaiyan 2020). Similarly, savory essential oil 
encapsulated in chitosan nanoparticles was introduced to 
maintain the biochemical and sensory quality (Amiri et al. 
2021). In a recent study, pomegranate peel extract and zinc 
nanoparticles loaded on chitosan coating reduced weight 
loss, microbial load, mold, and yeast and improved the sen-
sory characteristics of the pomegranate fruit (Anean et al. 
2023). The preservation of bioactive compounds is due to 
the role of coating in reducing oxidation (Saba and Amini 
2017). In addition, there are reports on the role of chitosan 
in the transcription of genes that cause the synthesis of 
protective stimuli and the maintenance of phenolic content 
(González-Saucedo et al. 2019). The antimicrobial activ-
ity of chitosan nanoparticles has based on the electrostatic 
attraction between the protonated amine groups of chitosan 
and the negatively charged phospholipids of the cell wall 

of microorganisms, which increases the permeability and 
degradation of the cell membrane (Li et al. 2015; Chan-
drasekaran et al. 2020; Yan et al. 2021). It has proved that 
chitosan affects protein biosynthesis and membrane fluidity 
and damages cell integrity by accumulating reactive oxy-
gen species (ROS) in the microorganism cell and may be 
involved in energy metabolism (Ke et al. 2021).

Carboxymethyl cellulose (CMC) is one of the most com-
mon modified celluloses with good solubility and reactivity 
(Pettignano et al. 2019). A decreasing weight loss and vita-
min C of pomegranate arils in CMC coatings enriched with 
zinc oxide (ZnO) (Saba and Amini 2017) was observed due 
to a decrease in aerobic oxidation and followed by increas-
ing antioxidant activity. CMC and chitosan combined with 
organic acids reduced hydrogen peroxide, electrolyte leak-
age, and MDA while maintaining total phenol content, 
catalase activity, and antioxidant activity (Ehteshami et al. 
2019). Propolis hydrophobic composites with the formation 
of a biodegradable barrier prevent the diffusion of water 
vapor on the surface of the fruit and thus prevent weight loss 
during storage (Kahramanoğlu et al. 2018) and combined 
treatment of propolis with modified atmosphere packaging is 
more effective. Also, propolis extract prevents the losses of 
total soluble solids, titratable acidity, and ascorbic acid and 
improves sensory acceptance (Kahramanoglu and Usanmaz 
2017; Kahramanoğlu et al. 2018) (Table 1 and Fig. 1A).

Micronutrients

ZnO nanoparticles have been Generally Recognized as 
Safe (GRAS) products by the U.S. Food and Drug Admin-
istration (FDA) for use in food packaging (Espitia et al. 
2012). Recently, ZnO nanoparticles have been used in food 

Table 1  (continued)

Treatment Physiological and molecular mechanisms References

Gamma-aminobutyric acid Regulation of physiological responses by the interaction 
of signaling molecules including  Ca2+, phytohor-
mones, amino acids proline and polyamines; Reducing 
oxidative damage by regulating the transcription of 
antioxidant enzymes genes; AaGAD1 and AaGAD4 
gene expression and endogenous GABA biosynthesis, 
decreasing the enzyme activity of ACC oxidase (ACO) 
and ACC synthase (ACS) by regulating the expression 
of AaACO1 and AaACO3, AaACS1 and AaACS2

Podlesakova et al. (2019), Li et al. (2021), Dong et al. 
(2022)

Heat treatments Improving the integrity of the membrane due to the 
increase in the ratio of unsaturated fatty acids to 
saturated fatty acids; The expression and accumulation 
of heat shock proteins; Improving the performance of 
the antioxidant system and changing the activity of 
PAL and PPO enzymes; increasing sugar metabolism; 
Induction of cold resistance by regulating arginine 
biosynthesis pathways and production of signaling 
molecules such as polyamine, nitric oxide and proline

(Aghdam and Bodbodak 2014)
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Fig. 1  A proposed model for 
postharvest treatments-mediated 
chilling injury resistance

Packaging films

Edible coatings

Gamma-aminobutyric acid

Preservation of bioactive 

compounds
Reducing weight loss, 

and shriveling

Increasing antioxidant 

activity

Reduction of respiration and oxidative reactions

Reduction of microbial contamination and fruit rot,

chilling injury alleviation, preservation of organoleptic quality

Melatonin

Maintaining membrane 

integrity

Antioxidant system 

activation

Inhibiting ROS

Accumulation of H2O2 in early stage

Chilling injury alleviation

Salicylic acid

Maintaining 

membrane integrity

Antioxidant system 

activation

Inhibiting ROS

Preservation of sugars, organic acids, 

phenol, anthocyanin

Chilling injury alleviation

Methyl jasmonate 

Maintaining 

membrane integrity

Antioxidant system 

activation

Inhibiting ROS

Increased the content of endogenous 

polyamines

Chilling injury alleviation

Oxalic acid

Induction of systemic resistance 

against fungal diseases and chilling 

injury alleviation

Maintaining membrane 

integrity

Increasing antioxidant capacity

A B

C D E

Sodium 
nitroprusside

Induction of systemic resistance 

against fungal diseases and chilling 

injury alleviation

Maintaining membrane 

integrity

Synthesis secondary metabolites

Heat treatment 

Chilling injury symptoms alleviation

Maintaining membrane 

integrity

Preservation of sugars, organic acids, and 

antioxidant capacity, increased the content 

of endogenous polyamines

Suppressing ROS 

formation

Preventing enzymatic 

browning

Reduction of microbial 

contamination

F G



1374 Journal of Plant Growth Regulation (2024) 43:1368–1383

1 3

packaging due to their low cost, nutritional and antibacterial 
characteristics (Dai et al. 2022; Sosa et al. 2023). Improv-
ing quality characteristics and shelf life of arils enriched 
with zinc sulfate  (ZnSO4) and nano-zinc oxide (nZnO) has 
been observed (Aminzadeh et al. 2022), which maintains 
intracellular acids by reducing microbial load and preventing 
aril weight loss. Similarly,  ZnSO4 and essential oil combi-
nation have been recommended for improving the quality 
characteristics, especially the increase of the Zn nutrient of 
arils to meet the body’s nutritional needs (Aminzadeh et al. 
2023). Coating carboxymethyl cellulose containing nZnO 
of pomegranate arils increases the shelf life by preserving 
phenol, anthocyanin, vitamin C, and antioxidant capacity 
and reducing mesophilic bacteria, mold, and yeast (Saba 
and Amini 2017). Zn and manganese are an activator of anti-
oxidant enzymes. Activation of antioxidant enzymes such 
as SOD and CAT, also the accumulation of non-enzymatic 
antioxidants such as ascorbic acid and phenolics, could delay 
senescence and extend the shelf life (Gill and Tuteja 2010). 
After dissolving in water, zinc ions  (Zn+2) bind to the mem-
brane of the microorganism and delay the completion of 
cell division and growth cycle (Atmaca et al. 1998), as after 
penetrating the bacterial cell wall,  Zn2+ affects its cytoplas-
mic content and finally leads to the programmed cell death 
of bacteria (Table1).

Plant Growth Regulators (PGRs)

Melatonin (MT)

Melatonin (N-acetyl-5-methoxytryptamine) is involved in 
physiological processes and regulating gene expression of 
biosynthetic/catabolic pathways of phytohormones (Arnao 
and Hernández-Ruiz 2021).

Post-harvest melatonin application by the accumulation 
of phenolic compounds increases the antioxidant capacity 
of pomegranate and scavenges ROS (Jannatizadeh 2019). 
The content of ascorbic acid is affected after melatonin 
treatment, and stimulating the accumulation of glutathione 
leads to an increase in anthocyanin and phenolic compounds 
(Aghdam et al. 2020a). MT treatment reduced ion leakage by 
increasing unSFAs and induced CI resistance by maintain-
ing membrane integrity, reducing MDA, electrolyte leak-
age, and peel browning (Jannatizadeh 2019; Molla et al. 
2022). Other researchers attributed the membrane integrity 
to less hydrogen peroxide  (H2O2) accumulation following 
the activity of ROS scavenging enzymes such as CAT, SOD, 
APX, and glutathione reductase (GR) (Xu et al. 2019; Agh-
dam et al. 2020a). The maintenance of membrane integ-
rity likely is due to the acceleration of electron flow in the 
mitochondrial electron transport chain by promoting NADH 
dehydrogenase, cytochrome b c1 oxidoreductases, and 
FoF1 -ATP synthase, which increases the capacity of ATP 

synthase (Tan et al. 2013). In addition, exogenous applica-
tion of melatonin induces CI resistance through the oxidative 
pathway of pentose phosphate and regulation of phenolic 
compounds metabolism (Aghdam et al. 2020a). Therefore, 
phenol accumulation and DPPH inhibition due to the high 
activity of the enzyme phenylalanine ammonia-lyase (PAL) 
and the low activity of the enzyme PPO are necessary for 
CI resistance. In general, an increase in membrane integrity, 
antioxidant enzyme activity, and a decrease in CI have been 
observed after MT treatment (Aghdam et al. 2020a) (Table 1 
and Fig. 1B).

Salicylic Acid (SA)

SA is involved in various physiological processes (Koo et al. 
2020) and biotic and abiotic stresses (Sheteiwy et al. 2019). 
SA has been used in the postharvest storage of a wide range 
of products due to the absence of toxic residues (Asghari 
and Aghdam 2010).

Post-harvest application of SA, acetylsalicylic acid 
(ASA), and methyl salicylate (MeSA) preserved the quality 
and levels of total antioxidant, such as phenolics, anthocya-
nins, and ascorbic acid (Sayyari et al. 2011a, b; Dokhanieh 
et al. 2016). Furthermore, it reduces CI (Sayyari et al. 2011a, 
b; Boshadi et al. 2018) in pomegranate fruit. Exogenous 
SA led to the preservation of sugars, organic acids, phenol, 
anthocyanin, and antioxidant capacity by reducing respi-
ration rate and PAL enzyme activity, and it was efficient 
in CI by reducing electrolyte leakage (Sayyari et al. 2009, 
2011a). The combination of SA and putrescine increased 
bioactive compounds and fruit quality (Koyuncu et al. 2019). 
SA may stimulate anthocyanin synthesis through phenylpro-
panoid pathway activation (Sayyari et al. 2016), and in this 
regard, Koyuncu et al. (2019) observed the best fruit color 
in pomegranates treated with SA. SA increases ascorbic acid 
content by inducing APX activity and inhibiting ascorbic 
acid oxidase (AAO) activity (Rao et al. 2011). Post-harvest 
application of SA also maintained the chroma index of aril 
and peel, titratable acidity, and TSS (Koyuncu et al. 2019; 
Güneş et al. 2020). Arils treated with SA had good visual 
quality, no decay, and an unpleasant aroma (Shaarawi et al. 
2016). Salicyloyl chitosan-treated pomegranate fruits had 
higher unsaturated/saturated fatty acid (unSFA/SFA) ratio 
(Sayyari et al. 2016), which delayed electrolyte leakage 
and internal and external browning. Also, the antioxidant 
capacity hydrophilic (H-TAA) and lipophilic (L-TAA) due to 
increasing phenol, anthocyanin, and ascorbic acid were high 
in the SA-treated fruits. The fruits showed lower weight loss, 
respiration rate and ethylene production, followed by higher 
firmness, total soluble solids, and more titratable acidity as 
a sensory quality (Sayyari et al. 2016). SA and methyl jas-
monate in fresh-cut pomegranate significantly preserved 
antioxidant capacity under cold storage (El-Beltagi et al. 
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2023), followed by the reduction of oxidative stress sup-
pressed the respiration rate (Aghdam et al. 2016a) (Table 1 
and Fig. 1C).

Methyl jasmonate (MeJA)

MeJA is involved in physiological processes (Wang et al. 
2019a; Pan et al. 2020) and improves the post-harvest qual-
ity of pomegranate fruit (Wang et al. 2021; Serna-Escolano 
et al. 2021).

Post-harvest application of MeJA mainly improves fruit 
quality by increasing phenolics and flavonoids, antioxidant 
capacity and volatile compounds production, and delayed 
senescence (Wang et al. 2021). MeJA reduces CI by delaying 
the ripening and preserving of antioxidant compounds (Say-
yari et al. 2011a, 2017). In other studies, MeJA prevented 
CI by suppressing the activity of polyphenol oxidase and 
preventing the reduction of total phenol, reducing MDA, 
and maintaining the fluidity of the cell membrane (Chen 
et al. 2021). MeJA vapor treatment increased the content 
of endogenous polyamines, especially putrescine, and sper-
midine, which are efficient in resistance to CI (Valero et al. 
2015). MeJA prevents membrane lipids degradation and 
permeability change and thus slows down the efflux of  K+, 
 Ca2+, sugar, and other electrolytes and maintains intracel-
lular stability. Examination of the structure of the pericarp 
in microscopic studies showed no damage to the lipophilic 
layer and cuticle, and the epidermal cells had a regular struc-
ture (Chen et al. 2021). In general, MeJA is a beneficial tool 
to prevent CI (Table 1 and Fig. 1D).

Oxalic Acid (OA)

OA has physiological functions, including induction of 
systemic resistance against fungal diseases by increasing 
the activity of antioxidants. Previous studies showed that 
its long-term use in non-climacteric fruits extended the 
shelf life (Valero et al. 2011; Ravi et al. 2017). In addition, 
endogenous OA causes intrinsic heat tolerance and increases 
antioxidant capacity (Osei-Kwarteng et al. 2023). The main 
effects of organic acids as anti-senescence agents are to 
delay ripening (Gimenez et al. 2017).

Sayyari et al. (2010) showed that OA preserves the total 
phenolics of pomegranate. Similarly, OA can increase the 
storage life of pomegranate by preserving bioactive com-
pounds and antioxidant activity (Koyuncu et al. 2019). The 
mechanism of preservation of bioactive compounds by OA 
probably is due to its antioxidant properties that prevent 
lipid peroxidation. The combination of polysaccharide-
based edible coatings and OA increased the phenolic con-
tent, CAT activity, and antioxidant activity while reducing 
 H2O2, MDA, electrolyte leakage, and CI in pomegranate 
fruit (Ehteshami et al. 2019, 2020). It seems OA reduces 

CI symptoms by maintaining membrane fluidity (Ehteshami 
et al. 2019) and inducing antioxidant activity at low tempera-
tures (Huang et al. 2016). The combination of controlled 
atmosphere and OA significantly reduced postharvest decay 
(Koyuncu et al. 2019). (Table 1 and Fig. 1E).

Sodium Nitroprusside (SNP)

SNP has been used as a nitric oxide (NO) donor for pre- and 
post-harvest treatment of apple fruit and might modulate 
shikimate and phenylpropanoid pathways (Ge et al. 2019). 
The shikimate pathway is a metabolic pathway that gener-
ates precursors to synthesize many secondary metabolites 
to enhance disease resistance (Karki and Ham 2014). SNP 
increases disease resistance by suppressing ROS forma-
tion and improves the fruit quality of Cucumis melo by 
suppressing ethylene production (Wang et al. 2019b; Sahu 
et al. 2020). Treatment with NO donors induces cold stress 
resistance in climacteric and non-climacteric fruits (Xu et al. 
2012). The effects of NO are greater in non-climatic fruits 
(Osei-Kwarteng et al. 2023). Reduces CI by exogenous 
application of NO is related to decrease membrane perme-
ability, MDA content, ion leakage, and lipid peroxidation 
(Ranjbari et al. 2016, 2018; Wu et al. 2014). It seems to be 
associated with a decrease in the production or detoxifica-
tion of ROS (González-Gordo et al. 2019) and an increase 
in the expression or activity of antioxidant enzymes (Wu 
et al. 2014; Babalar et al. 2018). SNP treatment increases 
the total quantity of adenosine triphosphate (ATP), the 
activity of enzymes involved in energy metabolisms such as 
 H+-ATPase,  Ca2+-ATPase, succinic dehydrogenase (SDH), 
and cytochrome C oxidase (COX), which lead to an increase 
in cold stress resistance (Wang et al. 2015a). The application 
of exogenous NO in non-climacteric fruits reduces ethylene 
production and leads to a decreased respiration rate (Zhu 
and Zhou 2007). NO is an inhibitor of the mitochondrial 
respiratory chain, which binds to iron-sulfur proteins and 
inhibits their biological activities (Lin et al. 2012) (Table 1 
and Fig. 1F).

Gamma‑Aminobutyric Acid (GABA)

In the last decade, there has been an increasing trend to use 
natural stimulants to induce CI resistance and delay senes-
cence in subtropical and tropical fruits (Shelp et al. 2017; 
Zhu et al. 2022). GABA is a four-carbon non-protein amino 
acid and the natural signal produced in plants under biotic 
and abiotic stress (Li et al. 2021; Liu et al. 2022). Activation 
of the enzyme and non-antioxidant defense system, mainte-
nance of carbon–nitrogen ratio balance, involvement in the 
metabolism of carbohydrates and amino acids, regulation of 
plant growth, chlorophyll biosynthesis and membrane sta-
bilization, osmotic regulation induced by exogenous GABA 
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in plants (Ji et al. 2018; Shomali et al. 2021). GABA is a 
safe edible coating in the food industry (Naila et al. 2010) 
that positively affected peel and aril firmness, flavor, tex-
ture and color, antioxidant activity, the content of phenolic 
compounds, and reduction of ion leakage and CI pomegran-
ate fruit (Nazoori et al. 2020). Accordingly, edible coating 
based on carnauba wax with the addition of GABA delayed 
CI symptoms and preserved quality (Nazoori et al. 2022). 
In general, applying GABA post-harvest can increase the 
storage life of pomegranates by maintaining the quality 
characteristics.

Coatings act as a semi-permeable barrier against oxygen, 
carbon dioxide, and moisture, thus reducing water loss, res-
piration rate, and oxidative reactions (Maqbool et al. 2011). 
Edible coatings improve the firmness by maintaining the 
content of polysaccharides and subepidermal cells structure 
and integrity of the membrane and inhibiting the activity 
of pectin methyl esterase and polygalacturonase enzymes 
(Wang et al. 2015b). Exogenous application of GABA is a 
strategy to increase endogenous GABA levels and GABA 
shunt activity, which leads to an increase in carbon flux 
through the respiratory pathways, which will lead to an 
increase in NADH, NADPH, and ATP (Aghdam et al. 2018, 
2020b; Shelp et al. 2021) and improves post-harvest quality 
(Aghdam et al. 2022). Storage at low-temperature delays 
senescence and improves resistance to CI by promoting 
the activity of the GABA pathway (Aghdam et al. 2022). 
GABA reduces the activity of phospholipase and lipoxy-
genase enzymes and increases antioxidant activity it main-
tains membrane fluidity by maintaining the ratio of SAFs to 
unSAFs (Aghdam et al. 2016b). GABA’s role in increasing 
antioxidant activity is due to its ability to increase antioxi-
dant compounds such as phenols and flavonoids (Wang et al. 
2014). Phenols, especially anthocyanins, are related to anti-
oxidant activity in pomegranates. GABA increases phenolic 
compounds, including anthocyanins, its effects are attributed 
to the activity of PAL, a key enzyme in the biosynthesis 
of phenols, and decreasing the activity of PPO (Ge et al. 
2018; Habibi et al. 2020). Other mechanisms to reduce CI 
by exogenous GABA may be energy conservation by provid-
ing NAD, ATP, and inhibition of cytoplasmic acidification 
(Aghdam et al. 2016b, 2018).

The balance of SOD activity and  H2O2 scavenging 
enzymes can be critical for cell survival during cold stor-
age. GABA scavenges ROS and protects plant tissue against 
active carbonyl damage through higher SOD activity (Male-
kzadeh et al. 2017; Habibi et al. 2019) (Table 1 and Fig. 1A).

Heat Treatments

Heat treatments, such as vapor, water immersion, hot 
water rinsing, and bruising are simple and eco-friendly 

technologies to maintain functional and nutritional proper-
ties and extend the fruit shelf life.

Ascorbic acid, anthocyanins, and phenolics are respon-
sible for total antioxidant activity in pomegranate fruits, 
and heat treatment helps preserve health-promoting com-
pounds by increasing total antioxidant activity (Kulkarni 
et al. 2005). Heat-treated pomegranate fruit showed higher 
total antioxidant activity than the control (Mirdehghan 
et al. 2006). The higher antioxidant is related to high levels 
of total phenol, ascorbic acid, and anthocyanin content. In 
addition, the preservation of sugars (glucose and fructose) 
and organic acids (malic, citric, and oxalic acids) main-
tained the organoleptic quality of arils (Mirdehghan et al. 
2006). The effect of heat on the increase of sugar concen-
tration can be attributed to the increase of activities of glu-
cosidase, galactosidase, and arabinase, which causes the 
release of sugar from cell wall polymers (Beirao-da-Costa 
et al. 2006). Preservation of organic acids may be due 
to respiration rate inhibition under heat treatment (Ser-
rano et al. 2004). Heat treatment increases free putrescine 
and spermidine and delays fruit softening (Mirdehghan 
et al. 2007). Higher polyamine levels and maintaining the 
ratio of SAFs to unSAFs maintain the integrity and fluid-
ity of the membrane and induce a mechanism of toler-
ance to low temperatures (Mirdehghan et al. 2007). Mild 
heat treatment, such as hot water, reduces microorganisms 
and inactivates destructive enzymes (Talaie et al. 2004; 
Mirdehghan et al. 2006). Heat shock likely induces ROS, 
followed by the activation of oxygen radical scavengers 
such as SOD, POD, and CAT, as a defense system against 
oxidative stress (Moller 2001). Hot water treatment of 
arils suppressed the PAL and PPO activity while increas-
ing POD activity and subsequently preventing enzymatic 
browning and quality reduction (Maghoumi et al. 2013). 
Investigating the effect of intermittent warming and hot 
water treatment showed that intermittent heating treatment 
increased shelf life and reduced pomegranate fruit decay 
(Moradinezhad and Khayyat 2014); however, storage life 
was higher in hot water treated-fruit, which is probably due 
to improved defense-system is against post-harvest patho-
gens. Intermittent warming, especially a warm period at 
the beginning of storage, resulted in higher enzymatic anti-
oxidant activity and phenolic content and lower PPO activ-
ity in the peel, resulting in less cold damage (Taghipour 
et al. 2021a). Preservation of unSFAs against peroxidation, 
lower MDA production, continuous increase of spermi-
dine, and higher levels of putrescine were observed as the 
membrane immune system immediately after treatment 
(Taghipour et al. 2021b). Maintaining antioxidant enzyme 
levels is probably responsible for reducing lipid peroxida-
tion. Warming before the appearance of irreversible CI 
symptoms is a practical method for cold storage (Table 1 
and Fig. 1G).
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Conclusion and Prospects

The quantitative and qualitative characteristics of the fruit 
are affected by pre- and post-harvest management. There-
fore, appropriate processes at pre- and post-harvest stages 
lead to reducing stresses and increasing quality. Also, the 
food produced in the correct management system will be 
suitable from the nutritional value, sensory quality, and 
safety aspects. Packaging protects the product against 
mechanical injury and microbial spoilage and improves 
organoleptic quality and marketability. Considering that 
pomegranate fruit is non-climacteric, the use of polymer 
films may have a good potential for the maintenance of 
its quality. Polymer films create a modified atmosphere 
and have a significant effect on preventing chilling injury 
and maintaining fruit quality. However, there is a need 
for extensive studies to develop the packaging system for 
pomegranate arils and fruit in different commercial culti-
vars. On the other hand, the increase in polymer produc-
tion for post-harvest application indicates low recycling 
rates and environmental issues, therefore the assurance 
of the existing technology for edible coatings production 
must be considered to meet consumer demand. Although 
edible coatings limit moisture loss and gas exchanges and 
increase shelf life, however, further research is essential 
to ensure the moisture barrier properties of hydrophilic 
edible coatings, improving the adhesion and durability of 
the coating during storage. In addition to extending shelf 
life, improving nutritional quality is one of the important 
research priorities. The biofortification of plants with nan-
oparticles help to improve nutritional quality. However, 
further research is needed to optimize the concentration to 
reduce postharvest physiological disorders. MT and SNP, 
as signaling molecule, affects metabolism by regulating 
endogenous levels of hormones and oxygen free radicals. 
Besides, approval of the FDA is essential regarding the 
possibility of commercialization despite the high cost and 
long-term treatment time. SA, JA, OA, and GABA are 
safe compounds to maintain quality and antioxidant activ-
ity during storage. However, detailed knowledge of the 
mechanisms that increase bioactive compounds and anti-
oxidant capacity is essential. Post-harvest heat treatment 
is efficient in preserving total antioxidant activity and bio-
active compounds. However, the optimal temperature and 
duration of heat treatment to prevent irreversible oxidative 
stress should be determined in commercial pomegranate 
cultivars.

All the processes used in the previous research signifi-
cantly increase the nutritional quality. However, further 
research in various commercial cultivars is vital to select 
the best treatments at the optimal concentration for extend-
ing the storage life of pomegranate fruit and arils.
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