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Abstract
Regulated deficit irrigation (RDI) is a technique used to save water, increase water use efficiency (WUE) and nutrients in 
plants. This practice can be enhanced when combined with soil management. In addition, enhancing root architecture and 
improving the absorption of water and nutrients in deeper zones can be achieved through the application of phosphorus at 
depth. There is a scarcity of studies that evaluate the integrated effect of different management practices of fertilization and 
water on the fruit quality of tomato plants intended for the industry. Thus, the objective was to investigate the postharvest 
responses of fruit quality and cell wall metabolism of the industry tomato ‘Heinz 9553’. Two irrigation frequencies (IF) (one 
and seven days) were implemented in the plots and three soil management models (conventional fertilization + limestone 
[FL]; conventional fertilization + limestone + gypsum [FLG]; conventional fertilization + limestone + gypsum + phosphorus 
applied in depth [FLGP]) were implemented in the subplots. Variables that affects the quality parameters (reducing sugars, 
phenolic compounds, carotenoids, pectinolytic enzymes) were evaluated. The results showed that the combined management 
FLG and IF of seven days provided increase in soluble solids, reducing sugars, soluble solids/titratable acidity ratio, dry 
matter, phenolic compounds and total carotenoids in the fruits. It was also found that the firmness of the pulp was higher in 
the seven-day IF treatment and was inversely related to the activity of the enzymes pectin methylesterase and polygalacturo-
nases. The combined fertilization and water management strategies promoted improvements in quality and postharvest cell 
wall firmness of the industrial tomato ‘Heinz 9553’. Therefore, the combined soil and water management strategies FLG and 
FLGP with IF of seven days are recommended for field cultivation of tomato for industrial processing.
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Introduction

Low water and nutrients availability are the most limit-
ing factors for the crop plants production (Ali et al. 2019). 
Studies investigating the increase in crop yields and the 

maintenance of fruit quality worldwide have focused using 
genetic engineering; however, the optimization and develop-
ment of management strategies mainly for water and nutri-
ents has been used with great success (Shao et al. 2008; 
Medyouni et al. 2021), thus requires further investigation 
to optimize yield of crops such as tomato and promote non-
GMO crops for consumption.

In Brazil, about 36% of the total tomato production is 
destined to the industry (Almeida Neta et al. 2019). How-
ever, to obtain high yields and ensure the maintenance of 
fruit quality, tomato cultivation requires a high availability 
of water and nutrients during its entire cycle (Chapagain 
and Orr 2009; Yang et al. 2020). Abiotic factors associ-
ated with water availability and nutrition have affected the 
yield and quality of industrial tomatoes (Villas Boas et al. 
2017). Therefore, it is essential to develop strategies and 
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management that aim to optimize the efficiency of water and 
nutrient use by the plant, without compromising the produc-
tion and final quality of the fruit.

The application of regulated deficit irrigation (RDI) is 
a technique, applied in the growth phase, in which water is 
made available throughout the root zone in an amount lower 
than potential evapotranspiration, causing moderate stress 
with minimal or no effects on production (Dodd 2009). In 
RDI, the adoption of specific irrigation frequencies (IF) 
is implemented to optimize water utilization by the plant, 
thereby enhancing its overall water use efficiency (Khapte 
et al. 2019; Fara et al. 2019).

However, the variation in soil water availability gener-
ates a complex network of morphological and physiological 
changes in the plant and fruit (Morales et al. 2015). Fruit 
ripening, for example, involves a cascade of biochemical 
and physiological events in the cell wall metabolism (Quinet 
et al. 2019) that determine their firmness. The pectins play a 
significant role in forming the complex and heterogeneous 
set of polysaccharide compounds that constitute the primary 
cell wall of tomato (Xie et al. 2017). The depolymerization 
of these structural domains and the solubilization of pectic 
polysaccharides causes the modification of the cell wall pol-
ysaccharides and finally the disassembly of its architecture, 
as a result of the combined action of the enzymes pectin 
methylesterases (PME, E.C. 3.1.1.11) and polygalacturonase 
(PG, EC 3.2.1.15) (Xie et al. 2017). Like many other fleshy 
fruits, tomatoes go through different development processes, 
ending with ripening and softening (firmness loss), which 
ultimately determine the quality of the fruit and the shelf life 
of the product (Liu et al. 2021a, b).

Furthermore, several studies have shown that the adoption 
of this practice coupled with correct IF, promotes improve-
ment in water use efficiency (WUE), photosynthetic rates, 
higher stomatal conductance, increases yield and improves 
desirable traits of tomato fruit, such as total soluble solids, 
soluble sugars, soluble solids/titratable acidity ratio and bio-
active compounds (Kirda et al. 2004; Fara et al. 2019; Liu 
et al. 2021a, b; Medyouni et al. 2021). The increments in 
these characteristics are achieved by maintaining the stoma-
tic opening for more time throughout the day, providing a 
greater and better distribution and allocation of photoassimi-
lates (Chai et al. 2016). The effects of RDI and IF are opti-
mized in soils with properly corrected acidity because they 
improve the nutrient supply of the crop, facilitate greater 
root development and consequently increase the active zone 
of root uptake (Fara et al. 2019).

The combination of gypsum and agricultural limestone, 
for correction of soil acidity, are fundamental for the con-
struction of the soil chemical profile and improvement of 
root growth. This occurs because the application of lime-
stone allows the correction of soil acidity in the superficial 
layer, besides promoting the supply of sulfur (S), calcium 

(Ca) and magnesium (Mg) to the plant. While gypsum, due 
to its high mobility, is transported through the soil profile 
to the subsurface layers, promoting the correction of acidity 
and root development in this zone (Saeed and Ahmad 2009; 
Fara et al. 2019).

Plants typically obtain S from the soil solution as sulfate 
ions (SO4

2−). These ions might be transported or stored in 
different parts of the plant. Sulfate can transfer from roots to 
shoots and other plant tissues through sulfate transporters. 
The xylem transports sulfate and water to the aerial regions 
of the plant. Sulfur is an essential component of metabolic 
activities like the production of proteins and amino acids. 
S is found in proteins, the amino acids cysteine (Cys) and 
methionine (Met), vitamins (biotin and thiamin), cofactors 
(Co-A and S-adenosyl methionine, SAM), and a variety of 
secondary metabolites (Mazid et al. 2011). In order to sup-
port plant growth and vital processes, sulfur compounds 
are distributed in different tissues according to parameters 
including organ demand and environmental conditions 
(Capaldi et al. 2015).

Calcium (Ca) is acquired by plants from the soil through 
the roots. It is present in the soil solution as calcium ions 
(Ca2+). Ca localization primarily happens in mature root tis-
sues and mid-cortical cells (Pesacreta et al. 2021; Acharya 
and Pesacreta 2022). Both passive and active transport sys-
tems are used to transfer it across the plant. Through transpi-
ration or other transporters, calcium is transferred through 
the xylem with water. It is essential for signal transmission, 
the activation of enzymes, and the formation of cell walls. 
Based on demand, developmental phases, and physiological 
needs, calcium distribution is controlled. When it is required 
for processes like fruit growth or seed generation, it is car-
ried to certain tissues or organs (White and Broadley 2003).

Plants primarily obtain magnesium (Mg) from the soil 
through their roots. It is found as magnesium ions (Mg2+) 
in the soil solution. The root cell membranes have specific 
transporters that aid in magnesium absorption. Mg2+ can 
be transported throughout the plant or briefly retained in 
vacuoles once they have entered the roots. Mg is transported 
by both passive and active methods, using either plasmodes-
mata to move from cell to cell. From the roots to the shoots, 
magnesium is carried by the xylem together with water. Mg 
is an essential element for the stability of cell membranes, 
enzyme activity, and the production of chlorophyll in plants 
(Guo et al. 2016). Its distribution is controlled based on 
physiological needs, developmental phases, and demand to 
ensure it reaches the precise tissues or organs where it is 
required (Xie et al. 2021).

Phosphorus (P) is an essential macronutrient that plays 
an important role mainly in the initial growth and metabo-
lism of plants (Higo et al. 2020). Additionally, P is a funda-
mental constituent of nucleotides such as ATP (adenosine 
triphosphate), an important molecule whose main function 
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is to act as an energy source at the cellular level to carry out 
metabolic processes (De Col et al. 2017).

Phosphorus (P) is predominantly taken up by plants from 
the soil as inorganic phosphate (Pi) by means of certain 
transporters in their root cell membranes. Pi can be tempo-
rarily stored or moved around the plant once it has entered 
the root cells (Acharya and Pesacreta 2023). Pi may move 
more easily from roots to shoots and other plant components 
thanks to phosphate transporters. Pi is carried from plant 
roots to aerial structures via the xylem along with water. 
Pi is an essential component of protein, DNA, and energy 
transport inside plants. Pi undergoes enzymatic processes 
as it reaches the aerial sections before being transformed 
into organic molecules. Pi is allocated effectively for growth, 
development, and vital physiological processes by being reg-
ulated according to organ demand, developmental phases, 
and environmental factors (Raghothama 2005).

However, the unavailability and/or immobility of P in 
the soil limits plant growth in the early stages (Higo et al. 
2020), by reducing maximum root development and hence 
final yield of tomato (Zhu et al. 2017, 2018). In order to 
optimize the availability of P, especially in the early stages 
of growth, the application of P can be made locally, close to 
the roots (Ma et al. 2020) or in the subsurface to stimulate 
root growth. In turn, plant roots adapt to specific nutrient 
patches in the soil by either growing in proportion to them, a 
process known as morphological plasticity, or by increasing 
nutrient uptake rates, a process known as physiological plas-
ticity (Zhou et al. 2017). Better initial root development, and 
consequently better establishment of the root system, play 
important roles in the acquisition of resources such as water 
and nutrients (Hodge 2004; Ma et al. 2020), thus, strongly 
influencing plant growth, and improving the commercial 
characteristics of the fruit (Coutinho Edson et al. 2014).

Therefore, the integrated use of soil and water manage-
ment strategies can increase the productivity and quality of 
tomato fruit. The individual effect of soil and water man-
agement have been widely studied, whereas few literatures 
refer to the combined effect of these factors, especially on 
the quality of tomato fruit destined for processing. Thus, 
the objective was to investigate the responses in quality and 
postharvest cell wall metabolism of industrial tomato ‘Heinz 
9553’ to combined management strategies aiming to opti-
mize the use of water and nutrients by the plant.

Material and Methods

Experimental Design and Description of Plant 
Material

The commercial tomato (Solanum lycopersicum L.) hybrid 
Heinz 9553 (H9553) (Heinz Seed©) was used. H9553 

displays concentrated ripeness (Luz et al. 2016), exhibits 
determinate growth, and reaches full maturity within a range 
of 110–120 days. Sowing was done in polypropylene trays of 
128 cells arranged in an agricultural nursery of galvanized 
steel and dimensions of 6.4 m wide by 18.0 m long with 
3.5 m high, closed in 45º, with monofilament screen, mesh 
for 50% shade.

The experiment was in randomized blocks design, with 4 
repetitions in a split-plot scheme. Two irrigation frequencies 
(IF—one and seven days) were implemented in the plots 
and three soil management models (conventional fertili-
zation + limestone [FL]; conventional fertilization + lime-
stone + gypsum [FLG]; conventional fertilization + lime-
stone + gypsum + phosphorus applied in depth [FLGP]) were 
implemented in the subplots. The experimental area was 
composed of 24 experimental units of 13.5 m2 (4.5 m × 3 m). 
The experimental units were arranged in 4 single rows of 
4.5 m long and 3.0 m wide, with 1.0 m between rows, 0.3 m 
between plants and 1.1 m wide between experimental units. 
Each experimental unit consisted of 64 plants, with the cen-
tral 24 plants used for evaluations. The single rows on the 
extremities and two plants on the edges of the central rows 
were considered as borders.

The experiment was performed from March to August 
2021, in the experimental area of the Teaching, Research and 
Extension Technical-operational Unit (UEPE) belonging to 
the Department of Plant Science, Universidade Federal de 
Viçosa, Viçosa, Minas Gerais, Brazil (20º 45’ S and 42° 51’ 
W, altitude 693 m).

Soil Preparation and Planting

The initial physicochemical characteristics of the soil were 
determined (Table 1). The physical and chemical character-
istics of the soil were evaluated according to the methodol-
ogy proposed by Claessen et al. (1997). P, K, Fe, Zn, Mn 
and Cu were extracted with Mehlich; Ca, Mg and Al were 
extracted with KCl−1 mol L−1; Potential acidity was meas-
ured at pH 7.0 extracted with calcium acetate obtained from 
0.5 mol L−1; B was extracted in hot water.

The analysis of SB, SCC, t, V, m, OM, thick sand, 
thin sand, clay, silt was performed according to Teixeira 
et al. (2017). Dolomitic limestone was applied to the soil 
surface 130 days before transplanting and incorporated 
to a depth of 0.25 m with a mouldboard plow followed 
by light harrowing. Limestone and gypsum were applied 
manually. After these operations, on 74 days before trans-
planting gypsum was added in a single dose to the soil 
surface in the experimental units that involved soil man-
agement with limestone and gypsum. The complementa-
tion of P in depth applied in the planting furrow at 0.30 m 
depth, was done the day after transplanting the seedlings, 



503Journal of Plant Growth Regulation (2024) 43:500–515	

1 3

in the form of triple superphosphate, in the amounts of 
4.35 (kg plot−1), 1.35 (kg plot−1) and 163.5 (g m−1 linear), 
respectively.

After soil preparation and twenty-five days after emer-
gence, seedlings 12–15 cm tall, with 4–6 true leaves, were 
transplanted to the experimental growing area. Seedling 
production, transplanting, weed, disease and pest control 
were performed according to Alvarenga et al. (2004).

Irrigation Management

Irrigation management was determined by crop evapotran-
spiration (ETc). The crop water demand and irrigation fre-
quencies (IF) adopted were calculated following the esti-
mated ETc, based on the adjustment coefficients in relation 
to the reference evapotranspiration (ET0) (Table 2). The 
water balance was used to calculate the net irrigation blade. 
Equations 1 and 2 were used to estimate crop evapotranspi-
ration (Allen and Pereira 2009; Delazari et al. 2016).

where: ETc is crop evapotranspiration, in mm d−1; ET0, ref-
erence evapotranspiration, in mm d−1; Kc, crop coefficient 
(dimensionless); Kcb, basal crop coefficient (dimensionless); 
Ke, soil evaporation coefficient (dimensionless). Ks, stress 
coefficient (dimensionless).

The tomato cycle was divided into phenological phases 
and the Kcb values were adjusted according to the devel-
opmental stage of the crop. The initial, intermediate and 
final Kcb were 0.15, 1.15 and 0.70, respectively (Allen et al. 
1998).

The irrigation method used was localized drip irriga-
tion. The Naan Dan Jain Irrigation equipment, AmnonDrip 
model, self-compensating and antidrain operating at a real 
flow rate of 1.60 L h−1 was used. The irrigation system 
operated with a uniformity of 99.4%, as determined by the 
Christiansen Uniformity Coefficient (CUC) (Mantovani 
et al. 2013).

Weather Conditions

The meteorological data were obtained through an automatic 
agrometereological station E 4000 (IRRIPLUS) equipped 
with sensors that measure temperature (°C), relative humid-
ity (%), wind speed (m s−1), solar radiation (W m−2 dia−1) 
and precipitation (mm). The data were collected and used 
for irrigation management calculations. The experiment was 
conducted during the dry season, with only one instance of 
rainfall occurring throughout the experimental period. In this 
particular scenario, the following procedure was implemented: 
The amount of rainfall was subtracted, and a reduced water 

(1)Etc = ETo × Kc

(2)Kc = (Kcb × Ks) + Ke

Table 1   Physicochemical characteristics of the soil in the experimen-
tal area

SB sum of basis, CEC cation exchange capacity, t effective cation 
exchange capacity, V base saturation index, m aluminum saturation 
index, OM organic matter, P-rem remaining phosphorus, SD soil den-
sity

Parameters Depth (cm)

0–20 20–40 40–60 60–80 80–100

pH (H2O) 6.35 6.53 6.51 6.25 6.07
P (mg dm−3) 139.50 4.80 4.70 2.40 4.70
K (mg dm−3) 136.0 42.0 18.0 10.0 122
Ca2+ (cmolc dm−3) 4.01 2.78 2.67 2.38 2.32
Mg2+ (cmolc dm−3) 0.44 0.30 0.35 0.34 0.40
Al3+ (cmolc dm−3) 0.00 0.00 0.00 0.00 0.00
H + Al (cmolc dm−3) 4.00 1.90 2.40 2.40 2.20
SB (cmolc dm−3) 4.80 3.19 3.07 2.75 3.03
CEC (cmolc dm−3) 8.80 5.09 5.47 5.15 5.23
t (cmolc dm−3) 4.80 3.19 3.07 2.75 3.03
V (%) 54.50 62.70 56.10 53.40 57.90
m (%) 0.00 0.00 0.00 0.00 0.00
OM (g kg−1) 2.53 1.33 1.06 1.46 0.93
P-rem (mg L−1) 28.9 14.3 8.30 7.60 6.40
S (mg dm−3) 6.40 2.20 4.10 15.60 35.0
Zn (mg dm−3) 9.72 0.30 0.14 0.00 0.56
Fe (mg dm−3) 59.30 57.60 37.60 35.00 35.50
Mn (mg dm−3) 84.2 26.70 12.30 8.50 9.70
Cu (mg dm−3) 2.18 2.09 1.54 1.21 1.14
B (mg dm−3) 0.44 0.24 0.10 0.15 0.13
SD (g cm−3) 1.03 1.02 0.99 0.99 0.97
Thick sand (kg kg−1) 0.195 0.101 0.072 0.083 0.085
Thin sand (kg kg−1)
Clay (kg kg−1)

0.127
0.574

0.075
0.712

0.054
0.715

0.056
0.774

0.058
0.772

Silt (kg kg−1) 0.104 0.112 0.099 0.087 0.095

Table 2   Total amount of water 
applied by drip irrigation 
system, rainfall and crop 
evapotranspiration (ETc) in the 
experiment

RNI Real necessary irrigation, TNI Total necessary irrigation, ETc crop evapotranspiration

Precipitation
(mm)

RNI
(mm)

TNI
(mm)

Precipita-
tion + TNI (mm)

ETc
(mm)

Frequency
(days)

1 87.30 131.53 132.42 219.72 201.87
7 87.30 128.53 129.83 217.13 201.87
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depth was applied based on calculations provided by the local 
meteorological station.

Fruit Quality Analysis

Harvesting occurred at 128 days after transplanting. The fruit 
were harvested manually at the “red ripe” maturity stage was 
visually determined, which corresponds to fruit with more than 
90% of the red surface (Gupta et al. 2019). Ten plants from 
each experimental unit were sampled. Then, another sampling 
and previous selection of the fruit was made adopting criteria 
of size uniformity, ripeness degrees and sanity (fruit without 
signs of diseases and pests) of the plant material.

Pulp Firmness

Pulp firmness was determined with a digital penetrometer 
(Fruit hardness tester® mod. FR-5120) using a stainless steel 
cylinder probe with a diameter of 8 mm. For this analysis, five 
tomatoes were used, taking two readings in opposite positions 
at the equatorial region of the fruit (totaling 10 measurements 
per repetition, Al-Dairi et al. 2021). The results are expressed 
in Newtons (N).

Soluble Solids Content and Titratable Acidity

Tomato fruit were processed in an analytical mill (IKA® A11 
basic), then filtered and homogeneous juice from the pulp was 
obtained. The determination of soluble solids was performed 
using a portable digital refractometer (Atago® mod PR-201α) 
and the results expressed as percentage (Sinha et al. 2019). The 
acidity was determined by titrating 10 mL of the tomato filtrate 
with 0.05 N NaOH to pH 8.2, according to Tigist et al. (2013). 
Titratable acidity was expressed as a percentage (%), assuming 
citric acid as the predominant acid in the tomato juice.

Dry Matter

Fresh tomato fruit were weighed on a semi-analytical balance 
(precision of 0.0001 g) in duplicates for each repetition within 
the respective treatments. Then, the material was placed in 
a forced air oven at 65 °C for 72 h until reaching a constant 
weight. After this time, it was weighed again (Ronga et al. 
2017). The result was expressed as a percentage of dry matter 
(% DM), and calculated from the following formula:

where: %DM is percentage of tomato fruit dry matter (%); 
DM is the weight of tomato fruit after drying (g); FM is the 
weight of fresh tomato fruit (g).

% DM = (DM/FM)*100

Extraction Preparation

The preparation of the extract followed the methodology 
described by Araújo et al. (2020) with few modifications. 
Approximately 2 g of fresh pulp from the previously cut 
tomato fruit were weighed. The samples were ground and 
homogenized in boiling 80% ethanol. The supernatant 
was recovered, filtered, and centrifuged at 13.000 rpm for 
10 min. Then extract was pooled and equilibrated to known 
volume with 80% ethanol and subsequently used for quan-
tification of reducing sugars (RS) and total phenolic com-
pounds (PC).

Reducing Sugars

The content of reducing sugars was quantified following 
adaptations of the 3,5-dinitrosalicylic acid (DNS) method 
proposed by Gonçalves et al. (2010). For quantification, a 
0.25 mL aliquot was taken from the ethanolic extract, added 
0.25 mL of deionized water and 0.5 mL of DNS reagent. 
Tubes containing the solution were heated in a boiling water 
bath for 5 min. After cooling, 4 mL of deionized water was 
added and the absorbance was read in a spectrophotometer 
at 540 nm (GENESYS TM UV–VIS Thermo Scientific). The 
results were expressed as %RS on fresh mass (FM) basis 
using the standard fructose curve (0–1.0 mg).

Phenolic Compounds

Total phenolic compound content was quantified following 
the methodology proposed by Fu et al. (2011) with some 
modifications. For quantification, a 0.2 mL sample was taken 
from the ethanolic extract, added 1 mL of Folin-Ciocalteu 
reagent (a mixture of phosphomolybdate and phosphotung-
state) and kept at room temperature. Subsequently, 0.8 mL 
of calcium carbonate (7.5%) was added, stirred, and were 
incubated in a dark environment for 30 min. After this pro-
cedure the absorbance was read at 760 nm in a spectropho-
tometer (GENESYSTM UV–VIS Thermo Scientific). The 
results were expressed as mg gallic acid 100 mg−1 MF using 
standard gallic acid curve.

Total Carotenoids

The content of total carotenoids in fruit was obtained accord-
ing to the methodology performed by Araújo et al. (2020) 
with some modifications. Weighed 0.75 g of the fruit in 
10 mL of cooled 80% acetone. After that, the preparation 
was incubated in the dark for 24 h at 4 °C. The extract was 
obtained by filtering the material and the absorbance read 
at 470 in a spectrophotometer (GENESYSTM UV–VIS 
Thermo Scientific). The absorbance coefficients were deter-
mined from calibration curves prepared with the lycopene 
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standard (Strati; Oreopoulou, 2011). The content of total 
carotenoids was expressed as mg 100 g−1 FM, following the 
formula proposed by Rodriguez-Amaya (2001).

Determination of Calcium (Ca2+) and Magnesium (Mg2+) 
in Fruit

The preparation of tomato fruit samples consisted of drying 
in an oven with forced air circulation for 72 h at a tempera-
ture of 65 ºC. Then, the samples were weighed (approxi-
mately 0.5 g) on precision scales and ground in stainless 
steel knife mills. The quantification of Ca and Mg was done 
by 4:1 nitroperchloric digestion. The reading was done in 
an optical emission spectrometer with inductively coupled 
plasma (ICP- OES; Perkin Elmer Model Optima 8300 DV®) 
following the methodology proposed by Sarruge and Haag 
(1974). The results were expressed as dag kg −1 de DM.

Extraction and Analysis of Pectinolytic Enzymes

Extraction and pectin methylesterase (PME, EC3.1.1.11) 
activity was performed as described by Bu et al. (2013) with 
modifications. Frozen fruit tissues (0.5 g) were ground and 
homogenized in mortar with a pestle, containing solution 
composed of 2 mL of 8.8% NaCl and 10 g L−1 PVPP. The 
extract solution was centrifuged for 15 min at 14,000 rpm. 
The supernatant was then collected and adjusted to pH 7.5 
with 1 M NaOH and then used for the enzyme activity assay.

The solution for the reaction was composed of 0.6 mL 
of pectin solution (Sigma®, from citrus peel; 0.5% aque-
ous solution adjusted to pH 7.5 using 1 M NaOH), 0.2 mL 
of 0.01% (m/v) bromothymol blue solution, 0.75 mL of 
3 mM phosphate buffer (pH 7.5), 0.1 mL of enzyme extract. 
After that, the absorbance was read immediately at 620 nm 
in a spectrophotometer for 2 min (GENESYSTM UV–VIS 
Thermo Scientific). The rate of decrease from 0 to 2 min was 
used to determine the PME activity. Enzyme activity was 
expressed as µmol min−1 mg protein−1. The activity calcula-
tion was performed against a standard curve of polygalactu-
ronic acid described by Hagerman and Austin (1986). Total 
proteins in the enzymatic preparation were determined by 
the Bradford method (Bradford 1976).

Extraction and polygalacturonase (PG, EC 3.2.1.15) 
activity was performed as described by Bu et al. (2013) 
with modifications. Tissues of the frozen fruit (0.5 g) were 
ground and homogenized with a mortar and pestle and then 
extracted by adding 2 mL of 37.5 mM sodium acetate buffer 
(pH 5.0). The extract solution was centrifuged for 15 min 
at 14,000 rpm. The supernatant was collected and used to 
determine the enzyme activity.

The solution for the PG reaction was made from the 
mixture containing 0.2 mL 37.5 mM sodium acetate buffer 
(pH 5.0), 0.225 mL of 0.25% (w/v) polygalacturonic acid 

previously diluted in 100 mM sodium acetate buffer (pH 
5.0), 0.1 mL of the enzyme extract. The mixture was incu-
bated at 37 °C for 15 min and the reaction was stopped 
by adding 0.5 mL of 3,5-dinitrosalicylic acid (DNS) and 
immersion in a boiling water bath for 5 min. After cool-
ing, 1 mL of distilled water was added and the absorbance 
was read at 540 nm in a spectrophotometer (GENESYSTM 
UV–VIS Thermo Scientific). The enzymatic activity was 
expressed as µmol min−1 mg protein−1. Total proteins of 
the enzyme preparation were determined by the Bradford 
method (Bradford 1976).

Statistical Analysis

Data were subjected to the test for normality (Shapiro–Wilk) 
and homogeneity of variances (Bartlett). The data were sub-
jected to a mean test by the ExpDes.pt package (Ferreira 
et al. 2021). A canonical variable analysis and confidence 
ellipses (p ≤ 0.01) were performed to study the interrela-
tionship between variables and the factors using the candisc 
package (Friendly et al. 2013). Statistical analyses was per-
formed by the R software (R Core Team 2021).

Results

The soluble solids content was higher in fruit under soil 
management with conventional fertilization + lime-
stone + gypsum (FLG) and irrigation frequency (IF) of 
seven days (Fig. 1A). The titratable acidity did not differ 
(Fig. B). The content of reducing sugars was higher in the 
combined treatment of FLG and IF for seven days (Fig. 1C). 
The soluble solids/titratable acidity ratio was higher in fruit 
submitted to FI for seven days, with no difference between 
soil managements (Fig. 1D). The control treatment was con-
ventional fertilization + limestone [FL] with daily irrigation. 
This treatment was chosen because it practically represents 
the management adopted by industrial tomato producers in 
the country’s major production regions.

A The amount of calcium (Ca2+) in tomato fruit was 
lower only in the combined treatment by FL and the IF of 
seven days (Fig. 2A). Magnesium (Mg2+) did not differ in 
any of the treatments. (Fig. 2B).

Pulp firmness was higher in tomato fruit under combined 
management with FLG and IF for seven days (Fig. 3A). The 
percentage of dry matter was higher in fruit managed com-
bined with FL and FLG and IF of seven days (Fig. 3B). PG 
activity was lower in fruit under combined management with 
FLG, FLGP and IF of seven days (Fig. 3C). PME activity 
was lower in all treatments with seven days IF managements 
(Fig. 3D).
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Fig. 1   Soluble solids (A), Titratable acidity (B) Reducing sugars (C) 
and soluble solids/titratable acidity ratio (D) of tomato fruit subjected 
to different soil managements (conventional fertilization + limestone 
[FL]; conventional fertilization + limestone + gypsum [FLG]; con-
ventional fertilization + limestone + gypsum + phosphorus applied at 

depth [FLGP]) and irrigation frequencies (one and seven days).Val-
ues are mean ± standard deviation (n = 4). Equal capital letters do not 
differ among irrigation frequencies and lower case letters among soil 
managements, according to Tukey’s test (p ≤ 0.05)

Fig. 2   Calcium (A) and magnesium (B) content of tomato fruit sub-
jected to different soil managements and irrigation frequencies. Val-
ues are mean ± standard deviation (n = 4). Equal capital letters do not 

differ among irrigation frequencies and lower case letters among soil 
managements, according to Tukey’s test (p ≤ 0.05)
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The content of total carotenoids and phenolic compounds 
was higher in the combined treatment of by FLG and in all 
managements with IF of seven days (Fig. 4A and 4B).

The variance accumulated by the two canonical vari-
ables (Can1 and Can 2) was 90.6%, so there is a distinction 
between the types of management and the IF (Fig. 5). Can1 

Fig. 3   Pulp firmness (A), dry matter (B), and enzymatic activity of 
pectin methylesterase (C) and polygalacturonase (D) of tomato fruit 
subjected to different soil managements and irrigation frequencies. 

Values are mean ± standard deviation (n = 4). Equal capital letters do 
not differ among irrigation frequencies and lower case letters among 
soil managements, according to Tukey’s test (p ≤ 0.05)

Fig. 4   Total Carotenoids (A), and Phenolic compounds (B) of tomato 
fruit subjected to different soil managements and irrigation frequen-
cies. Values are mean ± standard deviation (n = 4). Equal capital let-

ters do not differ among irrigation frequencies and lower case letters 
among soil managements, according to Tukey’s test (p ≤ 0.05)
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is positively correlated with the activity of the enzymes PG, 
PME and the Ca and Mg present in tomato fruit; and nega-
tively with titratable acidity (TA), soluble solids/titratable 
acidity ratio (RATIO), total carotenoids (TC), reducing sug-
ars (RS), phenolic compounds (PC), firmness (FIRM) and 
dry matter (DM). On the other hand, Can2 showed a strong 
negative correlation, mainly with the Ca content.

Discussion

The increase in the soluble solids content of tomato fruit 
subjected to water management, adopting the IF of seven 
days and soil management with FLG is due to the low dilu-
tion of soluble solids caused by the possible reduced trans-
port of water (Nangare et al. 2016). Increasing the soluble 
solids content in fruits destined for industry is one of the 
main objectives to be achieved by the sector, as it increases 
industrial yield, and identity and quality standards (IQS) are 
more easily achieved (Wei et al. 2018a, b). The higher the 
SS content, the lower the energy required to evaporate the 
water from the fruits in the preparation of extracts, sauces 
and concentrated juices (Bennett 2012; Dariva et al. 2021).

Titratable acidity did not differ, most likely because treat-
ments with soil management and a seven-day IF had no effect 
on the osmotic adjustment process, which involves the active 
production of organic acids under controlled water stress 
(Hou et al. 2020). Compared to sugar metabolism, malic 
and citric acid metabolism (major acids found in tomatoes) 
involves enzyme-catalyzed biochemical pathways including 

carboxylation of phosphoenolpyruvate (PEP), decarboxyla-
tion of oxaloacetate, the tricarboxylic acid cycle (TCA) and 
the glyoxylate cycle (Etienne et al., 2013; Hou et al. 2020) 
which still remains poorly understood in the literature on 
the physiological mechanisms involved behind acid accu-
mulation responses to RDI strategies. The non-influence of 
management on titratable acidity, in contrast to the increase 
in SS under IF of seven days, promoted an increase in the 
ratio, indicating an increase in the perception of sweetness of 
the fruit from the greater allocation of carbohydrates (Wang 
and Frei 2011; Hou et al. 2017). According to Mian et al. 
(2021) tomatoes that have soluble solids/titratable acidity 
ratio greater than 10 are considered to have good flavor. In 
our study, the values ranged from 11.92 to 13.01.

The increase in reducing sugars in the combined treat-
ments with FLG and IF of seven days can be explained by 
the increase in the activity of carbohydrate metabolism 
enzymes that increase the degradation of disaccharides dur-
ing the period of fruit maturation, generating greater mobi-
lization and accumulation of glucose and fructose in the 
fruits (Ruan et al. 2010; Ripoll et al. 2014; Hou et al. 2020).

Improvements in tomato fruit quality in relation to 
increases in SS, sugars, and consequently better solu-
ble solids/titratable acidity ratio, can be explained by the 
reduction of lateral shoots and reproductive growth in plants 
submitted to RDI. These reductions possibly improve the 
draining activity in tomato fruit, so the carbohydrate that 
would be directed to the sprouts is redirected to the fruit, 
culminating in the increase of assimilates in them. (Patanè 
and Cosentino 2010; Wei et al. 2018a, b; Liu et al. 2021a, 

Fig. 5   Canonical variable 
analysis and confidence ellipses 
(p ≤ 0.01) for the treatments 
consisting of different soil 
managements (conventional 
fertilization + limestone 
[FL]; conventional fertiliza-
tion + limestone + gypsum 
[FLG]; conventional ferti-
lization + limestone + gyp-
sum + phosphorus applied at 
depth [FLGP]) and irrigation 
frequencies (one and seven 
days) Ca Calcium, Mg Magne-
sium, PME Pectin methylester-
ase, PG Polygalacturonase, TA 
Titratable acidity, Ratio, SS 
Soluble solids, FIRM Firmness, 
DM Dry matter, TC Total carot-
enoids, RS Reducing sugars, 
FEN Phenolic compounds
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b). Additionally, moderate regulated deficit irrigation (RDI) 
can induce a greater accumulation of starch during early 
fruit development, with greater conversion of it into sugars 
from the increase in the activity of carbohydrate cataboliz-
ing enzymes that modulate the sugar concentration in toma-
toes during ripening (Zegbe-Domınguez et al. 2003; Sun 
et al. 2014; Liu et al. 2021a, b). The balance between these 
two hormones stimulates the activity of invertase enzymes, 
which catabolize carbohydrates and trigger the increase in 
sugars in fruits (Ruan et al. 2010; Wei et al. 2018a, b).

The lower Ca2+ content in tomato fruit in the combined 
management with FL and FI of seven days can be explained 
by the lower mass flow rate of water in the xylem, which is 
mainly influenced by transpiration and plant growth rates. 
(Hocking et al. 2016; Reitz et al. 2021), in addition to the 
availability of the nutrient in the soil. This indicates that 
soil managements FLG and FLGP increased the levels and 
availability of Ca2+ in the soil, regardless of the IF adopted. 
Previous studies have shown that the exclusive application 
of limestone provided improvements in soil chemical attrib-
utes, including reductions in pH, exchangeable Al3+, H + Al 
and cationic micronutrients (Fe, Mn, Cu and Zn), reducing 
possible toxic effects on plant development and microbial 
growth (Carmeis Filho et al. 2017). However, in a recent 
study Bossolani et al. (2020) reported that the application 
of lime and gypsum together provided greater availability of 
N, P, Ca2+ and S-SO4

2− when compared to the application 
of lime alone.

Although gypsum does not directly affect soil pH, 
these changes in the availability of the aforementioned 
nutrients increase the pH due to the exchange reactions of 
S-SO4

2− ligands with terminal hydroxides associated with Al 
and Fe oxides, which displace OH− and promote partial neu-
tralization of soil acidity. Improvements in crop yields due 
to gypsum application are mainly due to increased Ca2+ and 
S solubility in the soil and, consequently, plant availability 
and/or reduced availability of Al3+ in the soil, especially in 
deep layers (Caires et al. 2011). Due to the thermodynamics 
of ion exchange and the properties of Ca2+, gypsum can also 
potentially increase the leaching of Mg2+ and K+ to deep 
layers (Zoca and Penn 2017). Therefore, it is reasonable to 
suggest that with decrease of IF (seven days) and combined 
soil management practices (FLG and FLGP), it possibly 
maintains the nutritional status and supply of calcium and 
magnesium in tomato fruit based on maintenance and better 
moisture distribution along the soil profile (Liu et al. 2011; 
Chai et al. 2016), favoring a greater zone of root growth and, 
consequently, absorption of water and nutrients (Cui et al. 
2009; Fara et al. 2019).

The higher pulp firmness in tomato fruit of the com-
bined treatments with FLG and IF of seven days is possibly 
related to the lower activity of the pectinolytic enzymes PG 
and PME, which are the main enzymes that affect tomato 

firmness during ripening (Wei et al. 2018b). The lower activ-
ity of PG and PME resulting in greater firmness of tomato 
fruit is that PME catalyzes the demethylation of pectin and 
generates pectic acid, a substrate for PG. PG, in turn, depo-
lymerizes the polygalacturonic acid chain (Xie et al. 2017). 
The depolymerization of these structural domains and the 
solubilization of pectic polysaccharides causes the modifi-
cation of the cell wall polysaccharides and, finally, the dis-
assembly of their architecture, as a result of the combined 
action of these enzymes (Tieman et al. 1992; Brummell and 
Harpster 2001; Bu et al. 2013; Kumar et al. 2021). How-
ever, as calcium is one of the main constituents of pectin 
in the cell wall and helps to stabilize the plasma membrane 
(Hocking et al. 2016), adequate amounts of this nutrient in 
tomato fruit contribute to stabilization, causing a persistent 
inhibition of pectic polysaccharide hydrolysis and strongly 
suppressing PG-mediated pectin release from cell walls 
(Rushing and Huber 1987; Huber et al. 2001).

Pectin methylesterase enzymes belong to large multigene 
families in all plant species examined so far. For example, in 
Arabidopsis thaliana, 66 ORFs (Open Reading Frames) have 
been annotated as putative full-length pectin methylester-
ases, representing 6.81% of all active carbohydrate-active 
enzymes (CAZymes) and expansins in the species. In Popu-
lus trichocarpa, there are 89 ORFs and 5.46%, respectively, 
while these numbers appear to be substantially smaller (35 
ORFs and 3.14%) in Oryza sativa (Pelloux et al. 2007). In 
Fragaria vesca, Malus domestica, Pyrus bretschneideri, 
Prunus mume, Prunus persica, and Rosa chinensis, a total of 
54, 78, 79, 57, 66, and 53 pectin methylesterase genes were 
individually identified. These genes were named as FvPME, 
MdPME, PbPME, PmPME, PpPME, and RcPME, respec-
tively (Xue et al. 2020). The firmness of the fruit decreases 
as the pectin content increases, and this was observed in 
tomato fruits in this study. Similar results were reported in 
strawberries after the downregulation of the FaPG1, PL, and 
FaβGal4 genes (Paniagua et al. 2016), as well as in peaches 
(Liu et al. 2018).

Polygalacturonases are encoded by large multigene fami-
lies (Yang et al. 2018). This gene family has been identified 
in various plants, including Arabidopsis, Oryza sativa, Bras-
sica rapa, Populus, cucumber, watermelon, tomato, mango, 
apple, and peach (Zhang et al. 2019). In strawberry fruits, 
two different genes have been described: FaPG1 and FaPG2 
(AY280662) (Quesada et al. 2009). Among the 54 SlPGs 
identified in tomato fruits, members in clades A and B are 
involved in fruit and abscission zone development, while 
members from clades C, D, and F are involved in flowering 
development (Dautt-Castro et al. 2019).

Thus, the results of this study provide convincing evi-
dence that the synergistic effect of soil and water manage-
ment strategies contribute to lower PG and PME activity, 
generating less pectin solubilization by hydrolytic enzymes, 
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as a result of adequate Ca2+ supply in the fruits and the 
increased allocation of water to these bodies. This indicates 
that the fruits managed with FLG and FLGP have superior 
physical qualities, that is, they tend to be firmer and less 
predisposed to suffer mechanical damage during transport. 
Firm tomatoes are considered an essential attribute for the 
industry as they tolerate long-distance transport to process-
ing sites without pericarp rupture (Dariva et al. 2021).

The increase in the percentage of dry matter indicates that 
the IF of seven days combined with soil management tech-
niques was probably due to the optimization and improve-
ment in water use efficiency (WUE) by the plants submitted 
to the adopted strategies. Concomitantly, the application 
of RDI is also accompanied by a reduction in the osmotic 
potential of the fruits, suggesting that active metabolism of 
solutes may have resulted in an increase in the accumulation 
of water and dry matter in the fruit (Ripoll et al. 2014). The 
reflection of this is the increase in the quality of tomatoes, 
that is, as dry matter is one of the key variables to describe 
the amount of fixed carbon (soluble and insoluble solids, 
mainly sugars, acids, pectic substances and other polysac-
charides, in addition to nutrients inorganic substances) to 
the detriment of the amount of water applied by the plant 
(Foolad 2007; Chai et al. 2016; Villas Boas et al., 2017); 
we can infer that the higher amount of carbon fixed in our 
study reflected in a higher yield of tomatoes produced, per 
unit of water supplied. Previous studies have shown that the 
adoption of management strategies that aim to increase the 
WUE of the plants maintains or improves the dry matter 
of tomato fruit (Li et al. 2019; Liu et al. 2021a, b), as they 
increase productivity (Fara et al. 2019).

The increase in total carotenoids and phenolic compounds 
when submitted to FLG soil treatment and in all manage-
ments with IF of seven days can be explained by the regu-
lated oxidative stress induced in plants by RDI, which led 
to an increase in the production of reactive oxygen species 
(ROS), which possibly stimulates the synthesis and accu-
mulation of antioxidant enzymes such as catalase (CAT), 
superoxide dismutase (SOD), ascorbate peroxidase (APX) 
and guaiacol peroxidase (GPOX), or non-enzymatic sub-
stances such as lycopene, β-carotene and vitamins in tomato 
fruit (Ripoll et al. 2014; Hou et al. 2020). RDI strategies 
are known to trigger increased synthesis of carotenoids 
(Fanciullino et al. 2014; Dariva et al. 2021) and phenolic 
compounds (Fumar et al., 2015). In our study, we observed 
that the adoption of RDI, given the increase in IF (seven 
days) influenced the increase in the content of phenolic com-
pounds and total carotenoids, in all treatments, especially 
when combined with FLG. Higher levels of carotenoids were 
also reported by Coyago-Cruz et al. (2022) in tomato fruit 
when subjected to RDI strategies.

Our results showed high positive scores obtained in Can1, 
indicating that treatments with daily IF, regardless of the 

type of management adopted, resulted in high activities of 
PME and PG, lower pulp firmness, as well as a low content 
of phenolic and carotenoids. Here we present that shows 
that the increase in firmness of tomato fruits is related to the 
decrease in the activity of pectinolytic enzymes when sub-
jected to RDI management. In contrast, the negative scores 
in Can1 presented in the canonical variable analysis, were 
obtained by the managements with FLG and FLGP and FI of 
seven days, and indicate a production of firmer fruits, with 
higher content of carotenoids, phenolic compounds, reduc-
ing sugars, and dry matter, as well as higher ratio. The high 
positive score on Can2 indicates a strong negative relation-
ship of Ca, with FL managements with IF of seven days. A 
schematic diagram with the main biochemical changes in 
tomatoes for industrial processing influenced by combined 
soil and water management was created (Fig. 6).

Transpiration is crucial for proper tomato plant growth, 
enabling the transfer of vital nutrients like S, Ca, Mg, and 
P from roots to various plant parts, especially fruits. Sulfur 
supports amino acids for protein synthesis, calcium aids in 
cell wall growth and fruit quality, magnesium is essential for 
chlorophyll and photosynthesis, and phosphorus is involved 
in metabolic processes and energy transport. The source-
sink connection refers to the flow of sugars, phenolics, carot-
enoids, and other organic chemicals within the tomato plant. 
Sugars are primarily produced through photosynthesis in the 
leaves and serve as a source for developing fruits, where they 
are utilized for growth and ripening processes. The pres-
ence of soluble sugars like glucose and fructose enhances 
the flavor and sweetness of tomatoes, impacting their mar-
ketability. Phenolics and carotenoids, secondary metabolites 
responsible for color, flavor, and antioxidant properties, are 
crucial for attracting customers and determining the overall 
market value of tomatoes.

Transpiration facilitates the movement of organic sub-
stances like soluble sugars, phenolics, and carotenoids 
within the plant, from source leaves to growing fruits. 
Adequate water supply and optimal transpiration rates are 
essential for proper distribution and accumulation of these 
chemicals in the fruits, ultimately affecting their taste, 
color, flavor, and market value. Watering tomatoes every 
seven days promotes the growth of deeper roots, leading to 
more efficient nutrient absorption and reduced water usage. 
Deeper roots access a larger moisture reserve in the soil, 
allowing plants to develop healthier and more robustly. This 
deeper root system also enhances drought resistance, making 
the plants adaptable to water shortages and dry conditions. 
Moreover, less frequent irrigation results in significant water 
savings due to reduced evaporation and overall water usage. 
Additionally, tomatoes harvested from plants with deeper 
root systems have improved nutrient density and longer shelf 
life, enhancing the fruits’ quality.
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It is possible to enhance post-harvest features of industrial 
tomatoes without genetic modification by comparing Flavr 
Savr tomatoes with a non-GMO approach of intensive fer-
tilization and minimal irrigation. Flavr Savr tomatoes were 
genetically modified to delay ripening and extend shelf life, 
while the non-GMO approach focuses on nutrient availabil-
ity and water management. Both methods aim to improve 
post-harvest qualities, but GMO crops raise concerns about 
environmental impacts and consumer acceptance, while 
the non-GMO strategy aligns with sustainable practices, 
reducing resource usage. GMO crops require approval and 
labeling, adding regulatory considerations, whereas the non-
GMO approach may encounter fewer obstacles. In conclu-
sion, Flavr Savr tomatoes rely on genetic modification for 
specific benefits, while the non-GMO strategy optimizes 
cultural practices, enhances fruit quality, extends shelf life, 
and promotes sustainable agriculture.

Conclusion

The combined soil and water management strategies pro-
moted an increase in post-harvest quality of industrial 
tomato variety Heinz 9553. The lower activity of pectin 
methylesterase and polygalacturonase and resulted in 

higher firmness in fruits with FLG and IF management 
of seven days. The combination of soil and water man-
agement with FLG and IF of seven positively influenced 
soluble solids, reducing sugars, soluble solids/titratable 
acidity ratio, firmness, dry matter, phenolic compounds 
and total carotenoids of tomato. Therefore, the combined 
soil and water managements FLG and FLGP with seven 
days IF are recommended for field cultivation of tomato 
for industrial processing.
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