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Abstract
The global agricultural system has been badly affected by adverse environmental changes in the past few years. These 
changes, including the rise of abiotic and biotic stressors negatively altered the growth and physiology of crop plants. Abiotic 
stresses, such as salinity, temperature extremes, drought, and heavy metals/metalloids, are major environmental constraints 
limiting crop growth, productivity, and sustainability worldwide. These stresses adversely affect plant metabolic activities 
and redox homeostasis, eventually leading to a reduction in plant growth and development. Plant growth regulators (PGRs) 
play a key role in regulating plants developmental processes and defensive responses under adverse environmental conditions. 
Among PGRs, gibberellic acid (GA3), an endogenous tetracyclic diterpenoid plant hormone, regulates many growth and 
developmental aspects of crop plants. GA3 plays a pivotal role in mitigating abiotic stresses induced-perturbations in plants 
by modulating various physio-biochemical and molecular processes. Based on recent reports, this review article describes 
the role of exogenously applied GA3 in improving seed germination, phenotypic characteristics, metabolic processes, yield 
and quality components, and post-harvest life of fruits, vegetables, and flowers. In this article, we summarize research 
concerning GA3 biosynthesis and signaling and discuss the potential role of GA3 in mediating tolerance to various abiotic 
stresses. Moreover, the present article enlightens the current research concerning the signaling pathway in gibberellin and 
gibberellin-mediated crosstalk with other plant hormones.
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Signaling

Introduction

Plants face myriad environmental stresses broadly divided 
into abiotic and biotic stresses. Abiotic stresses like heavy 
metals, water scarcity, salinity, and varying temperature 
are the main environmental restraints that adversely 
hamper phenotypic features, physio-biochemical pro-
cesses, and production of crop plants (Zhu 2016; Shah 
et al. 2021, 2022a, b). Plants are equipped with various 

inherent physio-biochemical and molecular mechanisms to 
overcome these perturbations. These mechanisms include 
alteration in gene expression, synthesis of special proteins, 
maintaining ionic balance, accumulating osmolytes, and 
enhancing antioxidant defense machinery (Sharma et al. 
2022). Numerous efforts have been practiced to influence 
the endurance of plants against environmental calami-
ties. Among them, the supplementation of plant growth 
regulators (PGRs), including auxins, brassinosteroids, 
abscisic acid, ethylene, cytokinins, gibberellins (GAs), 
jasmonic acid, nitric oxide, polyamines, salicylic acid and 
strigolactones play a regulatory role in boosting defen-
sive responses in plants (Islam et al. 2021; Sabagh et al. 
2021). The use of PGRs has become a common practice 
for improving the productivity and quality of horticul-
tural and agricultural crop production and also for the 
mitigation of abiotic stresses (Shah et al. 2023). PGRs 
are small chemical messenger molecules that influenced 
growth, physiological and biochemical features, and plant 
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genotypic functions (Rademacher 2015; El Sabagh et al. 
2022). Among PGRs, GAs, an important phytohormone/
plant growth regulator, modulates several growth and 
developmental processes in crop plants. Gibberellin com-
prises several compounds belonging to tetracyclic diterpe-
noid carboxylic acid groups. Gibberellins, generally rec-
ognized as gibberellic acid (GA3), was first identified by 
Western scientists in the 1950s. In Asia, rice farmers know 
about a fungal disease called bakanae disease or foolish 
seedlings that have led to the identification of GAs (Gupta 
and Chakrabarty 2013; Taiz et al. 2015). Gibberellic acid 
produced from Gibberella fujikuroi can be commer-
cially used for horticultural and agricultural purposes. It 
improved the growth and productivity of orchards, crops, 
and ornamental plants. The first GA was identified (GA1) 
in runner bean seeds in 1958. However, most plants that 
produce GA, like GA1 and GA4, have diverse roles in their 
physiological functions. Gibberellic acid induces growth 
and development processes in crop plants, including cell 
expansion, cell division, seed germination, mobilization 
of endosperm storage reserves, internode elongation, tran-
sition to flowering, sex expression, and development of 
fruits (Schwechheimer 2008; Rodrigues et al. 2012; Oth-
man and Leskovar 2022). It has also been suggested that 
the treatment of GA3 extends the post-harvest life of fruits, 
vegetables, and flowers by delaying senescence, inhibiting 
chlorophyll degradation, and increasing the antioxidant 
system (Kuchi et al. 2017).

Gibberellin is actively involved in plant mechanisms asso-
ciated with imparting tolerance to stress in crop plants by 
improving ion homeostasis, membrane permeability, anti-
oxidant system, osmolyte accumulation, and expression of 
stress-mitigation genes (Emamverdian et al. 2020; Nagar 
et al. 2021). Gibberellin takes part in key tolerance responses 
of plants against abiotic stresses such as by increasing plant 
antioxidant activities that scavenge deleterious ROS. Studies 
by several workers proposed that exogenous applications of 
GA3 help plants to nullify the damaging consequences of 
environmental stresses (Hamayun et al. 2010; Elahi et al. 
2022). The exogenous application of GA3 improves growth, 
photosynthetic pigments, net photosynthetic rate, enzyme 
activities, mineral nutrient acquisition, and yield efficiency 
of several crop plants under adverse environmental condi-
tions (Afroz et al. 2006; Abdel-Hamid and Mohamed 2014; 
Rady et al. 2021; Shahzad et al. 2021). The developmental 
processes in the plant life cycle indicate coordinated altera-
tions in molecular mechanisms of plant growth through 
complex signaling networking and synchronized participa-
tion of various hormone signaling components. It has been 
confirmed that the relations between various phytohor-
mones are necessary in integrating and remodeling plant 
growth and enhancing their stress resistance mechanism. 
GA3 interacts with other PGRs both synergistically as well 

as antagonistically to modulate many plants metabolic pro-
cesses (Weiss and Ori 2007; Shaki et al. 2019; Banerjee and 
Roychoudhury 2019; Abbas et al. 2022).

Considering the diverse functions of GA3 in the life cycle 
of plants in view, the present article aims to timely review 
the biosynthesis, signaling, and role of GA3 in the growth 
and development of crop plants. In this article, we have also 
focused on GA3-mediated abiotic stress tolerance in crop 
plants. Moreover, an attempt has also been made to discuss 
molecular insight regarding the crosstalk of GA3 with other 
PGRs in plants.

Biosynthesis

Gibberellins are naturally occurring phytohormone pro-
duced in many parts of plants, including germinating seeds, 
developing seeds, young leaves, and internodes. Gibberel-
lins encompass a large group of plant growth substances 
with different functions during the entire life cycle of higher 
plants. The rate of GA biosynthesis and catabolism regu-
lates how the GA hormone pool occurs in plants in a tis-
sue and developmentally mediated manner. The GA bio-
synthetic pathways and catabolism are under strict genetic 
control (Taiz et al. 2015). The biosynthetic pathway of GA 
illustrated in (Fig. 1.) starts from geranyl–geranyl diphos-
phate (GGPP). The GGPP was synthesized from isopente-
nyl diphosphate (IPP), a 5-carbon central intermediate for 
many isoprenoid/terpenoid compounds. Two routes gener-
ate the IPP: the methyl erythritol phosphate (MEP) pathway 
in plastids and the mevalonic acid (MVA) pathway in the 
cytosol (Kasahara et al. 2002; Hedden and Thomas 2012). 

Fig. 1   An overview of gibberellins biosynthesis in plants
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The GA biosynthetic pathway can be categorized into three 
phases (Hedden 2020). The first phase occurred in plastids 
where GGPP was changed into ent-kaurene catalyzed by 
two enzymes: the ent-copy-diphosphate synthase (CPS) and 
the ent-kaurene synthase (KS) (Van Schie et al. 2007; Taiz 
et al. 2015). In Arabidopsis thaliana L., enzymes CPS and 
KS are transcribed by single locus GA1 and GA2, respec-
tively (Yamaguchi et al. 1998), while Oryza sativa L. by 
OsCPS1 and OsKS1 respectively (Sakamoto et al. 2004). 
The second phase takes place in the endoplasmic reticulum 
(ER); ent-kaurene is oxidized to GA12-aldehyde catalyzed 
by cytochrome P450 monooxygenases including ent-kau-
rene oxidase (KO) and ent-kaurenoic acid oxidase (KAO). 
The GA12-aldehyde is transformed into GA12 (Hedden et al. 
2002; Davidson et al. 2006). In A. thaliana L., KO is located 
at the chloroplast membrane and KAO at ER, facilitating 
ent-kaurene exit from plastid and oxidizing it when entered 
ER. The KAO enzyme is encoded by two genes, KAO1 and 
KAO2 (Regnault et al. 2014), and the KO enzyme is encoded 
by OsKO1, OsKO2, and OsKO5 genes in A. thaliana L. 
and Oryza sativa L., respectively (Zhang et al. 2020). GA12 
undergoes hydroxylation to form GA53. The third phase 
occurred in the cytosol in which GA12 and GA53 served 
as precursors for the non-13-hydroxylation pathway and 
13-hydroxylation pathway to form GA9 and GA20, respec-
tively catalyzed by GA20-oxidase (GA20ox). The last stage 
of biosynthesis is the 3 β-hydroxylation of GA9 and GA20 
mediated by GA3-oxidase (GA3ox) to form GA4 and GA1, 
respectively, bioactive GAs in plants (Salazar-Cerezo et al. 
2018; Hedden 2020). Moreover, the bioactive GA4 and GA1 
are inactivated by GA2-oxidase (GA2ox). The GA2-oxidase 
enzyme is encoded by seven genes, viz., GA2ox1, GA2ox2, 
GA2ox3, GA2ox4, GA2ox6, GA2ox7, and GA2ox8. The 
GA2-oxidase is a key enzyme in controlling GAs concentra-
tion during plant growth and development and responding to 
adverse environmental conditions (Li et al. 2019).

Signaling

Gibberellins regulate many features of plant physiology 
by modulating transcriptional and post-transcriptional 
changes at the cellular level (Schwechheimer 2008). 
There are many components that are involved in signal-
ing responses regulated by GAs. The signaling of GA in 
plants involves a homeostatic balance between the gene 
expression involved in the GA biosynthesis, GA receptor, 
and enzyme concentration that inactivates bioactive GA 
(Sun and Gubler 2004; Daviere and Achard 2013). The 
crucial part in GA signaling is the GA receptor, i.e., GID1 
(gibberellin insensitive dwarf 1) identified from Oryza 
sativa L. GID1 is a soluble protein located in the cyto-
sol and nucleus, has a C-terminal domain for GA binding 

and a flexible N-terminal domain (Griffiths et al. 2006; 
Ueguchi-Tanaka et al. 2007). The DELLA proteins (con-
sisting of an N-terminal DELLA/TVHYNP motif and a 
C-terminal GRAS domain) are negative regulators of GA 
signaling in many crop plants and restrain the growth of 
plants (Yoshida et al. 2014). Moreover, DELLA prevents 
the binding of phytochrome interacting factors (PIFs) 
to their promoter sites and thereby interferes with their 
transcriptional activity. Gibberellin binds to its receptor 
GID1, and the GID1 undergoes conformational changes 
and allows the binding of the DELLA repressor protein, 
forming the GID1-GA-DELLA complex. The GID1-GA-
DELLA complex is recognized by SCFGID2/SLY1 (skp1-cul-
lin F-box), an E3 ubiquitin ligase that triggers polyubiqui-
tylation and degrades DELLA repressor protein through 
26S proteasome. The GID2 and SLY1 (SLEEPY1) are a 
subunit of F-box protein and deactivate repressors (such 
as SPY1, GAI, and RGA) of the GA signaling pathway in 
the presence of GA in the cell. After the degradation of the 
DELLA repressor resulted in the activation of transcrip-
tion factors PIFs such as PIF3 and PIF4 and bHLH (basic 
helix-loop-helix), these transcription factors thus acti-
vated GA-regulated genes to cause a rapid change in gene 
expression and regulate biological response (Hartweck 
2008; Hirano et al. 2008; Taiz et al. 2015). Additionally, 
two GATA family transcription factors GNC (GLUCOSE 
NITROGEN CARBON) and CGA1/GNL (CYTOKININ-
INDUCED GATA FACTOR1/GNC-LIKE) were consid-
ered redundant regulators of plant growth. The GNC and 
GNL expression is repressed by PIFs mediated by GAs 
and requires the GID1-GA complex and degradation of 
DELLA. GA modulates many characteristics of plant 
physiology, including embryo, seed and root development, 
seed germination, leaf expansion, elongation of the stem, 
pollen maturation, and floral development (Richter et al. 
2010; Schwechheimer 2012). Ramesh and Kumar (2006), 
Hamayun et al. (2010), and Saleem et al. (2020) suggested 
that supplementation of GA3 significantly promoted seed 
vigor, plant height, plant biomass, antioxidant system, and 
photosynthesis of plants under changing environmental 
conditions. A diagrammatic illustration of mode of action 
of GA in plant cell is given in Fig. 2.

Growth and Development

Gibberellin plays a vital role in improving diverse facets of 
growth and development such as seed germination, morpho-
logical attributes, physiological and biochemical responses, 
yield, and quality traits of various crop plants (Fig. 3). Find-
ings of several workers suggested that supplementation of 
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GA3 influences every phase during the life cycle of plants. 
These studies have been summarized in below sections.

Seed Germination

Seed germination is an essential step in the lifespan of seed 
plants. It is controlled by many environmental aspects (light, 
moisture, and temperature, etc.) and by endogenous phy-
tohormones (Abscisic acid and GA3). The period of seed 
dormancy and the optimum moment to induce germination 
is critical for improving plant lifecycle and preventing poten-
tial threats in the first phases of seedling development. It is 
well known that GA is the main hormone intricated in seed 
dormancy breakdown, and the ABA/GA balance is the main 
regulator of seed dormancy and germination. Gibberellic 
acid positively regulates seed germination, whereas ABA 
maintains seed dormancy (Kim and Park 2008; Ravindran 
and Kumar 2019). Gibberellin promotes seed germination 
by increasing proteasome degradation of RGL2 (a DELLA 
repressor that stops germination), whereas ABA-induced 
AB15 (a leucine zipper transcription factor) that repressed 
seed germination (Piskurewicz et al. 2008). Endogenous 
GA acts as a positive regulator in this process to trigger the 
expression of the hydrolytic enzyme (especially α-amylase) 
in the aleurone layer of cereal grains, which substantially 
degrades the endospermic starch reserve (Damaris et al. 
2019). Studies have revealed that both endogenous GA and 
the exogenous application of GA promote seed germination 
in crop plants, including Oryza sativa L. and Capparis ovata 
L. (Vieira et al. 2002; Soyler and Khawar 2007). Balaguera-
Lopez et al. (2008) described that pre-sowing of Solanum 
lycopersicum L. seeds in 900 mg/L GA3 led to a higher pro-
portion of seed germination over the control. Roychowd-
hury et al. (2012) also investigated the effect of pre-sowing 
seed treatment of GA3 on seed dormancy. They observed 
that Dianthus caryophyllus L. seeds soaked in 20 ppm GA3 
suppressed the effect of seed dormancy by significantly 
increasing seed germination percentage over the control. 
Exogenously applied GA3 at 150 µM promotes seed germi-
nation in Triticum aestivum L. by significantly improving the 
α-amylase activity, rate of germination, and seedling height 
compared with the control (Wang et al. 2016). Further, Cor-
nea-Cipcigan et al. (2020) suggested that seeds of Cyclamen 
species soaked in 50 mg/L GA3 significantly increased their 
germination percentage, germination time, and seedling 
vigor index. It can be summarized from the above studies 
that GA3 acts as a natural regulator in the processes intricate 
in seed germination by stimulating the hydrolytic enzyme 
that plays a key role in breaking seed dormancy.

Growth

Gibberellic acid improved plant growth by triggering cell 
division and elongation process, transitions from meris-
tem to shoot growth, juvenile to adult leaf stage, vegeta-
tive to flowering and determining sex expression. Several 

Fig. 2   Mechanism of action of gibberellin in plant cell

Fig. 3   A representation of gibberellin role in growth and develop-
ment of plants
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observations revealed that GA3 plays a vital role in control-
ling various plant growth characteristics. For example, it 
improves vegetative growth, root, and stem elongation, plant 
biomass, and leaf area enlargement of many crop plants. 
The supply of 10–5 M GA3 on Brassica juncea L. seedlings 
enhanced dry plant mass, leaf area per plant, and relative 
growth rate compared with water spray control (Khan et al. 
2002). The supplementation of 10–8 M GA3 on the foliage 
of Lycopersicum esculentum L. and 400 ppm GA3 on Ixora 
coccinea L. enhanced their plant height, branch and leaf 
fresh and dry weight (Khan et al. 2006; Gad et al. 2016). 
The seedlings of Papaver somniferum L. treated with 10–6 M 
significantly promoted plant height and dry weight (Khan 
et al. 2007). The leaf applied 300 ppm GA3 on Araucaria 
heterophylla L., and 10 µM GA3 on Mentha arvensis L. 
seedlings significantly increased its plant height, branch 
length, stem thickness and root length (Gul et al. 2006; Bose 
et al. 2013). The seed priming of Solanum lycopersicum L. 
with 900 mg/L GA3 and Cicer arietinum L. with 10–6 M 
improved plant height, leaf and root fresh weight and total 
dry mass of the plant (Balaguera-Lopez et al. 2008; Mazid 
2014). The pre-treated bulb of Polianthes tuberosa L. with 
150 pm GA3 significantly enhanced its plant height, leaves 
per plant, length, and width (Rani and Singh 2013). The 
supplementation of 400 mg/L enhanced plant height, tillers 
per plant, secondary branches and total dry weight of Linum 
usitatissimum L. (Rastogi et al. 2013). Zang et al. (2016) 
evaluated that spray of 500 mg/L GA3 enhanced leaf area, 
leaf fresh and dry weight of Vaccinium virgatum L. Simi-
larly, leaf applied 1.2 ml/L GA3 increased total plant height 
and internode length of Hibiscus cannabinus L. (Muniandi 
et al. 2018). Leilah and Khan (2021) foliar application of 
240 mg/L GA3 on Beta vulgaris L. improved root length, 
diameter and fresh weight and foliage fresh weight. Further, 
the spray of 10–5 M GA3 increased plant height, fresh weight 
and dry weight of nodules per plant of Cicer arietinum L. 
(Rafique et al. 2021). The reviewed literature suggested that 
appropriate concentration of GA3 application significantly 
enhanced the growth characteristics of plants by inducing 
a transition from meristem to shoot growth, plant biomass, 
leaf expansion, internode elongation, juvenile to the adult 
phase, vegetative to the flowering stage, defined sex expres-
sion and improved overall developmental phase of a plant.

Physio‑Biochemistry

Gibberellins are reported to alleviate the harmful effects of 
salinity by increasing the nutrient-use efficiency, enzymatic 
activity, chlorophyll content, and absorption of mineral 
nutrients leading to improved plant physiological functions. 
The researchers suggested that the exogenous supplementa-
tion of GA3 improved the physio-biochemistry of plants by 
enhancing the physio-biochemical attributes of many crop 

plants. The supplementation of 10–8 M GA3 enhanced chlo-
rophyll content, photosynthetic rate (PN), and CA activity 
of treated plants over the control plant (Hayat et al. 2001). 
The seed treatment of Nigella sativa L. with 10–5 M GA3 
enhanced chlorophyll content, CA activity, stomatal con-
ductance (gs), PN, protein content, and nitrate reductase 
(NR) activity (Shah 2007). The Brassica juncea L. seedlings 
treated with 10–5 M GA3 improved chlorophyll content, PN, 
gs, NR and CA activity (Siddiqui et al. 2008). Khan et al. 
(2009) indicated that seed treatment and foliage spray with 
10–6 M GA3 enhanced chlorophyll content, PN, CA activity 
and mineral nutrient content in Linum usitatissimum L. The 
supply of 75 mg/L GA3 increased PN, internal CO2 concen-
tration (Ci), and total chlorophyll content in Artemisia annua 
L. (Aftab et al. 2011). The supplementation of 0.7 mM GA3 
improved chlorophyll, carotenoid, and total soluble sugar 
content in Gladiolus communis L. (Sajjad et al. 2014). The 
spray of GA3 at 10–5 M on Oryza sativa L. augmented its 
chlorophyll, proline and leaf-soluble protein content (Khan 
et al. 2016). Rai et al. (2017) demonstrated that foliar appli-
cation of 5 mL/plant GA3 improved the net assimilation rate, 
NR activity and sucrose content in Saccharum officinarum L. 
The seedlings of Vigna radiata L. treated with 50 ppm GA3 
increased contents of amino acids, chlorophyll, glucose and 
protein and activity of NR (Baliah et al. 2018). Wang et al. 
(2019) found that a foliar spray of 0.1 mM GA3 enhanced 
chlorophyll and nutrient acquisition in Abelmoschus escu-
lentus L. The foliar feeding of 200 mg dm−3 GA3 improved 
CO2 assimilation intensity, transpiration rate (E), photo-
synthetic water-use efficiency, PN, gs and Ci in Amarine 
tubergenii L. (Salachna et al. 2020). Further, Rafique et al. 
(2021) observed treatment of 10–5 M GA3 enhanced leghae-
moglobin and chlorophyll content in Cicer arietinum L. The 
exogenous application of 10 µM GA3 kg−1 soil improved PN, 
photosynthetic sulfur use efficiency and glutathione content 
in Vigna radiata L. (Hasan et al. 2020). Rady et al. (2021) 
investigated that treatment of GA3 on Vicia faba L. seedlings 
increased relative water content (RWC), total chlorophyll 
and carotenoid contents, soluble sugar, protein, ascorbate, 
glutathione and total phenolic content and nutrient acquisi-
tion. Shahzad et al. (2021) determined that foliar application 
of 100 ppm GA3 augmented chlorophyll content, soluble 
protein and total phenolic contents in Oryza sativa L. In 
summary, GA3 enhanced crop plants' physiological and 
metabolic processes by increasing photosynthetic pigment 
synthesis, enzymatic activities, protein and sugar content, 
mineral nutrient uptake, non-enzymatic antioxidant content 
and photosynthetic efficiency.

Yield and Quality

GA3 not only improves phenotypic traits and metabolic facets 
but also augments crop plant yield and quality characteristics. 
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Zang et al. (2016) evaluated that spray of 500 mg/L GA3 
enhanced the number of inflorescences/plants, flower number/
inflorescence, fertile seed number and fruit weight of Vac-
cinium virgatum L. than the control plant. Further, the supple-
mentation of 75 ppm GA3 influenced the flowers/plant, total 
fruit/plant, fruit set and total fruit yield in Fragaria ananassa 
L. (Sharma and Singh 2009). The seed treatment and foliar 
spray of 10–6 M GA3 improved capsules/plant, seeds/capsule, 
1000-seed weight and seed yield/plant in Linum usitatissimum 
L. (Khan et al. 2010b, a). The foliar treatment of 50 mg/L GA3 
improved the number of buds, fruit set, average fruit weight 
and yield in Syzygium samarangense L. (Moneruzzaman et al. 
2011). Nkansah et al. (2012) proposed that spray of 25 ppm 
GA3 increased fruit set, number of fruits per cluster, fruit 
weight and yield in Mangifera indica L. The foliar spray of 
400 mg/L GA3 increased capsule per plant, seeds per capsule 
and seed yield in Linum usitatissimum L. (Rastogi et al. 2013). 
Abd El-Razek et al. (2013) reported that foliar application of 
100 mg/L increased fruit length and diameter, seed weight, oil 
content, fruit weight, and yield in Olea europaea L. Pan et al. 
(2013) noticed that supply of 20 mg/L GA3 enhanced panicle 
number, number of spikelets/panicles, grain filling percentage 
and 1000-grain weight of Oryza sativa L. The foliar spray of 
50 ppm GA3 improved the number of pods/plants, pod length 
and pod fresh and dry weight of Abelmoschus esculentus L. 
(Shahid et al. 2013). The seed treatment of Cicer arietinum L. 
with 10–6 M GA3 enhanced pod number, seed yield/plant, and 
seed protein content (Mazid 2014). Akand et al. (2016) sug-
gested that foliar application of 60 ppm influenced the number 
of the flower cluster and fruit per plant, dry matter of fruits, 
and yield of Lycopersicon esculentum Mill. The foliar treat-
ment of 5 ppm GA3 improved fruit weight, fruit width, and 
fruit length in Rubus sp. (Colak 2018). Rahman et al. (2019) 
indicated that supplementation of 75 ppm GA3 increased 
flower and fruit clusters per plant, fruit number and weight 
per plant, and fruit yield t/ha in Solanum lycopersicum L. 
Abbas et al. (2020) reported that foliar spray of 1.0 and 1.2 g/L 
GA3 increased the number of fruits, fruit weight and yield in 
Momordica charantia L. Talat et al. (2020) found that spray 
of 25 and 45 ppm GA3improved fruit weight and juice weight 
in Citrus reticulata L. The foliar application of 240 mg/L GA3 
on Beta vulgaris L. enhanced foliage yield, sucrose content, 
and sugar yield t/ha (Leilah and Khan 2021). Rafique et al. 
(2021) also described that a spray of 10–5 M GA3 increased 
the number of pods/plants, 50 seeds weight, seed protein, and 
carbohydrate content, and grain yield in Cicer arietinum L. 
The above studies indicated that GA3 significantly improved 
yield and quality components, including pollen maturation, 
development of flowers, fruits and seeds, and seed and oil yield 
of crop plants.

Post‑Harvest Life of Fruits, Vegetables 
and Flowers

Fruits and vegetables are essential for human nutrition and 
are immensely suggested for a healthy diet. They are a rich 
source of energy, minerals, vitamins, antioxidants, dietary 
fibers, and other phytochemicals. On the other hand, flow-
ers facilitate the reproduction of flowering plants, produce 
seeds, and pass genetic information to the next generation. 
However, improper post-harvest handling, like poor storage 
and transportation facilities and the premature senescence 
of flowers because of adverse climatic conditions, resulted 
in a worldwide economic loss (Yahia and Carrillo-Lopez 
2018). To overcome this problem, it is desirable to maintain 
both the quality and quantity of consumable commodities 
through various healthy and eco-friendly post-harvest qual-
ity safeguarding strategies. The exogenous supply of GA3 
is an efficacious approach that enables a longer shelf-life 
for fruits and vegetables (Kuchi et al. 2017). The soaking 
of Toona sinensis with 100 mg/L GA3 remarkably reduced 
its browning and decaying and alleviated the chilling stress-
induced injuries by maintaining a higher level of reducing 
sugar, proline and increasing enzymatic and no-enzymatic 
antioxidants activity over the water treatment (Hu et al. 
2018a, b). The addition of GA310−6 M to mineral nutrient 
solutions in a floating hydroponic system at the preharvest 
stage showed positive effects by retarding senescence and 
increasing the shelf life of Lactuca sativa L. and Eruca 
sativa Mill. After harvest (Miceli et al. 2019). The com-
parative transcriptome analysis of harvested leaves tissue 
of Brassica rapa L. showed that the activity of several 
differentially expressed genes like chlorophyll catabolic 
genes BrPPH and BrRCCR, bioactive GA degradation gene 
BrGA20 × 1 and NAC transcription factor BrNACo87 which 
are involved in chlorophyll and GA degradation, respectively 
during leaf senescence were significantly inhibited by the 
foliar treatment of 100 µM GA3 (Fan et al. 2021). The fruits 
of Capsicum annum L. dipped in 2 ppm GA3for 30 s and 
then stored at 1 ℃ resulting in a delay in the change of skin 
color, total ascorbate and phenolic content and an increase 
in antioxidant activities and provided a longer shelf life to its 
green fruits (Panigrahi et al. 2017; Maurya et al. 2020). The 
browning of Lactuca sativa L. leaves was significantly inhib-
ited during cold storage by the treatment of 0.1 mg/L GA3, 
and it further enhanced the content of soluble protein and 
sugar, decreasing the activity of polyphenol oxidase and per-
oxidase (Tian et al. 2014). The fruits of Abelmoschus escu-
lentus L. immersed in 0.1 g/LGA3 solution could postpone 
its senescence and maintain fruit quality and chlorophyll 
content.GA3 downregulate the expression of genes such as 
AeNOL, AeNYC, AeSGR, AeCLH, AePAO, AePPH, AeR-
CCR, and AeHCAR involved in chlorophyll degradation 
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(Xiao et al. 2022). The treatment of GA3 at 0.1 mmol dm−3 
delayed leaf yellowing and increased flower longevity of 
Lilium longiflorum (Rabiza-Swider et al. 2015). The cut 
flowers of Anthurium andraeanum L. sprayed with 144 µM 
GA3 extended the vase life of flowers, delayed senescence 
and increased the phenol content and activity of polyphenol 
oxidase, peroxidase, and superoxide dismutase (do Nasci-
mento et al. 2018). The spray of 150 ppm GA3 significantly 
enhanced the freshness of flowers and delayed aging in 
Chrysanthemum morifolium L. (Singh and Bala 2018).

Amelioration of Abiotic Stresses

Abiotic stresses (such as salinity, drought, heavy metals, and 
varying temperature) cause severe effects on the growth, 
physiological and biochemical processes, and productivity 
of crop plants. Gibberellic acid is an important chemical 

messenger that modulates various cellular processes to 
induce plant tolerance against abiotic stresses. Studies sug-
gested that the exogenous application of GA3 alleviates the 
negative effects of abiotic stresses by improving the physio-
biochemical processes of plants (Fig. 4). In this section, find-
ings regarding GA3-mediated responses to various abiotic 
stresses in several crop plants are discussed below.

GA3 and Salt Stress

Soil salinity is a major environmental threat that impairs the 
growth and development of crop plants by causing osmotic, 
ionic, and oxidative stress, metabolic disorder, and nutri-
ent deficiency (Isayenkov and Maathuis 2019; Islam et al. 
2021). The potential of GA3 in imparting tolerance to salt 
stress has been studied in various crop plants, and there is 
ample evidence that GA3 protect plant species from salin-
ity-induced damages by maintaining membrane stability, 

Fig. 4   Harmful effects of abiotic stress on plants and role of exogenously applied GA3 in alleviating the negative effects of abiotic stresses by 
improving physio-biochemical processes and defense system of plants
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ion homeostasis, upregulating antioxidant enzyme activi-
ties, maintaining compatible solute concentration, protect-
ing photosystems and also inducing expression of stress 
genes. For example, Hamayun et al. (2010) reported that 
5 µM GA3 spray attenuated the salt stress-induced effect 
on growth and photosynthesis by significantly increasing 
endogenous phytohormones level, leaf chlorophyll content, 
daidzein and genistein content in Glycine max L. Further, 
Khan et al. (2010a, b) observed that 10–6 M GA3 application 
overcomes salt toxicity by improving growth, antioxidant 
system, OP accumulation, and mineral nutrient contents in 
Linum usitatissimum L. Ali et al. (2012) found that treat-
ment of 10–6 M GA3 reversed salt stress-induced effect on 
growth performance of Hibiscus sabdariffa L. by improving 
its biomass and CA activity. Iqbal and Ashraf (2013) and 
Younesi and Moradi (2014) demonstrated that pre-treatment 
of Triticum aestivum L. and Medicago sativa L. seeds with 
GA3 alleviated salt stress-induced inhibitory effect on their 
performance by improving significantly seed germination, 
plant biomass, photosynthetic efficiency, ion homeostasis, 
antioxidant defense system, endogenous hormonal homeo-
stasis while decreasing lipid peroxidation. Further, Shaddad 
et al. (2013) reported that 100 ppm GA3spray treatment con-
fers salt stress tolerance in Triticum aestivum L. by improv-
ing the contents of photosynthetic pigments, carbohydrates, 
amino acids, proteins and proline. Similarly, the foliar appli-
cation of 100 mg/L GA3 mitigated the negative effects of 
salt stress by increasing plant biomass, water status, chlo-
rophyll content, OP content, antioxidant enzyme activities 
and mineral nutrient acquisition in Rosa damascina L. (Ali 
et al. 2014). Besides, Tsegay and Andargie (2018) studied 
the effect of pre-treatment of 0.2 g/L GA3 on seed germina-
tion and growth performance of three crops viz., Zea mays 
L., Pisum sativum L. and Lathyrus sativus L., with salinity 
stress. They observed that GA3 pre-treatment reversed the 
salt-induced effect by significantly enhancing germination 
percentage, shoot and root length, root fresh and dry weight 
and reduced mean germination time. Moreover, Wang et al. 
(2019) revealed that a spray of GA3 at 0.1 mM mitigated the 
harmful effects of salt stress in Abelmoschus esculentus L. 
by improving antioxidant enzyme activities, proline content 
and by decreasing electrolyte leakage and lipid peroxidation. 
Chauhan et al. (2019) and Zhu et al. (2019) found that pre-
treatment of Avena sativa L. and Sorghum bicolor L. seeds 
with GA3 relieved salt stress-induced effect on seed germi-
nation and crop growth by enhancing water uptake, seed ger-
mination percentage, length of the radical and plant biomass. 
Further, Moula et al. (2020) reported that foliar feeding of 
GA3 improved the performance of Olea europaea L. growth 
under salt stress by significantly enhancing leaf chlorophyll 
content, photosynthetic assimilation and mannitol content. 
Furthermore, the foliage of Solanum lycopersicum L. treated 
with GA3 (1.4 µM) ameliorated salt-induced osmotic and 

oxidative stress damages by increasing glycine betaine and 
proline content, glutathione and ascorbate content and enzy-
matic antioxidants (Siddiqui et al. 2020). Moreover, Ghani 
et al. (2021a, b) investigated the foliar application of GA3 
(100 mg/L) nullified salinity effect on the growth of Allium 
cepa L. by significantly enhancing growth parameters and 
total soluble protein content. Based on the above-appraised 
literature, it may be summarized that GA3 plays a pivotal 
role in imparting salt tolerance in crop plants by enhancing 
membrane permeability, OP accumulation, nutrient acquisi-
tion, ion homeostasis, and activities of antioxidants while 
limiting lipid peroxidation and ROS generation.

GA3 and Water Stress

Water (drought) stress is an acute environmental cue that 
affects various plant processes, leading to reduced crop pro-
ductivity worldwide (Kaur and Asthir 2017; Seleiman et al. 
2021). It causes several interrelated physio-biochemical dis-
orders that are detrimental to plants by disrupting cellular 
metabolism and causing cell damage through ionic and oxi-
dative stress. The most severe repercussions of water stress 
are the gradual/rapid water loss through stomata, leading 
to cell dehydration and cell/tissue death. Evidence suggests 
that GA3 plays a pivotal role in improving the performance 
of plants under drought/water stress. Studies have shown that 
exogenous GA3 mitigates the water stress-generated effects, 
as seen in Brassica napus L., Zea mays L., and many other 
crop plants (Li et al. 2010; Al-Shaheen and Soh 2016; Khan 
et al. 2016). Pre-treatment of Zea mays L. seeds with GA3 
(500 mg/L) attenuated drought-induced effect on growth by 
improving germination rate, dry seedling weight, germi-
nation and vigor index, antioxidant enzyme activities and 
chlorophyll and OP content (Yuan et al. 2014). Further, Al-
Shaheen and Soh (2016) demonstrated that foliar spray of 
100 and 300 ppm GA3 improved Zea mays L. growth per-
formance under drought stress by improving photosynthetic 
pigment and OP concentration and seed protein content. In 
another study, Khan et al. (2020a, b, c) also observed that 
GA3 minimized the severity of drought stress in Brassica 
napus L. by enhancing antioxidant enzymes and OP con-
centration activities. They also reported GA3 mediated 
increase in protein contents, glucosinolate, unsaturated fatty 
acids (erucic, oleic, linoleic, and linolenic acid), and satu-
rated fatty acid (palmitic acid). Further, Miri et al. (2021) 
reported that 120 ppm GA3 spray treatment attenuated the 
reduction in yield of Vigna unguiculata L., under drought 
stress by improving LRWC, photosynthetic pigments, 100-
seed weight, and seed yield. Moreover, Rady et al. (2021) 
studied the effect of foliar application of 20 mg/L GA3on 
drought stressed Vicia faba L. plants. They observed that 
foliar application of GA3 nullified drought stress-induced 
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perturbations by increasing growth, water use efficiency, 
photosynthetic pigments, LRWC, soluble sugars, membrane 
stability index, OP content, and antioxidant enzyme activi-
ties in Vicia faba L. From the above observations, it can be 
inferred that GA3 minimized water stress-induced effects in 
crop plants by enhancing soluble sugar content, membrane 
permeability, fatty acids content, OP accumulation, and anti-
oxidant enzyme activities.

GA3 and Heavy Metal Stress

Soil contaminated with hazardous heavy metals (HMs) has 
become a subject of concern for sustainable agriculture. 
HMs stress causes serious threats to crop plant productivity 
by altering growth and developmental processes, leading to 
the death of plants. Soil can receive HMs from industrial 
effluents, urban run-off, burning liquid/toxic fuel, sewage 
waste disposal, domestic garbage dump, etc. Plants amelio-
rate the toxic effects of HMs through various mechanisms, 
including chelation (mediated by phytochelatins) and sub-
cellular compartmentalization (Ghori et al. 2019). There 
is ample literature available on the significance of GA3 in 
reducing HMs stressed-induced impact in plant species. For 
instance, exogenously applied GA3 was reported to ame-
liorate the harmful effects of cadmium and lead in Lupi-
nus albus L. by significantly improving leaf chlorophyll, 
soluble protein, carbohydrate, and proteases, amylases, and 
catalases activity (Sharaf et al. 2009). Further, exogenously 
applied 10–8 M GA3 mediated increased proline accumula-
tion and activities of antioxidant enzymes were reported to 
ameliorate the nickel stress-induced damages in Triticum 
aestivum L. (Siddiqui et al. 2011). Increased antioxidant 
enzyme activities and OP accumulation in copper-stressed 
Spinacia oleracea L., were also reported (Gong et al. 2021). 
In another study, Zhu et al. (2012) reported that leaf applied 
improved cadmium stress tolerance by decreasing lipid per-
oxidation and expression of cadmium uptake-related gene-
IRT1in Arabidopsis thaliana L. Amri et al. (2016) studied 
the ameliorative effect of pre-treatment of Hordeum vulgare 
L. seeds with 0.5 µM GA3 for 96 h in the presence of cad-
mium toxicity. They observed that exogenous application 
of GA3 improved tolerance to cadmium stress by increas-
ing hydrolytic enzymes, sugar and amino acid content of 
the endosperm and mobilization of starch and protein from 
endosperm to seedling roots. Kaya et al. (2020) demon-
strated that GA3 mediated enhanced contents of endogenous 
hydrogen sulfide, leaf calcium and potassium, and proline 
ameliorated the severity of boron toxicity in Solanum lyco-
persicum L. Moreover, GA3 (50 ppm) improved tolerance to 
lead toxicity by significantly increasing biomass, photosyn-
thetic pigment, phenolic content, and antioxidant enzyme 
components in Daucus carota L. (Ghani et al. 2021a, b). 
Additionally, exogenously applied GA3 was evidenced to 

alleviate the oxidative stress damages by enhancing the anti-
oxidant defense system, OP accumulation, photosynthetic 
efficiency, and growth in copper-exposed Corchorus cap-
sularis L. and Pisum sativum L. plants (Saleem et al. 2020; 
Javed et al. 2021) and cadmium exposed Vigna radiata L. 
and Pisum sativum L. (Hasan et al. 2020; Sun et al. 2020). 
In conclusion, GA3 alleviated HMs toxicity in crop plants 
by improving endogenous hormones level, OP accumulation, 
and antioxidant enzyme activities.

GA3 and Temperature Stress

Global warming leads to variations in temperature. High and 
low temperatures have become a potential environmental cue 
that negatively affects many physio-biochemical and meta-
bolic processes in plants, including germination of seeds, 
seedling growth, photosynthesis, protein structure, enzymes 
activities, membrane stability, and cell/tissue death (Mathur 
et al. 2014; Szymanska et al. 2017). Various studies have 
shown that supplementation of GA3 differentially benefits 
crop plants exposed to extreme temperatures by enhanc-
ing their inherent defense system (Haroun et al. 2018; Hu 
et al. 2018a, b; Aziz and Peksen 2020). In Raphanus sativus 
L., seed priming with GA3 (900 µM) improves seed ger-
mination, coleoptile, and radicle length, and fresh weight 
of seedlings, thus improving high-temperature stress tol-
erance (Cavusoglu and Kabar 2007). Similarly, Li et al. 
(2013) reported that pre-sowing seed treatment with GA3 
(5 µmol/L) alleviated chilling stress toxicity by improv-
ing seed germination rate, germination index, lengths, and 
weights of radical and coleoptiles and starch degradation 
in Triticum aestivum L. Furthermore, GA3 treatment main-
tained redox homeostasis in Gladiolus hortulanus L. under 
variable temperatures by increasing membrane stability, 
antioxidant enzyme activities, and decreasing membrane 
leakage (Saeed et al. 2014). In Solanum lycopersicum L., 
GA3 (0.5 mM) treatment alleviates the toxic effects of cold 
stress in Solanum lycopersicum L. fruits by modulating the 
accumulation of endogenous hormones (Ding et al. 2015 
and Zhu et al. 2016). In another study, Xie et al. (2018) 
reported that GA3-mediated low-temperature tolerance 
was associated with the upregulated expressions of UDP-
glucose pyrophosphorylase, granule-bound starch synthase, 
β-amylase, ADP-glucose pyrophosphorylase, and invertase 
inhibitor genes in Solanum tuberosum L. In addition, the 
heat stress-induced inhibitory effect on Phoenix dactylifera 
L. performance was reversed by GA3 treatment, which regu-
lates endogenous salicylic acid, abscisic acid accumulation, 
and activities of antioxidant enzymes (Khan et al. 2020a, b, 
c). From the above-cited literature, it may be summarized 
that GA3 mitigated the effects of varying temperatures in 
crop plants by regulating endogenous hormone levels, OP 
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accumulation, ion homeostasis, and antioxidant defense 
system.

Gibberellin Crosstalk with Other Plant 
Growth Regulators

PGRs are structurally different compounds, but their 
signaling network interacts with each other both 

Fig. 5   A schematic model of gibberellin crosstalk with other phy-
tohormones in regulating physiological and molecular responses of 
crop plants. GA and ABA showed an antagonistic behavior during 
seed germination. The Aux/IAA and ARF proteins up regulate the 
gene expression involved in GA metabolism. The BRASSINAZOLE 
RESISTANT1 (BZR1) is a transcription factor that modulates gene 
expression in response to brassinosteroid. The DELLA protein GAI 
inhibits the activity of BZR1. GA inhibits the effects of cytokinin. 
Ethylene reduced the level of GA and enhanced the DELLA repressor 
protein accumulation. The JASMONATE ZIM-domain (JAZ) inter-

acts and inhibits DELLA protein and activates bHLH factor PHY-
TOCHROME INTERACTING FACTOR 3 (PIF3) in the GA sign-
aling pathway. Nitric oxide enhanced the accumulation of DELLA 
protein and negatively affecting the GID1 receptor of GA. GA (gib-
berellin), SA (salicylic acid), PA (polyamines), CK (cytokinin), JA 
(jasmonates), ST (strigolactones), BR (brassinosteroids), NO (nitric 
oxide), ABA (abscisic acid), GID1 (GIBBERELLIN INSENSITIVE 
DWARF 1), ARF (auxin response factor) and EIN3 (ETHYLENE 
INSENSITIVE 3). Sharp arrows indicate positive regulation and 
blunt arrows show negative regulation
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antagonistically or synergistically to control numerous 
phenotypic and developmental features in plants under 
both stressful and stressed free environments (Kohli et al. 
2013). The interaction among PGRs (Fig. 5) showed that 
they could co-coordinately moderate genetic machinery 
and defense system to improve plants endurance against 
adverse environmental conditions (Khan et al. 2020a, b, 
c). The interaction between GAs and other PGRs such as 
abscisic acid (Weiss and Ori 2007), auxin (Hu et al. 2018a, 
b), brassinosteroids (Tong et al. 2014), cytokinin (Sub-
baraj et al. 2010), ethylene (Achard et al. 2007), jasmonic 
acid (Peng et al. 2009), nitric oxide (Bethke et al. 2007), 
polyamines (Verdolin et al. 2021), salicylic acid (Xie et al. 
2007) and strigolactones (Ito et al. 2017) has been estab-
lished under both stressed free and stressed conditions.

Abscisic Acid

Abscisic acid (ABA) is a sesquiterpene plant hormone that 
regulates plant growth and developmental phases, including 
seed development and maturation and synthesis of protein 
and compatible solutes to tolerate adversities of the environ-
ment (Kumar et al. 2022). GA and ABA interaction help 
in sustaining the balance between germination and seed 
dormancy which plays an essential role in stress resistance. 
GA and ABA exhibited antagonistic behavior during seed 
germination. GA promotes seed germination, whereas ABA 
retards germination (Golldack et al. 2013). In Oryza sativa 
L., two WRKY genes (OsWRKY51 and OsWRKY71) 
are inducible for ABA and repressible for GA in embryo 
and aleurone cells. The WRKY genes established signal-
ing crosstalk between ABA and GA (Xie et al. 2006). GA 
enhanced net carbon fixation and transport, but ABA only 
improved sugar transport in roots and berries of Vitis vinifera 
L. (Moreno et al. 2011). ABSCISIC ACID INSENSITIVE 4 
(ABI4) gene regulates the primary seed dormancy by mod-
erating the balance between ABA and GA biogenesis in A. 
thaliana L. (Shu et al. 2013). The GIBBERELLIN INSEN-
SITIVE DWARF 1 (GID1), a receptor of GA, modulates sto-
matal development and patterning in Oryza sativa L. GID1 
mutant exhibited a decrease in biosynthesis of endogenous 
ABA. GID1 improved submergence tolerance by regulating 
the consumption of carbohydrates and its function depend-
ent on ABA and GA signaling (Du et al. 2015). The exog-
enous application of ABA on Cucumis melo L. induced low-
temperature tolerance by improving growth characteristics 
and endogenous GA and SA levels (Kim et al. 2016). Yue 
et al. (2018) found that exogenous application of ABA and 
GA on Camellia sinensis L. enhanced the expression of 
CsKS, CsKAO, CsKO, CsGA20ox-2, and CsNECD2 and 
repressed CsGID1b, CsSDR, CsPYL8, and CsCYP707A2 
genes. These genes expression showed that GA and ABA 

controlled bud dormancy. Guo et al. (2018) revealed that a 
Triticum aestivum L. specific microRNA 9678 (miR9678) 
expressed in the scutellum of germinating seeds reduced the 
GA levels, but ABA enhanced the activity of miR9678. Its 
overexpression delayed the germination of seeds. Xu et al. 
(2021a) indicated that exogenous application of ABA and 
GA regulates bulblet development in Lycoris radiata L. GA 
inhibits bulblet development by down-regulating the expres-
sion of carbohydrate metabolism enzymes encoding genes 
such as LrSUS1, LrSUS2, and AGPase whereas ABA pro-
moted bulblet development by increasing endogenous auxin 
content and activities of starch synthesis enzymes including 
SSS and GBSS.

Auxins

Auxins are a group of essential phytohormones involved 
in numerous plant growth and developmental events 
(Zhao et al. 2010). GA and auxin interactively regulate 
growth and physio-biochemical processes in plants. For 
instance, GA and auxin promoted fruit initiation in Sola-
num lycopersicum L. High levels of auxin or GA induce 
parthenocarpy in plants. The repressor of GA signaling, 
like SlDELLA, and auxin signaling components, such as 
SlIAA9 and SlARF7, mediate the interaction between 
them to control fruit initiation (Jong et al. 2011; Hu et al. 
2018a, b). The Aux/IAA (indole acetic acid) and ARF 
proteins upregulate the gene expression involved in GA 
metabolism, particularly AtGA20ox and AtGA2ox genes 
in A. thaliana L. (Frigerio et al. 2006). GA improved auxin 
concentration in the stem of Populus tremula L. by pro-
moting polar auxin transport. The IAA and GA induced 
cell and organ growth (Bjorklund et al. 2007). Willige 
et al. (2011) observed that GA controls the PIN protein 
level in A. thaliana L., which is required to transport auxin 
in plants. Richter et al. (2013) indicated that GA biosyn-
thetic deficient A. thaliana L. showed delayed flowering 
because GA promotes the synthesis of ARF2 protein. The 
ARF controls the auxin responses at the cellular level to 
control plant developmental phases. Shuai et al. (2017) 
investigated that pre-sowing seed treatment with 10 µM 
IAA inhibits seed germination of Glycine max L. by 
increasing the biosynthesis of ABA and impairing GA bio-
synthesis. The qPCR assay showed that genes involved in 
ABA biosynthesis were upregulated, whereas GA biosyn-
thetic genes were downregulated. Further, the AFR gene 
(SlARF5) plays an essential role in modulating the signal-
ing pathways of both auxin and GA in Solanum lycopersi-
cum L. during development and fruit set (Liu et al. 2018). 
Yoneda et al. (2018) suggested that GA and auxin improve 
steviol glycoside concentration in Stevia rebaudiana L. 
In Glycine max L., the combined application of 100 µM 
GA and IAA induced hypocotyl elongation and promoted 
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their endogenous level (Jiang et  al. 2020). Kou et  al. 
(2021) observed that exogenous application of 20 mg/L 
IAA induced stalk elongation and expansion of cell walls 
by regulating the expression of genes encoding expansin 
protein and increasing endogenous IAA and GA contents 
in Brassica rapa L. The auxin response factor (ARF6 and 
ARF8) interacts with DELLA and promotes the senes-
cence of cambium (Ben-Targem et al. 2021). Liang et al. 
(2021) revealed that the co-application of 50 µM IAA and 
GA3 minimized cadmium toxicity in Sedum alfredii L. by 
increasing plant biomass, chlorophyll content, potassium 
content, and decreasing malondialdehyde.

Brassinosteroids

Brassinosteroids (BRs), steroidal plant hormones, play 
an essential role in regulating plant growth and physio-
biochemical processes (Fariduddin et al. 2014). GA and 
BRs exhibited signaling pathways crosstalk to control 
plant growth and developmental processes. The BRASSI-
NAZOLE RESISTANT1 (BZR1) is a transcription fac-
tor that modulates gene expression in response to BRs. 
The DELLA protein GAI inhibits the activity of BZR1 
and regulates the hypocotyl elongation in A. thaliana L. 
(Gallego-Bartolome et al. 2012). The OsGSR1, a member 
of GAST gene family (GA-stimulated transcript), expres-
sion is inhibited by BRs and stimulated by GA. Trans-
genic Oryza sativa L. plant containing OsGSR1 RNAi 
transcript shows low endogenous BRs. However, OsGSR1 
is a positive regulator for BRs and GA signaling (Wang 
et al. 2009). BRs modulate cell elongation in Oryza sativa 
L. by regulating GA metabolism. Especially, BRs induced 
the expression of the GA biosynthetic gene, D18/GA3ox-
2, and improved cell elongation (Tong et al. 2014). Both 
GA and BRs regulate seed traits like mesocotyl length in 
Zea mays L. (Hu et al. 2017). The miRNA (OsmiR396d) 
is involved in the interaction of GA and BRs signaling 
pathways. The overexpression of OsmiR396d enhanced 
BRs signaling and impeded the biosynthesis and signaling 
of GA. Interestingly BZR1 improved the accumulation of 
OsmiR396d in Oryza sativa L. (Tang et al. 2018). Further, 
the OsmiR159d-OsGAMYBL2 coordinates the functions 
of GA and BRs in the growth and development of plants 
by modulating the expression of genes that participated in 
GA and BRs biosynthesis and signaling (Gao et al. 2018). 
Que et al. (2018) investigated that exogenous application 
of 0.5 mg/L 24-epibrassinolide on Daucus carota L. pro-
moted cell elongation, GA level and cellulose deposition in 
its petiole. Zheng et al. (2019) observed that foliar appli-
cation of 3 mg/L 28-HBR on Malus pumila L. seedlings 
upregulated the expression of genes involved in the bio-
synthesis of auxin and GA and enhanced plant growth. In 
Solanum lycopersicum L., BRs modulate ovule number by 

affecting GA biosynthesis and stabilizing DELLA protein 
that stimulates ovule primordial initiation (Barro-Trastoy 
et  al. 2020). The late embryogenesis abundant (LEA) 
protein plays an essential role in dehydration tolerance 
during seed development. Mutation in the LEA33 gene 
affects grain size and seed germination in Oryza sativa L. 
LEA proteins may form a molecular regulatory network 
between GA and BRs signaling pathways to regulate seed 
germination (Li et al. 2020). Jiang et al. (2020) proposed 
that GA regulates hypocotyl elongation in Glycine max L. 
by promoting auxin and BRs function. Xiong et al. (2021) 
revealed that GA and BRs controlled seed germination and 
embryo growth and promoted glutelin protein mobilization 
in Oryza sativa L.

Cytokinins

Cytokinins (CK) are an important chemical messenger 
that plays a key role in the modulation of the plant cell 
cycle and various developmental processes (Cortleven 
et al. 2019). A negative regulation has been established 
between these two hormone response pathways. However, 
their exclusive signaling interaction to regulate develop-
mental processes is poorly understood. GA inhibits the 
effects of CK. SPINDLY (SPY) is a negative regulator of 
GA signaling that enhances CK responses in A. thaliana L. 
SPY behaves as a repressor for GA signaling and regulator 
for cytokinin response (Greenboim-Wainberg et al. 2005). 
CK and GA alleviate bud dormancy and promote flow-
ering and branching in Zantedeschia sp. (Subbaraj et al. 
2010). A dominant-active DELLA1 protein controlled the 
GA signaling and improved cytokinin response1 (CRE1) 
dependent CK pathway to regulate nodulation in Medicago 
truncatula (Fonouni-Farde et al. 2017).

Ethylene

Ethylene (ET) is a gaseous signaling molecule that regulates 
many growth and physiological processes in plants (Matilla-
Vazquez and Matilla 2014). ET inhibits root growth while 
promoting apical hook formation in A. thaliana L. by ham-
pered degradation of DELLA repressor protein (Achard 
et al. 2003). ET reduced the level of GA and enhanced the 
DELLA repressor protein accumulation. It also delays flow-
ering in A. thaliana L. by repressing floral meristem-identity 
genes viz., LEAFY (LFY) and SUPPRESSOR OF OVER-
EXPRESSION OF CONSTANS 1 (SOC1) (Achard et al. 
2007). The expression of the C-repeat/drought-responsive 
element binding factor (CBF1/DREB1b) gene (a member 
of APETALA2/ETHYLENE RESPONSE FACTOR fam-
ily transcription factor) improves tolerance against low 
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temperature but also restrains growth by permitting the accu-
mulation of DELLA (Achard et al. 2008). The SNORKEL1 
and SNORKEL2 are ethylene response factors that permitted 
Oryza sativa L. to adapt in deep water. The product of these 
genes induced internode elongation through GA signal-
ing (Hattori et al. 2009). DELLA protein interacts with the 
DNA-binding domain of the ETHYLENE INSENSITIVE 
3/EIN3-LIKE 1 (EIN3/EIL1) and inhibits the expression of 
the HOOKLESS 1 (HLS1) gene. GA stimulates apical hook 
formation in association with ET by promoting the expres-
sion of HLS1 in A. thaliana L. (An et al. 2012).

Jasmonic Acid

Jasmonic acid (JA) is a crucial growth-regulating substance 
that modulates diverse developmental processes of plants 
(Ruan et al. 2019). GA and JA showed both antagonistic 
and synergistic interactions to regulate plant growth and 
development. The JASMONATE ZIM-domain (JAZ) inter-
acts and inhibits DELLA protein and activates bHLH factor 
PHYTOCHROME INTERACTING FACTOR 3 (PIF3) in 
the GA signaling pathway, while JA promoted JAZ degrada-
tion and free DELLA protein that restrains PIF3 and inhibit 
GA induced hypocotyl elongation (Yang et al. 2012). Exog-
enous treatment of JA improved endogenous GA content 
under salt stress in Oryza sativa L. (Seo et al. 2005). GA and 
JA modulate trichome initiation and stamen development in 
A. thaliana L. (Qi et al. 2014; Song et al. 2014). Further, GA 
regulates the expression of JA biosynthetic genes such as 
DAD1 and LOX1 to enhance the synthesis of JA, and a high 
level of JA stimulates the expression of MYB21, MYB24, 
and MYB54 to induce stamen filament development (Peng 
et al. 2009). GA promotes the biosynthesis of JA by regulat-
ing the expression of MYB21, MYB24, and MYB57 genes, 
which are contributed to stamen development in A. thaliana 
L. (Cheng et al. 2009). JA antagonizes the biosynthesis of 
GA by inhibiting the activities and accumulation of GA20ox 
and GA13ox that are involved in the biosynthesis of GA. 
It has been indicated that the high level of JA inhibits GA 
biosynthesis in the stem of Nicotiana attenuata L. (Hein-
rich et al. 2013). Um et al. (2018) studied that JAZ interacts 
with DELLA repressor proteins, including SLENDER RICE 
1 (SLR1), in GA signaling. The protein OsJAZ9 inhibits 
JA responses and stimulates GA responses in Oryza sativa 
L. showed antagonistic crosstalk between GA and JA. The 
combined application of JA and GA3 on Cicer arietinum L. 
reduced cadmium contamination by increasing photosyn-
thetic characteristics, enzymatic activities, osmolyte accu-
mulation, and mineral nutrition (Ahmad et al. 2021).

Polyamines

Polyamines (PA) is a group of aliphatic amines that act as 
a plant growth regulator and participate in several devel-
opmental aspects of plants (Gonzalez et  al. 2021). The 
exact signaling interplay between GA and PA is still not 
well understood. However, few studies reported that GA 
and PA coordinately play a role in plants growth and meta-
bolic processes. The exogenous application of spermidine 
(Spd) improved drought tolerance in Agrostis stolonifera 
L. by improving RWC, chlorophyll content, antioxidant 
enzyme activities, endogenous PA levels, and reduced IAA 
and GA3 accumulation level (Li et al. 2015; Krishnan and 
Merewitz 2017). Li et al. (2018) revealed that exogenous 
application of Spd alleviated drought stress in Zea mays L. 
by enhancing photochemical efficiency, synthesis of ATP, 
and endogenous PA, IAA, and GA3 levels. Qin et al. (2019) 
also reported that the application of Spd stimulated floral 
induction in Malus domestica L. by increasing the activity of 
MdGA2ox2 that reducing GA3 level. The flowering-related 
gene like LEAFY also increased by Spd. The spray treat-
ment of PA and GA3 on Impatiens hawkeri L. increased 
plant height, leaf numbers, plant biomass, and flower buds 
(Verdolin et al. 2021). The combined application of Spd and 
GA3 improved endogenous PA contents, PA biosynthetic 
enzyme activities, developmental stages of flowering, and 
delayed flower senescence in Rhododendron simsii L. (Xu 
et al. 2021b). Zandona et al. (2021) found that exogenous 
application of GA3 on Calibrachoa sellowiana L. breaks 
seed dormancy to promote seed germination and improve 
endogenous PA content.

Nitric Oxide

Nitric oxide (NO) is a key endogenous signaling molecule 
that regulates plant diverse physiological and biochemi-
cal processes (Wani et al. 2021a). Studies suggested that a 
possible interaction between GA and NO has existed that 
modulates various developmental events in plants, including 
seed germination, hypocotyl elongation, root growth, and 
growth of pollen tubes (Asgher et al. 2017). In A. thaliana 
L., NO up-regulates the GA signaling pathway that leads to 
improved protein storage in seed (Bethke et al. 2007). The 
NO-deficient A. thaliana L. mutant showed longer hypocotyl 
than wild-type ones. Interestingly, exogenous treatment of 
NO reduced hypocotyl length by enhancing the accumula-
tion of DELLA protein and negatively affecting the GID1 
receptor of GA (Lozano-Juste and Leon 2011). NO and 
other plant hormones, including GA, enhance aluminum 
stress tolerance in plants by maintaining their endogenous 
hormonal equilibrium (He et al. 2012). NO enhances the 
DELLA protein concentration and negatively impacts GA 
signal transduction (Freschi 2013). Moreover, NO and 
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GA3 eliminated seed dormancy and induced germination 
in Amaranthus retroflexus L. (Kepczynski et al. 2017). NO 
is a crucial component in various plant hormone signaling 
networks, including GA, to moderate multiple metabolic 
functions in plants under adverse environmental conditions 
(Singhal et al. 2021).

Salicylic Acid

Salicylic acid (SA) is a small phenolic compound that 
plays a regulatory role in various physiological processes 
of plants (Hayat and Ahmad 2007). GA and SA are essen-
tial in plants' various growth and physiological processes. 
Recent studies emphasize that a complex network of inter-
action existed between two hormones, but still, limited lit-
erature has been found. SA inhibits seed germination in Zea 
mays L., A. thaliana L., and Hordeum vulgare L. Further, 
SA and WRKY genes regulate the activity of α-amylase. 
GA promotes α-amylase production in aleurone cells but is 
inhibited by SA. In the aleurone cells of Hordeum vulgare 
L. seed, the expression of HvWRKY38 is downregulated 
by GA but upregulated by ABA and SA (Xie et al. 2007). 
The application of GA3 on A. thaliana L. minimized the 
inhibitory effect of salt and heat stresses and improved seed 
germination, seedling growth, and expression of isochoris-
mate synthase1 and PR1 genes involved in the regulation 
of biosynthesis and function of SA (Alonso-Ramirez et al. 
2009). The seedlings of Solanum lycopersicum L. treated 
with SA mitigated chilling injury by enhancing antioxidant 
enzyme activities and regulating GAs metabolism (Ding 
et al. 2016). The exogenous application of SA on Carthamus 
tinctorius L. ameliorated salinity stress by improving min-
eral nutrient content, endogenous IAA and GA levels and 
expression of SOS1 and NHX1 genes (Shaki et al. 2019). 
The co-application of GA3 and SA on Brassica juncea L. 
enhanced growth and yield parameters, including seed yield 
and oil content (Ijaz et al. 2019). In Ajuga integrifolia L. 
SA application increased plant biomass and phytochemical 
production, including phenolics, flavonoids and antioxidants, 
while GA3 behave antagonistically to downregulate their 
production (Abbasi et al. 2020). The exogenously applied 
GA3 promoted the biosynthesis of SA, resulting in a high 
level of SA that improved plant defense responses against 
environmental cues (Emamverdian et al. 2020). Further-
more, the combined application of GA3 and SA on Echina-
cea purpurea L. improved plant height, biomass, yield, and 
oil content (Hasan-beigi 2021).

Strigolactones

Strigolactones (SLs) are a group of carotenoid-derived 
plant growth regulators that modulate many physiologi-
cal processes, including root development and shoot 

branching (Wani et al. 2021b). GA and SLs may interact 
to regulate plant growth and developmental aspects, but 
their complex crosstalk is poorly understood. It has been 
found that GA is considered a regulator of SLs biosynthe-
sis. Moreover, GA signaling regulates SLs biosynthesis by 
controlling the SLs biosynthetic gene expression (Ito et al. 
2017; Marzec 2017). SLs stimulate the interaction between 
SLs receptor DWARF14 (D14) and a DELLA protein 
SLENDER1 (SLR1), exhibiting crosstalk between GA 
and SLs signaling pathways (Nakamura et al. 2013). The 
Oryza sativa L. GA biosynthetic mutant was insensitive 
to a synthetic analogue of SLs treatment, while the wild 
type responded to that treatment (Marzec 2017). GA and 
SL synergistically controlled the expression of GA2ox2 
and SUPPRESSOR OF max2 1-LIKE8 (SMXL8) genes 
to regulate seedling growth of A. thaliana L. (Lantzouni 
et al. 2017). The defect in the biosynthesis or signaling of 
SLs resulted in dwarfism in Oryza sativa L. but could be 
restored by GA3 treatment. The transcription level of cell 
division and cell elongation-related genes was enhanced 
by GA3 treatment leading to increased shoot elongation 
(Zou et al. 2019).

Conclusion and Future Prospective

The constant rise in food demand due to expanding popula-
tion, depleted natural resources, and climatic uncertainty is 
a major concern worldwide. Among the natural calamities, 
abiotic stress is a significant factor that adversely affects 
the growth and productivity of economically important 
crops. Plant growth regulators play a significant role in 
providing tolerance against abiotic stresses and improv-
ing the growth and production of crop plants. One of the 
important and widely discussed phytohormones is gibber-
ellins, which are essential in improving various aspects of 
the horticultural crop's plant growth, development, and 
post-harvest life. Gibberellins enhance the abiotic stress 
tolerance in crop plants by modulating many gene expres-
sions which influence the levels of antioxidants (enzymatic 
and non-enzymatic), osmolytes, and several other proteins 
and enzymes. Gibberellins interact with other plant growth 
regulators to improve plant growth and physiological pro-
cesses. From the above-reviewed literature, it may be 
concluded that exogenous application of gibberellic acid 
increased morphological traits, physiological and meta-
bolic processes, and yield and quality components of crop 
plants under diverse environmental conditions. However, 
in the future, there is a need to conduct further research 
on this hormone to explore its potential role and use it 
as a management tool for increasing the growth, produc-
tivity, and shelf life of valuable crops. Furthermore, the 
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comprehensive knowledge to understand the relationship 
of gibberellins with other phytohormones under salt stress 
conditions are need to be widely investigated.
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