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Abstract
Salt toxicity in agricultural soils is a principal abiotic constraint that limits crop growth, development, and yield. The employ-
ment of potential selection markers for screening salt-tolerant wheat cultivars is crucial for conventional breeding programs 
and molecular biology approaches that may ensure sustainable wheat production under saline soils. The current experi-
ment explored the tolerance potential of ten wheat cultivars to salt stress (150 mM) by utilizing various growth, biomass, 
physiological, and biochemical traits. Salt stress significantly abated growth-related parameters, leaf relative water content 
(LRWC), SPAD, gas exchange attributes, total soluble proteins (TSP), and anthocyanins in all wheat cultivars. The drop in 
these attributes was more visible alongside higher oxidative stress mirrored as excessive accumulation of oxidative stress 
markers such as superoxide radicals (O2

⋅‒), methylglyoxal (MG), hydrogen peroxide (H2O2), malondialdehyde (MDA), and 
higher lipoxygenase (LOX) activity in salt-sensitive cultivars than salt-tolerant cultivars. Salinity stress caused disequilib-
rium in ionic uptake with an apparent decline in K, P, and Ca content with a concomitant increase in the accumulation of 
Na in both leaves and roots of all wheat cultivars, with a more visible effect in salt-sensitive cultivars. Further, salt-tolerant 
cultivars displayed greater root Na content. Salt-sensitive cultivars failed to maintain the K/Na ratio under salt toxicity. 
In contrast, salt-tolerant cultivars displayed better growth, gas exchange attributes, and strengthened antioxidant systems 
alongside lower oxidative stress. Moreover, salt-tolerant cultivars exhibited a higher accumulation of osmolytes, hydrogen 
sulfide, and nitric oxide. Therefore, these physiological and biochemical markers could be promising for screening tolerant 
wheat cultivars under salinity.
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Introduction

Salinity in agricultural soils, either caused by natural or 
anthropic factors, adversely affects plant growth, develop-
ment, and yield by interfering with essential physiological 
and biochemical processes (Evelin et al. 2019; Akbar et al. 
2021). The detrimental effects of salt stress occur in two 
successive phases: (i) osmotic stress and (ii) ionic toxic-
ity (Na and Cl) and followed by the subsequent impact of 
secondary stresses such as oxidative stress and nutritional 
imbalances (Arzani 2008; Munns and Tester 2008). Exces-
sive toxic ions (Na and Cl) cause metabolic dysfunction via 
impaired enzyme function, the integrity of the cell and orga-
nelle membranes, and photosynthetic apparatus (Arzani and 
Ashraf 2016).

Osmotic adjustment is one trait that can alleviate some of the 
deleterious effects of stress by maintaining cell turgor and water 
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content as leaf water potential declines (Flower and Ludlow 
1987). In other words, osmotic and ion toxicity effects were 
thought to be spatially and temporally separated. This spatial 
and temporal separation suggested that early salinity stress 
responses are due to general osmotic or water deficit stress and 
that sodium-specific responses (i.e., ion sequestration or exclu-
sion) are induced later (Van Zelm et al. 2020). Excluding Na 
from the cells and maintaining the K/Na ratio under saline con-
ditions are pivotal physiological mechanisms for plant salinity 
tolerance (Ebrahim et al. 2020; Rahimi et al. 2021).

Under a saline environment, plants experience oxidative 
stress through the immoderate accumulation of reactive oxy-
gen species (ROS), which damages various vital components 
of plant cells, such as membranes, proteins, lipids, pigments, 
and nucleic acids (Chawla et al. 2013). Plants restrain exces-
sive ROS production and oxidative damage through convo-
luted enzymatic [superoxide dismutase (SOD), peroxidase 
(POD), catalase (CAT), ascorbate peroxidase (APX)] and 
non-enzymatic (ascorbic acid (AsA), glutathione (GSH), 
phenolics, flavonoids) antioxidant systems (Desoky et al. 
2020). However, antioxidant potential varies among differ-
ent cultivars/varieties of the same plant species (Rasheed 
et al. 2014). Therefore, a robust antioxidant system defines 
plant tolerance to salinity stress.

Salinity also induces dicarbonyl stress in plants through 
excessive methylglyoxal (MG) production (Mahmud et al. 
2020). Methylglyoxal is a cytotoxic compound synthesized 
endogenously through glycolysis and several other bio-
chemical processes that can disrupt cellular structures such 
as proteins, carbohydrates, lipids, and nucleic acids (Hasa-
nuzzaman et al. 2017). The glyoxalase system comprised of 
two enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly 
II), is involved in the detoxification of overly produced MG 
by converting it into D-lactate in association with reduced 
glutathione (GSH) (Parvin et al. 2020). Glutathione is a sig-
nificant component of the plant defense system primarily 
involved in ROS and MG detoxification and supports growth, 
development, protein activation, and gene expression under 
normal and abiotic stress conditions (Yousuf et al. 2012; 
Nahar et al. 2015a, b). Therefore, synchronization between 
the antioxidant and glyoxalase systems is essential for plant 
salinity tolerance. A substantial amount of literature has been 
published on the changes in the glyoxalase system of plants 
under salinity stress (Upadhyaya et al. 2011; Sankaranaray-
anan et al. 2017; Parvin et al. 2021).

Considering the climate change scenario and the increas-
ing global population, it is urgent to unravel the underlying 
mechanisms of salinity tolerance in plants for developing 
crops that can sustain in salt-polluted soils and ensure suf-
ficient yield production. To date, scarce data have examined 
salinity-mediated modulation in glutathione metabolism, 
detoxification of cytotoxic compounds, signaling mole-
cules, and photosynthesis for the characterization of wheat 

cultivars. Hence, we are reporting the use of critical physi-
ological and biochemical selection criteria for establishing 
the salinity tolerance potential of wheat cultivars. This infor-
mation can be incorporated into different breeding programs 
to produce salt-tolerant wheat cultivars.

Materials and Methods

Plant Material and Growth Conditions

Ten wheat cultivars, namely LU-26, Punjab-85, Akbar-
2019, Inqlab-91, WL-711, Anaj-17, Chakwal-86, SA-42, 
Parvaaz-94, and Barani-83, were used in the present screen-
ing experiment. Seeds were procured from Ayub Agricul-
tural Research Institute, Faisalabad, Pakistan. Seeds of all 
cultivars were soaked in deionized water for 12 h to obtain 
uniform germination. Later, seeds were sown in 25 × 15 cm 
plastic pots filled with 5 kg of thoroughly washed sterilized 
sand. The experiment was conducted in a completely rand-
omized design (CRD), having four replicates with two pots 
per replication. Three plants were kept in each pot after 
seed germination. Full-strength Hoagland’s solution was 
provided to the plants on the 12th day of the experiment. 
On the twenty-fifth day, salt toxicity of NaCl (Merck KGaA, 
Darmstadt, Germany) was introduced by dissolving salt in 
the nutrient solution in increments of 50 mM to attain the 
required level of 150 mM. Control plants were only supplied 
with nutrient solution. Plants were harvested after forty-five 
days of germination and excised into shoots and roots to 
measure fresh weights using an electronic weighing scale 
(AND, Model: DH-V 300A). Leaf samples were quickly 
kept in liquid nitrogen and stored at − 20 °C for further bio-
chemical analysis. For dry weights measurement, plants 
were oven-dried at 70 °C for seven days. Shoot and root 
length were measured using a measuring tape. Leaf area was 
measured using Gardner et al. (1985) formula:

The experimental site was the botanical garden, Botany 
Department, Government College University Faisalabad, 
situated at coordinates 31°38′97.1"N 73°02′35.9"E.

Gas Exchange Parameters and Pigments

A portable infrared gas analyzer (LI-COR Lincoln, NE, 
USA) was used to measure the stomatal conductance (gs), 
photosynthesis (A), water use efficiency (A/E), and transpi-
ration rate (E). All measurements were recorded between 
10:00 and 12:00 PM. The specifications of the instrument 
were as follows; photosynthetically active radiation (PAR) 

Leaf area = leaf length × leaf width × 0.75
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was 1084 μmol m−2 s−1, leaf temperature 29 to 33 °C and 
leaf chamber volume gas flow rate 295 mL min−1, leaf cham-
ber molar gas flow rate (U) 402 μmol s−1 and ambient pres-
sure 97.95 kPa.

Chlorophyll a, b, total chlorophyll (a + b), and carotenoid 
content were estimated by Lichtenthaler (1987) protocol. 
The leaf sample (50 mg) was chopped and immersed in 80% 
aqueous acetone for a day in an airtight container. The OD 
of the solution was recorded at 470, 646.8, and 663.2 nm 
spectrophotometrically (Hitachi U-2900).

A chlorophyll content meter (CL-01, Hansatech Instru-
ments, UK) was used to measure leaf chlorophyll content. 
For this purpose, three fully expanded young leaves from the 
top were selected, and SPAD values were taken.

Nitric Oxide (NO), Hydrogen Sulfide (H2S), 
and Glutathione Content

Leaf NO content was measured by employing the protocol 
of Zhou et al. (2005). Leaf material (0.5 g) was pulverized in 
3 mL 50 mM acetic acid buffer (pH 3.6). Centrifugation of 
the homogenate was done at 10,000×g for 20 min to collect 
the supernatant. The collected supernatant was mixed with 
100 mg of charcoal and filtered. Afterward, 1 mL of Griess 
reagent was mixed with 1 mL of supernatant and kept at 
room temperature for half-hour. A spectrophotometer was 
used to measure the absorbance of the reaction mixture at 
540 nm.

The H2S content was measured following the protocol of 
Nashef et al. (1977). Fresh leaf material (0.5 g) was ground 
in 50 mM potassium phosphate buffer (pH 7.5). The mixture 
contained 0.1 mL supernatant, 20 µL of 20-mM 5,5′-dithio-
bis (2-nitrobenzoic acid), and 0.19 mL extraction buffer. The 
OD of the sample mixture was taken at 412 nm.

Leaf material (0.5 g) was ground in a mixture containing 
3 mL of 5% metaphosphoric acid and 1 mM of EDTA. The 
supernatant was taken after centrifugation of the homogen-
ate. Afterward, the reaction solution for reduced glutathione 
(GSH) determination was prepared by adding 5,5-dithiobis 
(2-nitrobenzoic acid, DTNB) and 50 mM potassium phos-
phate buffer (pH 7.5). To determine oxidized glutathione 
(GSSG), 2-vinylpyridine was added to remove GSH. The 

Chlorophyll a = 12.25A663.2 − 2.79A646.8

Chlorophyll b = 21.5A646.8 − 5.1A663.2

Chlorophyll a + b = 7.15A663.2 + 18.71A646.8

Carotenoids = (1000A470 − 1.82 Chlorophyll a − 85.02Cholorophyll b)∕198

absorbance of the mixture was recorded at 412 nm (Hasa-
nuzzaman and Fujita 2011).

Methylglyoxal (MG) and Cytosolutes

The leaf sample (0.5 g) was ground in 10 ml of 5% per-
chloric acid and centrifuged for MG determination. The 
supernatant was taken and mixed with charcoal and sodium 
bicarbonate and used for N-acetyl-l-cysteine-based assay. 
The absorbance was recorded at 288 nm (Nahar et al. 2016).

Cytosolutes such as free proline (Bates et al. 1973), gly-
cine betaine (Grieve and Grattan 1983), phenolics (Wolfe 
et al. 2003), flavonoids (Zhishen et al. 1999), total soluble 
sugars (Dubois et al. 1956), total free amino acids (Hamilton 
and Van Slyke 1943), and anthocyanins (Mita et al. 1997) 
were measured from fresh leaf material.

Superoxide Radicals (O2
⋅‒), Malondialdehyde (MDA), 

and Hydrogen Peroxide (H2O2)

The production rate of O2
⋅‑ was determined using the proto-

col of Yang et al. (2011). The leaf sample (0.5 g) was finely 
ground and mixed with hydroxylamine hydrochloride and 
incubated at 25 °C for 20 min. After incubation, the reaction 
solution was mixed with 17 mM sulfanilamide and 7 mM 
naphthylamine, and absorbance was monitored at 530 nm.

The methodology of Velikova et al. (2000) was employed 
for the determination of H2O2. Leaf material (0.5 g) was 
ground in 10 mL of 5% TCA. The homogenate was cen-
trifuged at 11,000×g. Half-milliliter supernatant was taken 
and reacted with 50 mM potassium phosphate buffer (pH 
7.5) and potassium iodide (KI). The reaction mixture was 
allowed to incubate at room temperature (25 °C) for half-
hour. The absorbance was recorded at 390 nm. For evalua-
tion of MDA content, the leaf sample (0.5 g) was ground in 
5% TCA (10 mL) and centrifuged. The supernatant (0.5 mL) 
taken was mixed with 2 mL 0.5% thiobarbituric acid sub-
stance (TBA) and incubated at 95 °C for half-hour. The OD 
of the mixture was monitored at 532 and 600 nm (Heath and 
Packer 1968).

DPPH Radical Scavenging Activity

2,2 Diphenyl-picrylhydrazyl (DPPH) radical scavenging 
activity was assessed by employing the protocol of Sharma 
and Bhat (2009). The reduction of DPPH absorption was 
monitored spectrophotometrically at 515 nm. Ascorbic acid 
was used as a positive control. The calculation was carried 
out by the following equation:
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Estimation of Total Soluble Proteins (TSP) 
and Enzymes Activities

Fresh leaf material was finely crushed in liquid nitrogen 
and 10 mL of 0.5 M potassium phosphate buffer (pH 7.5) 
was added. The homogenized was centrifuged at 10,000×g 
for 20 min at 4 °C. Supernatant collected was used for the 
measurement of TSP (Bradford 1976) and enzyme activi-
ties. Superoxide dismutase (SOD) activity was monitored 
using the protocol of van Rossum et al. (1997). Peroxidase 
(POD) and catalase (CAT) activities were determined by the 
method of Chance and Maehly (1955). For APX activity, 
Nakano and Asada (1981) protocol was employed, and a 
reduction in absorption was taken at 290 nm for 120 s. The 
activity of lipoxygenase (LOX) was determined at 234 nm 
on a spectrophotometer in the presence of linoleic acid as a 
substrate as defined by Doderer et al. (1992).

Glutathione‑S‑Transferase (GST) Activity, Ascorbic 
Acid (AsA), and Ions Determination

Hasanuzzaman and Fujita (2011) protocol was followed 
for measuring the GST activity. Constituents of the reac-
tion mixture were enzyme extract, 1.5 mM GSH, and 1 mM 
1-chloro-2,4-dinitrobenzene. The OD was recorded at 
340 nm for 60 s on a spectrophotometer.

Leaf material (0.5 g) was homogenized in 10 mL of 6% 
TCA and filtered for the determination of AsA. Filtrate 
(2 mL) taken was mixed with 1 mL of 2% 2,4-dinitrophenyl-
hydrazine, followed by the addition of 1 drop of 10% thio-
urea (prepared in 70% ethanol). The samples were placed 
in a water bath for 30 min at 95 °C. The samples were then 
allowed to cool down in an ice bath, followed by adding 
2.5 mL of 80% H2SO4. The absorbance of the samples was 
recorded at 530 nm (Mukherjee and Choudhuri 1983).

Plant dry samples (0.1 g) were acid-digested following 
the protocol of Allen et al. (1986). A flame photometer 
(Sherwood, model 360) was used to measure the potassium 
(K), calcium (Ca), and sodium (Na) content. The methodol-
ogy of Jackson (1962) was employed to estimate phosphorus 
(P) content.

Statistical Analysis

Data obtained from a completely randomized experiment 
with three replicates were statistically interpreted using 
Minitab software version 20.3. Graphs of the data were 
generated in Origin-Pro 2021 software. Significance among 

Inhibition concentration(IC%) =
(Absorbance control − Absorbance sample)

(Absorbance control)
× 100.

means was calculated using the least significance test (LSD) 
at P ≤ 0.05.

Results

Growth Attributes

Salinity stress imposition manifested apparent aberration 
in growth-related traits of all wheat cultivars. Exposure to 
150 mM salinity caused a remarkable (P ≤ 0.001) reduction 
in shoot and root length, fresh and dry biomass, leaf area, 
and the number of tillers. Data revealed that cultivars also 
varied significantly (P ≤ 0.001) under salinity stress for these 
attributes (Table 1, S1).

Statistical data for shoot length divulged that cultivars 
WL-711 (60.73%), Anaaj-17 (55.42%), Barani-83 (49.02%), 
and Chakwal-86 (45.68%) exhibited maximum reduction, 
while the minimum reduction was observed in cultivars Pun-
jab-85 (9.69%), LU-26 (10.51%), Inqlab-91 (16.02%), and 
Akbar-2019 (18.37%). A moderate reduction was noted in cul-
tivars SA-42 (25.28%) and Parvaaz-94 (33.27%) (Table S1).

For root length, the maximum reduction was evident 
in cultivars Anaaj-17 (61.99%), WL-711 (54.41%), Chak-
wal-86 (53.89%), and Barani-83 (48.28%). On the other 
hand, Akbar-2019, Inqlab-91, Punjab-85, and LU-26 
exhibited lower reduction by 8.67%, 10.96%, 15.25%,  and 
16.48%, respectively, for this parameter. A mild reduction 
was evident in cultivars SA-42 (37.06%) and Parvaaz-94 
(37.53%) under salt toxicity (Table S1).

Salt toxicity conspicuously (P ≤ 0.001) decreased the 
number of tillers in all wheat cultivars. Wheat cultivars 
responded widely to salinity stress. Maximum reduction 
in the number of tillers was observed in cultivars Chak-
wal-86 (57.14%), WL-711 (54.55%), Anaaj-17 (50.00%), 
and Barani-83 (50.00%). A slight reduction was evident in 
Akbar-2019 (6.00%), Punjab-85 (9.52%), LU-26 (10.53%), 
and Inqlab-91 (11.76%) under salt stress. Cultivars SA-42 
(28.57%) and Parvaaz-94 (29.41%) showed moderate reduc-
tion (Table S1).

The leaf area of cultivars WL-711 (52.08%), Anaaj-17 
(49.91%), Barani-83 (46.06%), and Chakwal-86 (45.35%) 
was distinctly reduced under salt toxicity. However, the 
leaf area of cultivars LU-26 (11.83%), Punjab-85 (14.41%), 
Inqlab-91 (14.81%), and Akbar-2019 (15.51%) was least 
affected by salt toxicity. A modest reduction was evident 
in leaf area of cultivars SA-42 (29.87%) and Parvaaz-94 
(31.52%) under stress (Table S1).
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Shoot and Roots Weights

Shoot fresh weight (SFW) of stressed plants was clearly 
(P ≤ 0.001) reduced in Barani-83 (74.95%), WL-711 
(74.10%), Anaaj-17 (67.76%), and Chakwal-86 (65.26%), 
whereas, LU-26 (11.11%), Punjab-85 (11.23%), Inqlab-91 
(11.34%), and Akbar-2019 (14.58%) showed lower reduc-
tion for this attribute. Salt toxicity moderately reduced the 
SFW of SA-42 (44.84%) and Parvaaz-94 (46.56%) (Table 1).

Cultivars Barani-83 (64.38%), Chakwal-86 (63.85%), 
WL-711 (48.94%), and Anaaj-17 (45.13%) showed consid-
erably (P ≤ 0.001) higher reduction percentages for shoot 
dry weight (SDW) under salt stress. In contrast, Inqlab-91 
(10.98%), LU-26 (18.08%), Punjab-85 (20.86%), and Akbar-
2019 (21.31%) showed lower reduction values for this vari-
able. In contrast, SA-42 (33.76%) and Parvaaz-94 (34.19%) 
displayed a moderate reduction in SDW under salt stress 
(Table 1).

Salinity stress significantly (P ≤ 0.001) attenuated root 
fresh weight of WL-711 (63.24%), Barani-83 (60.93%), 
Anaaj-17 (58.98%), and Chakwal-86 (58.52%) as com-
pared with cultivars LU-26 (8.82%), Akbar-2019 (12.72%), 
Inqlab-91 (20.99%), and Punjab-85 (23.27%) exhibiting least 
reduction under salt stress as compared to their respective 
control plants. Cultivars SA-42 (42.80%) and Parvaaz-94 
(44.08%) showed a moderate reduction in this parameter 
(Table S1).

Salt toxicity considerably (P < 0.001) reduced the root 
dry weight of all wheat cultivars. Plants of Akbar-2019 
(7.94%), Punjab-85 (8.18%), Inqlab-91 (12.99%), and LU-26 
(19.70%) were least affected by salt toxicity and displayed 
maximum root dry weight, whereas WL-711 (67.00%), 
Barani-83 (55.87%), Anaaj-17 (53.94%), and Chakwal-86 
(53.80%) were failed to produce better root dry weight 
under salt stress. Cultivars Parvaaz-94 and SA- 42 showed 
moderate reductions of 28.19% and 32.82%, respectively 
(Table S1).

Leaf Relative Water Content (LRWC), Photosynthetic 
Pigments, and SPAD Values

Salt toxicity substantially (P ≤ 0.001) reduced the LRWC of 
cultivars Anaaj-17 (37.58%), Barani-83 (36.23%), WL-711 
(33.17%), and Chakwal-86 (28.63%) in contrast to cultivars 
Punjab-85 (5.98%), LU-26 (8.59%), Akbar-2019 (9.85%), 
and Inqlab-91 (10.25%) that showed lower reduction per-
centages. In cultivars Parvaaz-94 (18.06%) and SA-42 
(19.67%), salt toxicity caused a moderate reduction in 
LRWC (Table 1).

Salinity toxicity resulted in the substantial (P ≤ 0.001) 
diminution of chlorophyll pigments in wheat cultivars. A 
significant (P ≤ 0.001) variation among cultivars was also 
evident. Toxicity of NaCl caused eminent (P ≤ 0.001) 

reduction of Chl a content in cultivars, Chakwal-86, 
Barani-83, Anaaj-17, and WL-711 by 82.98%, 74.88%, 
71.01%, and 70.12%, whereas cultivars LU-26, Inqlab-91, 
Punjab-85, and Akbar-2019 were least affected with reduc-
tion percentages of 17.23%, 19.49%, 21.27%, and 25.51%, 
respectively. Cultivars SA-42 (36.59%) and Parvaaz-94 
(37.26%) displayed a moderate reduction in Chl a content 
under salt toxicity.

Chlorophyll b content also showed a substantial 
(P ≤ 0.001) decline under salt toxicity with a significant 
(P ≤ 0.001) variable response among cultivars. Cultivars 
LU-26 (4.69%), Inqlab-91 (5.77%), Punjab-85 (9.69%), 
and Akbar-2019 (13.49%) exhibited less reduction in chl 
b content as compared with cultivars Barani-83 (73.32%), 
WL-711 (70.94%), Chakwal-86 (70.61%), Anaaj-17 
(64.17%) under salt stress. Salt toxicity caused a moderate 
reduction in chl b content in cultivars Parvaaz-94 (38.71%) 
and SA-42 (41.88%) under salt stress.

Total chlorophyll contents was significantly reduced 
in cultivars Chakwal-86 (78.98%), Barani-83 (74.31%), 
WL-711 (70.43%), and Anaaj-17 (68.79%). Cultivars LU-26 
(11.98%), Inqlab-91 (13.73%), Punjab-85 (16.64%), and 
Akbar-2019 (20.80%) manifested lower reduction in total 
chlorophyll contents. However, a moderate reduction in total 
chlorophyll contents was observed in Parvaaz-94 (37.81%) 
and SA-42 (38.83%) under salt stress (Table S1).

Salt stress distinguishably (P < 0.001) reduced the 
carotenoid contents of all wheat cultivars. The responses 
of wheat cultivars varied remarkably for this variable. 
Cultivars Anaaj-17, Barani-83, WL-711, and Chakwal-86 
showed higher reduction percentages of 38.34%, 36.85%, 
34.78% and 31.98%, respectively. However, cultivars 
LU-26 (7.42%), Inqlab-91 (8.32%), Akbar-2019 (10.08%), 
and Punjab-85 (10.45%) manifested the lowest abridge in 
carotenoid contents. A moderate reduction was evident in 
SA-42 (28.61%) and Parvaaz-94 (27.40%) under salt stress 
(Table S1).

Salt toxicity resulted in a significantly higher reduction 
in SPAD values of cultivars WL-711 (79.60%), Chakwal-86 
(72.24%), Barani-83 (71.31%), and Anaaj-17 (69.58%). Cul-
tivars Inqlab-91, Punjab-85, Akbar-2019, and LU-26 exhib-
ited 7.72%, 11.79%, 14.40%, and 14.65% reduction in SPAD 
values under salt stress, respectively. A moderate reduction 
was evident in cultivars Parvaaz-94 (50.12%) and SA-42 
(55.28%) under salt stress (Table 1).

Cyto‑Solutes

Proline levels significantly (P ≤ 0.001) augmented in cul-
tivars Punjab-85 (240.61%), Inqlab-91 (238.44%), Akbar-
2019 (235.55%), and LU-26 (232.85%) than cultivars 
Barani-83 (30.99%), Anaaj-17 (47.02%), WL-711 (47.20%), 
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and Chakwal-86 (54.35%) under salt toxicity. SA- 42 
(171.18%) and Parvaaz-94 (181.00%) experienced a mod-
erate increase in proline levels under salinity (Table S1).

Likewise, cultivars LU-26 (139.09%), Punjab-85 
(107.42%), Inqlab-91 (107.31%), and Akbar-2019 (87.90%) 
accumulated more (P ≤ 0.001) glycine betaine (GB) content 
than cultivars WL-711 (17.54%), Anaaj-17 (18.72%), Chak-
wal-86 (21.16%), and Barani-83 (22.04%). A moderate rise 
was observed in SA-42 (64.23%) and Parvaaz-94 (69.02%) 
under salt stress (Table S1).

Total free amino acids (TFAA) considerably (P < 0.001) 
increased in cultivars Punjab-85, Akbar-2019, LU-26, 
and Inqlab-91 showing percentages of 93.19%, 82.46%, 
66.94%, and 56.23%, respectively, under salt stress. A 
moderate increase in this attribute was evident in cultivars 
Parvaaz-94 (25.79%) and SA-42 (24.52%). In contrast, cul-
tivars Barani-83 (50.29%), Chakwal-86 (55.21%), WL-711 
(56.90%), and Anaaj-17 (58.57%) showed considerable 
reduction in TFAA content under salt stress (Table S1).

Salt toxicity prominently (P ≤ 0.001) increased total solu-
ble sugars (TSS) to 105.99%, 102.92%, 96.03%, and 67.99% 
in LU-26, Akbar-2019, Inqlab-91, and Punjab-85, respec-
tively. A minimum increase in TSS was noted in Anaaj-17 
(12.09%), Barani-83 (16.38%), Chakwal-86 (19.38%), and 
WL-711 (24.32%). This attribute manifested a moder-
ate increase in cultivars SA-42 (35.84%) and Parvaaz-94 
(43.14%) (Table S1).

Nitric Oxide (NO) and Hydrogen Sulfide (H2S)

Under salt toxicity, nitric NO content increased appreciably 
(P ≤ 0.001) to 141.23%, 118.70%, 104.63%, and 100.74% in 
cultivars LU-26, Punjab-85, Inqlab-91, WL-711, and Akbar-
2019, respectively, whereas cultivars Anaaj-17, Chakwal-86, 
WL-711, and Barani-83 manifested inconspicuous increase 
of 5.13%, 6.19%, 6.90%, and 9.60%, respectively. Plants of 
SA-42 (55.45%) and Parvaaz-94 (61.29%) experienced a 
modest increase for this attribute (Fig. 1D).

A considerable (P ≤ 0.001) increase in the H2S content 
of cultivars Punjab-85 (250.11%), Akbar-2019 (237.64%), 
LU-26 (172.82%), and Inqlab-91 (159.13%) was evi-
dent under salt toxicity as compared to cultivars WL-711 
(19.85%), Chakwal-86 (39.93%), Anaaj-17 (44.89%), and 
Barani-83 (51.88%) exhibiting the lowest increase in H2S 
content under salt stress. A mediocre upsurge in H2S content 
was observed in Parvaaz-94 (80.31%) and SA-42 (98.56%) 
under salt toxicity (Fig. 1E).

Gas Exchange Characteristics

Photosynthesis (A) was least affected in cultivars LU-26 
(4.37%), Punjab-85 (4.81%), Inqlab-91 (8.09%), and Akbar-
2019 (8.56%), whereas it was markedly (P ≤ 0.001) reduced 

in cultivars Chakwal-86 (55.64%), WL-711 (44.14%), 
Barani-83 (36.45%), and Anaaj-17 (33.58%) under salt tox-
icity. Data revealed a moderate reduction in photosynthesis 
of Parvaaz-94 (17.34%) and SA-42 (18.06%) under salt tox-
icity (Table 1).

Transpiration rate (E) was slightly decreased in cultivars 
Akbar-2019, Punjab-85, Inqlab-91, and LU-26 to 30.64%, 
35.27%, 36.51%, and 40.30%, respectively, whereas a con-
siderable (P ≤ 0.001) decline was noted in cultivars WL-711, 
Chakwal-86, Anaaj-17, and Barani-83 to 79.88%, 77.96%, 
77.85%, and 77.78%, respectively, under salt toxicity. A 
moderate reduction was evident in SA-42 (47.66%) and 
Parvaaz-94 (48.04%) under salt toxicity (Table 1).

Stomatal conductance (gs) was severely (P ≤ 0.001) ham-
pered in Barani-83 (65.12%), WL-711 (64.37%), Anaaj-17 
(63.49%), and Chakwal-86 (60.24%) under salt toxicity. 
The minimum reduction was evident in cultivars LU-26 
(45.27%), Akbar-2019 (47.65%), Punjab-85 (50.30%), 
and Inqlab-91 (53.98%), while the temperate decline was 
recorded in Parvaaz-94 (56.50%) and SA-42 (58.94%) plants 
experienced salt toxicity (Table 1).

Water use efficiency (A/E) also declined to a significant 
(P ≤ 0.001) extent, with maximum reduction evident in cul-
tivars WL-711 (86.86%), Anaaj-17 (84.33%), Barani-83 
(84.32%), and Chakwal-86 (84.31%) than cultivars Akbar-
2019 (39.71%), Punjab-85 (40.74%), LU-26 (43.48%), 
and Inqlab-91 (46.43%). A mild reduction was observed 
in the A/E of Parvaaz-94 (61.74%) and SA-42 (61.02%) 
under salinity (Table 1). Salt toxicity caused a considerable 
(P ≤ 0.001) decline in  intrinsic water use efficiency (A gs

−1) 
of cultivars WL-711 (54.01%), Barani-83 (53.41%), Chak-
wal-86 (52.36%), and Anaaj-17 (50.26%) than cultivars Pun-
jab-85 (38.89%), Akbar-2019 (39.41%), LU-26 (39.68%), 
and Inqlab-91 (40.60%). A modest decrease was noticed in 
SA-42 (43.54%) and Parvaaz-94 (43.84%) plants under salt 
toxicity (Table S1).

Oxidative Stress Markers

Salt toxicity resulted in significantly (P ≤ 0.001) excessive 
generation of superoxide radicals (O2

⋅‾) in Chakwal-86 
(542.56%), Barani-83 (395.78%), WL-711 (336.01%), and 
Anaaj-17 (310.93%) than in Inqlab-91 (14.18%), Akbar-
2019 (34.45%), LU-26 (41.55%), Punjab-85 (96.62%). An 
average accumulation was noted in SA-42 (231.39%) and 
Parvaaz-94 (236.73%) (Fig. 1G).

Likewise, hydrogen peroxide (H2O2) was also considerably 
(P ≤ 0.001) increased by salt toxicity in Barani-83 (168.58%), 
Chakwal-86 (158.96%), Anaaj-17 (143.70%), and WL-711 
(142.77%) than in LU-26 (61.61%), Akbar-2019 (77.18%), 
Inqlab-91 (87.30%), and Punjab-85 (90.78%). An average 
increase in H2O2 levels was shown by Parvaaz-94 (114.34%) 
and SA-42 (127.54%) plants under salt toxicity (Fig. 1C).
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Malondialdehyde (MDA) content showed a substan-
tial (P ≤ 0.001) increase under salt toxicity in Chakwal-86 
(258.20%), Anaaj-17 (231.10%), WL-711 (193.73%), and 

Barani-83 (173.88%) than Akbar-2019 (16.20%), Punjab-85 
(52.68%), LU-26 (62.66%), and Inqlab-91 (97.37%). On the 
other hand, SA-42 (152.66%) and Parvaaz-94 (156.54%) 

Fig. 1   Effect of salt stress on 
lipoxygenase (LOX) activ-
ity, malondialdehyde (MDA), 
hydrogen peroxide (H2O2), 
nitric oxide (NO), hydrogen 
sulfide (H2S), methylglyoxal 
(MG), superoxide radical (O2

⋅‑), 
total soluble proteins (TSP), 
2,2-diphenyl-1-picryl-hydrazyl-
hydrate (DPPH) activity in ten 
wheat cultivars
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moderately accumulated MDA content under salt toxicity 
(Fig. 1B).

Salt toxicity caused a considerable (P ≤ 0.001) rise 
in lipoxygenase (LOX) activity of cultivars Anaaj-17 
(147.22%), Chakwal-86 (118.79%), Barani-83 (116.49%), 
and WL-711 (103.98%), compared to Inqlab-91 (26.97%), 
Punjab-85 (35.67%), Akbar-2019 (26.88%), and LU-26 
(40.39%) that showed minimal percentages. A moderate 
increase was recorded in SA-42 (67.97%) and Parvaaz-94 
(76.30%) (Fig. 1A).

Methylglyoxal (MG) and Total Soluble Proteins (TSP)

For MG, WL-711 (402.54%), Anaaj-17 (381.26%), Chak-
wal-86 (357.31%), and Barani-83 (340.25%) exhibited 
greater (P ≤ 0.001) values than Inqlab-91 (110.60%), Pun-
jab-85 (115.88%), LU-26 (118.97%), and Akbar-2019 
(123.56%) under salt toxicity. SA-42 (271.13%) showed a 
moderate increase in MG content, followed by Parvaaz-94 
(272.98%) under salt toxicity (Fig. 1F).

Salt toxicity remarkably (P ≤ 0.001) curtailed the 
TSP content of cultivars WL-711 (64.36%), Chakwal-86 
(61.48%), Barani-83 (56.94%), and Anaaj-17 (48.62%), 
whereas cultivars Punjab-85 (20.94%), Inqlab-91 (23.95%), 
Akbar-2019 (25.36%), and LU-26 (29.49%) showed a mini-
mal reduction for this attribute. Results showed that SA-42 
(41.37%) and Parvaaz-94 (41.71%) were moderately affected 
by salt toxicity for this variable (Fig. 1H).

Antioxidant Compounds

Ascorbic acid content increased significantly (P ≤ 0.001) 
in Akbar-2019 (202.79%), LU-26 (197.11%), Punjab-85 
(175.61%), and Inqlab-91 (159.44%) than in Barani-83 
(67.35%), Anaaj-17 (73.67%), WL-711 (82.48%), and Chak-
wal-86 (90.25%) cultivars under salt toxicity. Ascorbic acid 
content was moderately increased in Parvaaz-94 (119.00%) 
and SA-42 (134.18%) under salt-polluted environment 
(Table S1).

Anthocyanins decreased considerably (P ≤ 0.001) in 
wheat plants under salt toxicity. The maximum drop in 
anthocyanins was noted in cultivars Chakwal-86 (64.45%), 
Barani-83 (52.69%), WL-711 (49.74%), and Anaaj-17 
(42.54%), whereas the minimum fall in anthocyanins was 
depicted by cultivars LU-26 (9.31%), Punjab-85 (10.53%), 
Inqlab-91 (11.84%), and Akbar-2019 (17.88%) compared to 
control plants under salt toxicity. Cultivars SA-42 (26.47%) 
and Parvaaz-94 (35.17%) performed moderately for this 
parameter under salt toxicity (Table S1).

Cultivars Chakwal-86 (9.84%), Anaaj-17 (10.03%), 
Barani-83 (11.19%), and WL-711 (12.96%) plants showed 
lower accumulation of flavonoids content under salt 
stress, whereas cultivars Punjab-85 (97.63%), Akbar-2019 

(78.15%), LU-26 (65.52%), and Inqlab-91 (65.52%) mani-
fested noticeably (P ≤ 0.001) higher flavonoids content under 
salinity. SA-42 (36.42%) and Parvaaz-94 (38.04%) mani-
fested moderate accumulation of flavonoids under salinity 
(Table S1).

Phenolics were discernibly (P ≤ 0.001) increased in 
cultivars LU-26 (176.31%), Punjab-85 (146.16%), Akbar-
2019 (131.51%), and Inqlab-91 (117.75%) than in cultivars 
WL-711 (18.81%), Barani-83 (27.02%), Anaaj-17 (29.02%), 
and Chakwal-86 (33.68%) under salt stress as compared to 
their respective controls. A moderate increase in phenolics 
was found in SA-42 (79.84%) and Parvaaz-94 (80.11%) 
under salt toxicity (Table S1).

Enzyme Assays

Cultivars Punjab-85 (68.80%), Akbar-2019 (56.17%), LU-26 
(40.22%), and Inqlab-91 (36.75%) displayed significantly 
(P ≤ 0.001) higher superoxide dismutase (SOD) activity 
relative to cultivars WL-711 (4.25%), Chakwal-86 (5.79%), 
Barani-83 (6.63%), and Anaaj-17 (7.46%) as compared to 
their respective controls under salt toxicity. Parvaaz-94 
(15.35%) and SA-42 (17.27%) performed moderately for 
SOD under stress (Fig. 2A).

When experiencing salt toxicity, cultivars Inqlab-91 
(149.37%), LU-26 (133.48%), Punjab-85 (123.34%), and 
Akbar-2019 (122.28%) showed a more significant increase 
in peroxidase (POD) activity, and cultivars Barani-83 
(32.21%), Anaaj-17 (36.81%), WL-711 (47.49%), and Chak-
wal-86 (60.25%) showed the least increment for this vari-
able. Imposition of salt toxicity caused a moderate increase 
in Parvaaz-94 (98.20%) and SA-42 (110.95%) (Fig. 2B).

A similar trend was observed in catalase (CAT) and 
ascorbate peroxidase (APX) activities under salt toxicity. For 
CAT activity, cultivars Inqlab-91, Punjab-85, Akbar-2019, 
and LU-26 exhibited 99.08%, 98.90%, 79.93%, and 66.48% 
increase relative to cultivars Anaaj-17, WL-711, Chak-
wal-86, and Barani-83 showing 15.66%, 20.25%, 24.85%, 
and 29.31% increase, respectively, compared to control 
plants. A moderate increase was noted in SA-42 (47.65%) 
and Parvaaz-94 (48.12%) (Fig. 2C).

For APX activity, cultivars Inqlab-91, Akbar-2019, Pun-
jab-85, and LU-26 displayed 150.46%, 138.54%, 136.51%, 
and 135.04% increase and cultivars Chakwal-86, WL-711, 
Barani-83, and Anaaj-17 showed 33.32%, 36.85%, 39.71%, 
and 40.46% increment, respectively. The APX activities of 
SA-42 (86.09%) and Parvaaz-94 (90.67%) showed a modest 
increase under salt stress (Fig. 2E).

A sharp increase in glutathione-S-transferase (GST) 
activity was observed in cultivars Akbar-2019 (261.55%), 
Punjab-85 (205.29%), Inqlab-91 (184.00%), and LU-26 
(179.75%) than cultivars WL-711 (37.38%), Anaaj-17 
(39.16%), Barani-83 (49.59%), and Chakwal-86 (60.59%) 
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under salt toxicity in reference to their untreated control 
plants. The activity of GST under salt toxic conditions was 
moderately elevated in SA-42 (128.53%) and Parvaaz-94 

(144.88%) as compared to other cultivars and control plants 
(Fig. 2D).

Salt toxicity impressively (P ≤ 0.001) increased the 
DPPH activity of cultivars Akbar-2019, Inqlab-91, 

Fig. 2   Effect of salt stress 
on superoxide dismutase 
(SOD), peroxidase (POD), 
catalase (CAT), glutathione-
S-transferase (GST), ascorbate 
peroxidase (APX), reduced 
glutathione (GSH), oxidized 
glutathione (GSSH), and 
GSH:GSSG ratio in ten wheat 
cultivars
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Punjab-85, and LU-26 to 91.95%, 90.38%, 80.12%,  and 
77.74%, whereas cultivars Barani-83, Anaaj-17, WL-711, 
and Chakwal-86 showed minor increase of 3.49%, 14.80%, 
16.31%, 20.22%, respectively, for this attribute. Cultivars 
Parvaaz-94 (35.67%) and SA-42 (42.23%) showed an aver-
age increase in this regard when compared to other culti-
vars under salt stress (Fig. 1I).

Glutathione Pool

Reduced glutathione (GSH) activity of cultivars Akbar-
2019, Inqlab-91, Punjab-85, and LU-26 significantly 
(P ≤ 0.001) increased to 199.63%, 196.82%, 191.49%, 1and 
90.79%, respectively, under salt toxicity, whereas Anaaj-17, 
Barani-83, WL-711, and Chakwal-86 exhibited 64.36%, 
84.20%, 95.04%%, and 99.19% increase in this attribute. 
GSH activity increased modestly in Parvaaz-94 (112.79%) 
and SA-42 (119.51%) under salt toxicity (Fig. 2F).

Oxidized glutathione (GSSG) values showed a marked 
(P ≤ 0.001) increase in cultivars Akbar-2019 (91.35%), Pun-
jab-85 (73.20%), Inqlab-91 (68.66%), and LU-26 (68.02%) 
compared to Anaaj-17 (19.26%), Chakwal-86 (32.30%), 
WL-711 (38.09%), and Barani-83 (38.54%) under salt tox-
icity. GSSG values of Parvaaz-94 and SA-42 increased by 
46.80% and 49.23% (moderate increase as compared to other 
cultivars), respectively (Fig. 2G).

Salt stress caused a visible increase in the GSH: GSSG 
ratio of wheat cultivars. Plants of cultivars Punjab-85 
(72.15%), LU-26 (71.69%), Akbar-2019 (67.73%), and 
Inqlab-91 (66.70%) showed higher increase percentages 
than cultivars WL-711 (35.28%), Parvaaz-94 (37.62%), 
Barani-83 (40.02%), Chakwal-86 (46.17%), and SA-42 
(46.71%) under salt stress (Fig. 2H).

Ions Uptake

The spike of salt concentration in the growth medium 
caused a remarkable (P ≤ 0.001) increase in root Na of cul-
tivars LU-26 (1000%), Punjab-85 (868.42%), Inqlab-91 
(831.58%), and Akbar-2019 (828.57%) under salt stress 
as compared to controls. Cultivars Barani-83 (268.75%), 
Chakwal-86 (306.67%), Anaaj-17 (472.73%), and WL-711 
(530.00%) showed less accumulation of Na in their roots. 
Salt-treated plants of Parvaaz-94 and SA-42 displayed an 
average uptake of Na in roots with percentages of 716.67% 
and 743.75%, respectively, evaluated against their respective 
controls (Fig. 3B).

Leaf Na content spiked significantly (P ≤ 0.001) in 
cultivars Anaaj-17 (3075.00%), WL-711 (3062.50%), 
Barani-83 (2030.00%),  and Chakwal-86 (2000%) than 
cultivars Punjab-85 (290.00%), Akbar-2019 (388.89%), 
LU-26 (507.14%), and Inqlab-91 (525.00%) compared to 
their counterparts when grown under salt toxicity. SA-42 

(1076.92%) and Parvaaz-94 (1221.10%) salt-stressed plants 
showed an average increase for this parameter as compared 
to other cultivars (Fig. 3A).

In contrast, imposition of salt toxicity prominently 
(P ≤ 0.001) trivialized leaf K content in cultivars Barani-83 
(49.04%), Chakwal-86 (48.91%), Anaaj-17 (46.68%), and 
WL-711 (44.36%). However, cultivars Inqlab-91 (21.12%), 
Akbar-2019 (23.00%), Punjab-85 (25.78%), and LU-26 
(27.01%) maintained their leaf K content with a nominal 
decrease under salt toxicity, whereas leaf K contents of 
SA-42 (33.50%) and Parvaaz-94 (35.31%) were decreased 
modestly (Fig. 3C). Similarly, salt toxicity caused visible 
(P ≤ 0.001) attenuation of root K content in cultivars Chak-
wal-86 (60.69%), Barani-83 (58.77%), WL-711 (53.95%), 
and Anaaj-17 (51.87%). However, cultivars Punjab-85 
(7.26%), Inqlab-91 (13.80%), Akbar-2019 (16.95%), and 
LU-26 (19.04%) were least affected by salt toxicity for this 
variable in reference to the control plants,  whereas an aver-
age reduction was visible in SA-42 (43.14%) and Parvaaz-94 
(44.03%) under salt stress (Fig. 3D).

Salt toxicity caused a considerable (P ≤ 0.001) drop in 
the K/Na ratio in both leaves and roots of wheat plants. In 
leaves, the decrease was conspicuous in cultivars Anaaj-17 
(98.59%), WL-711 (98.48%), Chakwal-86 (98.19%), and 
Barani-83 (98.15%) than cultivars Punjab-85 (81.35%), 
Akbar-2019 (85.07%), Inqlab-91 (87.75%), and LU-26 
(89.41%). Data examined showed that the K/Na ratio of 
salt-stressed SA-42 (94.69%) and Parvaaz-94 (95.58%) was 
also notably disturbed (Fig. 3E). In roots, cultivars SA-42, 
Parvaaz-94, WL-711, Anaaj-17, Chakwal-86, LU-26, 
Akbar-2019, Inqlab-91, and Punjab-85 exhibited 96.00%, 
95.34%, 94.28%, 94.08%, 93.99%, 93.01%, 91.93%, 91.01%, 
and 90.66% decline in K/Na ratio, respectively, as compared 
to control plants under salt stress (Fig. 3F).

Root P content of cultivars Anaaj-17 (89.10%), WL-711 
(87.16%), Chakwal-86 (82.15%), and Barani-83 (79.68%) 
showed a significant (P ≤ 0.001) decline under salt toxic-
ity. Cultivars Punjab-85 (45.28%), LU-26 (47.77%), Akbar-
2019 (55.78%), and Inqlab-91 (56.70%) showed minimal 
reduction percentages for this variable compared to control 
plants. SA-42 (76.30%) and Parvaaz-94 (76.31%) were 
moderately affected by salt toxicity (Fig. 4B). Similarly, 
cultivars WL-711 (94.41%), Barani-83 (89.39%), Anaaj-17 
(88.36%), and Chakwal-86 (82.89%) exhibited consider-
able (P ≤ 0.001) decline in leaf P content under salt toxicity 
compared to their respective controls. Cultivars Punjab-85 
(29.41%), Akbar-2019 (35.77%), LU-26 (36.66%), and 
Inqlab-91 (43.02%) were least affected by salt toxicity show-
ing a minimal reduction in leaf P content. However, there 
was a slight decrease in leaf P content of SA-42 (65.55%) 
and Parvaaz-94 (69.24%) under salt stress (Fig. 4A).

A noteworthy (P ≤ 0.001) decline was evident in the 
root Ca content of cultivars WL-711 (76.71%), Barani-83 
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(76.51%), Chakwal-86 (74.52%), and Anaaj-17 (70.65%) 
than cultivars Akbar-2019 (42.92%), Inqlab-91 (49.47%), 
Punjab-85 (50.66%), and LU-26 (51.10%) exhibiting mini-
mum decline percentages under salt toxicity. A nominal 

reduction of 58.38% and 60.54% was recorded in cultivars 
Parvaaz-94 and SA-42 under stress, respectively (Fig. 3H). 
Leaf Ca content was also eminently (P ≤ 0.001) reduced 
under salt toxicity in cultivars Barani-83 (63.43%), 

Fig. 3   Effect of salt stress on 
sodium (Na), potassium (K), 
calcium (Ca) content, and K/Na 
ratio in leaves and roots of ten 
wheat cultivars
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Chakwal-86 (62.70%), Anaaj-17 (60.75%), and WL-711 
(59.24%). Cultivars Punjab-85 (14.94%), Akbar-2019 
(15.79%), Inqlab-91 (24.40%), and LU-26 (26.28%) mani-
fested the least reduction values for this variable under salt 
stress. Cultivars SA-42 (34.97%) and Parvaaz-94 (39.52%) 
performed moderately (slight reduction) under stress as 
compared to other cultivars (Fig. 3G).

Based on the above findings, cultivars Akbar-2019, 
Punjab-85, and LU-26 were grouped as salt-tolerant, and 
cultivars WL-711, Barani-83, Chakwal-86, and Anaaj-17 
were placed in the salt-sensitive group. Cultivars SA-42 and 
Parvaaz-94 were categorized as moderately salt-sensitive 
cultivars, and Inqlab-91 was observed as a moderately salt-
tolerant cultivar. Our findings were further assisted by hier-
archical cluster analysis illustrating salt-tolerant cultivars in 
cluster A, salt-sensitive cultivars in cluster B, moderately 
salt-sensitive cultivars in cluster C, and moderately salt-
tolerant cultivars in cluster D (Fig. 5).

Discussion

Salinity inhibits plant growth due to osmotic stress and 
excess ion toxicity. Salt-induced osmotic stress causes physi-
ological drought, which results in restricted plant growth 
(Gupta and Huang 2014; Liu et al. 2015). Our results mani-
fested reduced plant growth and biomass of wheat cultivars 
administered with salt toxicity (Table 1, S1). However, the 
reduction was more prominent in salt-sensitive cultivars than 
in salt-tolerant cultivars. This reduction in growth param-
eters could be ascribed to perturbed nutrient uptake and 
excessive accumulation of Na ions, causing ion-specific tox-
icity and higher osmotic stress (Hussain et al. 2015; Nadeem 
et al. 2022). Moreover, salinity stress hampers normal cell 
division, elongation, and enlargement in plants, reducing 
leaf area (Farooq et al. 2015; Oney-Birol 2019; Tanveer et al. 
2020), which could also be a reason for reduced photosyn-
thesis due to the lesser leaf area available to capture light. 
Consistent with the variable response of different wheat cul-
tivars in the current study, several scientists also reported 
genotypic variations for salinity tolerance in different crops 
(Moustafa et al. 2021; Omrani et al. 2022; Quamruzzaman 
et al. 2022).

Photosynthetic pigments mainly determine plant photo-
synthetic performance under normal and stressed conditions 
(Sherin et al. 2022). Both stomatal and non-stomatal rea-
sons can modulate the photosynthetic performance of plants 
(Akbar et al. 2021). In the current study, salt toxicity mark-
edly reduced chlorophyll a, b, and total chlorophyll content 
of wheat cultivars, with a more visible reduction evident in 
salt-sensitive cultivars. This reduction in chlorophyll pig-
ments might be due to impaired biosynthesis or increased 
degradation via stress-induced activation of chlorophyllase 
activity and/or due oxidative stress (Muhammad et al. 2021). 
Increased oxidative stress due to the excessive generation 
of reactive oxygen species (ROS) in plants under  environ-
mental constraint can also deteriorate chlorophyll pigments 
(Ahmad et al. 2022). Our results are in consonance with 
previous literature (Taïbi et al. 2016; Luis Castañares and 
Alberto Bouzo 2019).

In the present study, gas exchange attributes such as pho-
tosynthetic rate (A), stomatal conductance (gs), transpiration 
rate (E), and water use efficiency (WUE) of wheat plants 
showed remarkable reduction under salt toxicity. Our results 
agree with the findings of Shaheen et al. (2013) and Hatam 
et al. (2020). This reduction in photosynthetic rate could be 
due to the declined gs and E, hindering transpiration pull and 
nutrient uptake. Surfeit accumulation of Na and deficit of 
K in plants under salinity stress results in chlorophyll deg-
radation and disturbs thylakoid membranes. The photosyn-
thetic rate also correlated positively with the leaf and root K 
content of wheat plants. Moreover, increased accumulation 

Fig. 4   Effect of salt stress on phosphorus (P) content in leaves and 
roots of ten wheat cultivars
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of hydrogen peroxide (H2O2) and malondialdehyde (MDA) 
exerted conspicuously detrimental effects on A, gs, E, WUE, 
and SPAD (Fig. 7).

The present investigation showed significantly elevated 
Na accumulation and reduced K, P, and Ca uptake in the 
leaves and roots of all wheat cultivars under salt stress. 
However, salt-sensitive cultivars were most affected in this 
regard. Various reports align with our findings (Zhu et al. 
2020; Kafi et al. 2021). Potassium (K) is a requisite for 
normal plant metabolic functions. However, excessive Na 
levels in the growth medium compete with K for its uptake 
and decrease K/Na ratio resulting in reduced plant growth 
(Hussain et al. 2015). Several studies suggested that the 
accumulation of Na and K both influence light-driven reac-
tions by modulating the stacking of grana in the chloroplast 
(Sudhir and Murthy 2004; Tränkner et al. 2018). Calcium 
(Ca) is majorly involved in plant signaling as a secondary 
messenger and protects plasma membrane integrity. In this 
study, the decrease in Ca content could be ascribed to the 
displacement of Ca by Na on the cellular binding sites (Sha-
hid et al. 2020). Principal component analysis depicted that 
Na accumulation in leaves or roots is strongly negatively 

correlated with nutrient (K, Ca, and P) acquisition in salt-
stressed plants (Fig. 6).

Salt toxicity altered leaf relative water content (LRWC) 
in all wheat cultivars. Salt-sensitive cultivars exhibited a 
prominent reduction in LRWC under salt toxic conditions. 
However, salt-tolerant wheat cultivars showed minimum 
reduction for this parameter. Salt stress imposes osmotic 
stress that reduces water uptake through roots resulting in 
decreased LRWC of leaves (Roychoudhury et al. 2021). Rel-
ative water content is a significant determinant of metabolic 
activities and survival of leaves that could be employed for 
the discrimination of salt-sensitive and tolerant plants under 
salt toxicity (Sarker and Oba 2020; Haddoudi et al. 2021).

To maintain their osmotic potential, plants regulate ionic 
homeostasis and accumulate various osmolytes such as sug-
ars, proline, glycine betaine, and polyols (Nahar et al. 2016). 
Our results displayed a marked accumulation of proline, gly-
cine betaine (GB), and total soluble sugars (TSS) in salt-
tolerant wheat cultivars than in salt-sensitive cultivars under 
salt toxicity. Proline plays a considerable role in the osmotic 
adjustment of plants under salt toxicity. Moreover, proline 
also acts as a non-enzymatic antioxidant that attenuates the 
negative impact of salt-induced ROS in plants (El Moukhtari 

Fig. 5   Hierarchical cluster 
analysis illustrating salt-tolerant 
cultivars in cluster (A) salt-
sensitive cultivars in cluster 
(B) moderately salt-sensitive 
cultivars in cluster (C) and 
moderately salt-tolerant culti-
vars in cluster (D)
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et al. 2020). Various reports have shown increased proline 
accumulation under stress conditions (Wang et al. 2015; 
Zhang et al. 2015; Zegaoui et al. 2017). Sugars are also 
reported to play a role as an osmoprotectant and scavenger 
of ROS under stress conditions (Sami et al. 2016). Many 
reports have indicated that GB acts as an osmoprotectant 
and could be involved in the changing lipid and fatty acid 
composition, thus improving membrane fluidity of thylakoid 
membrane under stress conditions (Chen and Murata 2011; 
Mäkelä et al. 2019; Zulfiqar et al. 2019).

Salt toxicity significantly decreased total soluble pro-
tein (TSP) content in salt-sensitive wheat cultivars. How-
ever, salt-tolerant cultivars showed a slight decrease in their 
TSP content. This reduction in TSP might be due to the 
denaturation of enzymes involved in protein synthesis or 
the decreased availability of amino acids under salt toxic-
ity (Hassanpour et al. 2013; Shaki et al. 2018). The higher 
levels of TSP and TSS content in salt-tolerant cultivars than 
in salt-sensitive cultivars indicates their adaptation to salt 
toxicity. It is reported that soluble proteins are involved 
in cellular osmoregulation under salt stress and provide a 
storage form of nitrogen (Ahmad et al. 2016). Total free 
amino acids (TFAA) can neutralize the ROS and maintain 
the osmotic status of the plant under stress. In the present 
experiment, TFAA increased significantly in salt-tolerant 

cultivars under salt stress. In contrast, we found a marked 
decline in TFAA content in salt-sensitive cultivars, suggest-
ing that salt-sensitive wheat cultivars were compromised to 
elicit an efficient adaptive osmoprotectant mechanism under 
salt toxicity.

Salt toxicity causes the excessive generation of ROS such 
as singlet oxygen, hydrogen peroxide (H2O2), superoxide 
(O2

⋅‒), and hydroxyl radicals that deteriorate major cellu-
lar components such as nucleic acids, proteins, and mem-
branes (Ashraf et al. 2019). Our results demonstrated that 
salt-sensitive wheat cultivars displayed significantly higher 
accumulation of O2

⋅‒ and H2O2 under salt toxic conditions. 
ROS-induced damage to membranes is measured in the form 
of malondialdehyde (MDA), a by-product of lipid peroxida-
tion of membranes (Rasheed et al. 2014). In our study, MDA 
levels increased significantly under salt toxicity in salt-sen-
sitive cultivars. However, the salt-tolerant cultivars showed 
a non-significant increase in MDA level under salt stress 
manifesting minimal oxidative damage to cellular mem-
branes and other components. Salt-sensitive cultivars also 
showed a substantial increase in lipoxygenase (LOX) activ-
ity under salt toxicity. It is reported that higher LOX activity 
generates oxidative stress and damage to membranes (Nahar 
et al. 2015a, b). Pearson’s correlation analysis depicted a 

Fig. 6   Principal component 
analysis among studied growth 
and biomass-related attributes, 
nutrient ions, and Na ions in 
both leaves and roots of ten 
wheat cultivars under salt 
stress. Abbreviations: SL (shoot 
length), RL (root length), SFW 
(shoot fresh weight), SDW 
(shoot dry weight), RFW (root 
fresh weight), RDW (root dry 
weight), K-L (leaf potassium 
content), K-R (root potassium 
content), Ca-L (leaf calcium 
content), Ca-R (root calcium 
content), P-L (leaf phosphorus 
content), P-R (root phosphorus 
content), Na-L (leaf sodium 
content), and Na-R (root sodium 
content)
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positive correlation between LOX activity and MDA under 
salt toxicity (Fig. 7).

In the present investigation, salt toxicity caused an 
eminent increase in the DPPH radical scavenging activity 
of salt-tolerant wheat cultivars. Our results are in paral-
lel with the previous study of Golkar et al. (2019). It has 
been reported that increasing stress intensity resulted in 
increased DPPH radical scavenging percentage in cab-
bage plants (Hagen et al. 2009). Moreover, DPPH activity 
in wheat plants has been reported to correspond with the 
level of stress tolerance (Kiani et al. 2021).

Plants possess robust antioxidant systems to pre-
clude the overproduction of ROS caused by salt toxic-
ity (Masood et al. 2006; Acosta-Motos et al. 2017). The 
antioxidant system is based on enzymatic [superoxide dis-
mutase (SOD), peroxidase (POD), catalase (CAT), ascor-
bate peroxidase (APX), glutathione-S-transferase (GST)] 
and non-enzymatic antioxidants [ascorbic acid (AsA), glu-
tathione (GSH), phenolics, flavonoids] (Garcia-Caparros 
et  al. 2021). Increased activities of these antioxidants 
under stress conditions are known to play a substantial 

role in plant stress tolerance (Hasanuzzaman et al. 2020). 
In the present study, salt toxicity caused a considerable 
rise in SOD, POD, CAT, and APX activities alongside 
increased accumulation of AsA, GSH, phenolics, and fla-
vonoids. The SOD catalyzes the conversion of O2 to H2O2, 
serving as the first line of defense in plants under stress 
(Alscher et al. 2002). This converted H2O2 is still toxic to 
the cellular environment and is further dismutated to H2O 
and O2 by CAT (Sofo et al. 2015). Likewise, APX utilizes 
ascorbate as an electron donor and converts H2O2 into H2O 
(Pandey et al. 2017).

Methylglyoxal (MG) is a cytotoxic compound gener-
ated via different plant metabolic reactions. Methylglyoxal 
being oxidative in nature, can cause damage to nucleic acid 
and other ultrastructural components of the cell (Kaur et al. 
2016). Yadav et al. (2005) reported that stress conditions 
could cause a two to six fold increase in plant MG produc-
tion. Similarly, our results exhibited a considerable increase 
in MG levels of salt-sensitive plants under salt toxicity. 
Plants detoxify excess MG through the glyoxalase system 
(Gly I and Gly II enzymes) that works co-ordinately with 

Fig. 7   Pearson’s correlation analysis performed among differ-
ent studied attributes of wheat cultivars under salt stress. Abbre-
viations: RWC (relative water content), NT (number of tillers), H2S 
(hydrogen sulfide), NO (nitric oxide), TSP (total soluble proteins), 
MG (methylglyoxal), GB (glycine betaine), O2

•‑ (superoxide radi-
cal), ASA (ascorbic acid), Chl a (chlorophyll a), Chl b (chlorophyll 
b), H2O2 (hydrogen peroxide), MDA (malondialdehyde), TSS (total 
soluble sugars), TFAA (total free amino acids), DPPH (2,2-diphe-

nyl-1-picryl-hydrazyl-hydrate), SOD (superoxide dismutase), POD 
(peroxidase), CAT (catalase), APX (ascorbate peroxidase), GST 
(glutathione-S-transferase), LOX (lipoxygenase), GSH (reduced glu-
tathione), GSSH (oxidized glutathione), A (photosynthetic rate), E 
(transpiration rate), gs (stomatal conductance), WUE (water use effi-
ciency), iWUE (intrinsic water use efficiency), SPAD (soil plant anal-
ysis development chlorophyll meter)
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GSH under stress conditions (Nahar et al. 2015a, b). We 
observed a minimum increase in GSH content of salt-sensi-
tive wheat cultivars exposed to salt toxic conditions. How-
ever, salt-tolerant cultivars notably enhanced GSH level that 
is accountable for detoxifying cellular MG. We also found 
increased GSSG content in salt-tolerant plants, which could 
be due to the GSH reaction with ROS or elevated GPX and 
GST activity, as GST is involved in catalyzing the tripeptide 
glutathione (GSH) conjugation to a range of endo- and xeno-
biotics and reduces ROS-induced stress (Kumar and Trivedi 
2018). Consistently, we also recorded higher GST activity in 
salt-tolerant wheat cultivars than in salt-sensitive cultivars 
under salt toxicity.

Nitric oxide (NO) is a gaseous molecule that acts as a 
signaling molecule in plants and mediates different defense 
responses under adverse environmental conditions (Sharma 
et al. 2020). Besides, hydrogen sulphide (H2S) is another 
gaseous transmitter involved in many physiological pro-
cesses in plants (Zhang et al. 2021). Hydrogen sulphide is 
also reported to impart stress tolerance in many crops (Xiao 
et al. 2020; Zhou et al. 2020; Srivastava et al. 2022). It has 
been reported that H2S enhanced salt stress tolerance in 
alfalfa plants by regulating ion channels on the plasma mem-
brane, inhibiting K efflux, and maintaining the K/Na ratio 
(Lai et al. 2014). Our results showed a significant increase in 
NO and H2S content of salt-stressed wheat plants (Fig. 2B, 
G). However, a more prominent increase was evident in salt-
sensitive wheat cultivars. Various reports showed that H2S 
strengthened the antioxidant defense system, as evident in 
our study (Luo et al. 2015; Kaya et al. 2019; Li et al. 2020). 
Correlation analysis showed a positive correlation of H2S 
and NO with the antioxidant system of wheat plants under 
salt toxicity (Fig. 7).

Conclusion

In conclusion, salt stress negatively affected wheat plant 
growth, biomass, LRWC, chlorophyll pigments, ion uptake, 
and gas exchange attributes. The salinity also increased oxi-
dative stress by excessively generating ROS and MG con-
tent in stressed plants. It also modulated the antioxidant and 
MG detoxification systems of wheat plants. However, the 
negative impact of salt toxicity in salt-sensitive cultivars was 
more considerable than salt-tolerant cultivars. Salt-tolerant 
cultivars showed tolerance to salinity due to their better anti-
oxidant and MG detoxification system, restricted excessive 
Na uptake and accumulation in aerial parts accompanied 
by maintained K/Na ratio in both root and shoot, better 
photosynthetic performance, and higher accumulation of 
cyto-solutes in plant tissues. Therefore, the aforementioned 
growth, physiological and biochemical parameters can be 

employed to screen salt-tolerant wheat cultivars under salt 
toxic conditions.
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