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Abstract
Atriplex lentiformis is a halophytic plant species used for desalination and phytoremediation. The plant tolerates abiotic 
constraints, such as salinity, drought, and toxic metals. It is also used as a fodder for domestic animals. It grows luxuriantly 
at 100–400-mM NaCl concentrations without any toxic symptoms. In the present investigation effects of biological amend-
ments—PGPB (Plant growth-promoting bacteria—Bradyrhizobium japonicum—NCIM5350 and Pseudomonas fluorescens—
NCIM2100), organic manure (OM), and chemical amendment—Ethylene Diamine Tetra Acetic acid (EDTA) on Atriplex 
lentiformis were explored in cadmium- and nickel-contaminated soil. Heavy metal resistance and plant growth-promoting 
traits of PGPB were also analyzed. Augmentation with a combination of both PGPB and OM, A. lentiformis displayed 
maximum uptake of Ni (45.67 mg  kg−1 in roots; 24.68 mg  kg−1 in shoots) and Cd (14.15 mg  kg−1 in roots; 7.19 mg  kg−1 
in shoots). Highest Ni uptake in shoots was observed under the EDTA amendment (25.33 mg  kg−1). Metal uptake by A. 
lentiformis under NCIM2100 was greater than NCIM5350 for both Cd and Ni (10.57 and 43.87 mg  kg−1). Among all the 
amendments highest metal uptake was recorded under bio-organic treatments (PGPB1 + PGPB2 + OM) for both Cd and Ni 
(14.15 and 45.67 mg  kg−1), respectively. The results showed that this association has significantly improved the plant height, 
biomass, chlorophyll, MDA (Malondialdehyde) content, and the activity of antioxidative enzymes (CAT, APX, and SOD) 
which exhibited a positive correlation with metal uptake at 1% level of significance and the potency of synergistic impact of 
microbial consortium, while EDTA reduced the growth of the plant. Metal uptake under EDTA was also much lower than 
biological amendments. Higher metal values in roots establishes A. lentiformis as a phytostabilizer thus indicating its suitabil-
ity as a safer forage. Biological amendments-based phytoremediation holds great promise and could be used in future to give 
further impetus to the antioxidative defense, phytoremedial potential, and growth of this and other important forage plants.
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Introduction

Environmental pollution effectuated by inorganic contami-
nants like heavy metals (HM) has encountered increasing 
attention and awareness worldwide. The problem of HM 
contamination is all over the world and with the day by 
day increasing magnitude of pollution, the intractable and 
pertinacious character of HM has become a serious threat 
to the environment as it affects the lives of both plants and 
animals, causing serious diseases in humans (Wani et al. 
2018; Kubier et al. 2019). Recently, American Agency for 
the Toxic Substances and Disease Registry (ATSDR 2019) 
has listed out arsenic (first place), lead (second place), 
mercury (third place), and cadmium (seventh place) in 
their annual list. Pollution from HM and metalloids, like 
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As, Co, Ni, Cu, Zn, Cd, Hg, and Pb, among others, can 
out-turn inconspicuous toxic consequences (Zaid et al. 
2020). Some of these metal ions are essential for many 
physiological pathways (Ni, Zn, Co, Cu) in living beings 
while others have no such biological functions. These 
HM are bio-accumulative and may slowly enter the next 
trophic level in the progression of a food chain over a cer-
tain period. Worldwide, industries like smelting of metal-
liferous surface finishing, electric appliances, installation 
of aerospace and atomic plants, leather, metallurgy, min-
ing, use of inorganic fertilizers and pesticides, application 
of sewage sludge in lands, wrong agricultural practices, 
inappropriate waste disposal, and some military operations 
have directly, obliquely, or incidentally released ample 
and noticeable amount of toxic HMs into the environment 
with an alarming perilous influence on both ecological and 
anthropoid health, preponderantly in developing countries 
(Toth et al. 2016; Ahmad et al. 2022). Irrigation of crop 
with water containing industrial waste and sewage sludge 
have increased the concentration of the HM in agricul-
tural soil at toxic level (Woldetsadik et al. 2017). Sewage 
sludge, manure, and limes have been characterized as one 
of the prime causes of Cd contamination in agricultural 
soil. As Cd is a highly water-soluble metal exhibiting con-
siderably high level of toxicity even at very low concen-
trations, United States Environmental Protection Agency 
(USEPA) categorized Cd as an extremely threatening and 
toxic pollutant to all life forms, with carcinogenicity in 
humans (group B1). Cd toxicity results in the building of 
free radicals like reactive oxygen species (ROS) which 
cause oxidative damage to the cell and muddle the redox 
equilibrium of the cell with a concomitant decrease in the 
biosynthesis of enzymatic and non-enzymatic antioxidants 
(Zaid et al. 2019a, b).

However, unlike Cd, nickel (Ni) is an essential trace 
element (17th) for plant growth and physiological system. 
Ni can affect plant health both positively and negatively, 
depending on the concentration present in the growth 
medium. It can be toxic and possibly carcinogenic for 
human beings; constituting almost all types of soils, cov-
ering a diversified range of climatic ecosystems. Ni con-
tamination has been found in at least 872 of the 1,662 sites 
identified for hazardous waste that has been recommended 
for incorporation on the U.S. Environmental Protection 
Agency (EPA) National Priorities List (NPL) (HazDat 
2006). Toxicity of Ni in the soil can slow down the plant’s 
enzymatic machinery such as respiration, photosynthe-
sis, plants water status (transpiration, leaf succulence), 
and the capability of antioxidative defense in response to 
the production of ROS (Gill and Tuteja 2010). The toxic 
effects of higher concentrations of Ni have been reported 
at multiple levels, including suppression of mitotic activity 
(Rao and Sresty 2000), photosynthesis, decrease in plant 

growth, and inhibition of nitrogen metabolism (Zaid et al. 
2019a, b).

HM-induced generation of ROS in plants decimate the 
physiological functions of the plant and strikes almost all 
the prime cellular organelles and components such as cell 
membrane, mitochondria, vacuoles, chloroplasts, nucleic 
acids, enzymes, lipids, and protein (Ishtiyaq et al. 2018; 
Wani et al. 2018). Yellowing of leaves (chlorosis), necrosis, 
and deformed/reduced growth are some visual indications 
of Ni and Cd toxicity.

To mitigate the HM toxicity, plants have evolved a coun-
ter antioxidative defense mechanism composed of many 
enzymatic and non-enzymatic antioxidants, such as catalase 
(CAT), superoxide dismutase (SOD), ascorbate peroxidase 
(APX), glutathione (GSH), glutathione reductase (GR), 
guaiacol peroxidase (POX), proline, carotenoids, flavonoids, 
and tocopherols, that instigate efficient and stalwart scav-
enging of ROS (Ishtiyaq et al. 2021). As land and water are 
some of the most influential and crucial natural resources, 
they require attentive and vigilant management for HM 
pollution in order to attain the United Nations’ Sustainable 
Development Goals.

Many factors such as low biomass production at HM 
concentration, sensitivity to multi-metals, poor growth, and 
shallow root system limited the phytoremediation efficiency 
of the plants. Hence, to improve the phytoremediation effi-
ciency of the plant at higher metal concentration is a promis-
ing approach, which may be attained by utilizing biological 
amendments (PGPB—Plant growth-promoting bacteria), 
chelating agents (EDTA—Ethylenediaminetetraaceticacid), 
and organic manure (OM).

The most common implies the use of chelating agents, 
such as EDTA, which enhances the metal bioavailability 
(Cui et al. 2015). However, they may remain persistent 
in the environment and result in groundwater contamina-
tion. Large quantities of organic alteration, such as organic 
manure, compost, urban solid wastes, and biosolids, have 
been used as a source of nutrients or as a conditioner to 
enhance the physical properties and fertility of soils (Ade-
kiya et al. 2020). Modification of organic matter can alter 
the pH of the soil and thus have an indirect effect on the 
bioavailability of HM (Kelvin et al. 2020).

As plants and soil microbes (PGPB) have a strong com-
plementary relationship, phytoremediation based on the 
combined use of plants and PGPB is currently a research 
hotspot (Kong and Glick 2017; Mesa-Marin et al. 2020). 
When PGPB are used as a bioinoculant, they increased bio-
mass and root growth of the plant through nutrient recy-
cling, stabilizing the soil structure,  and modulating the 
bioavailability and toxicity of HMs (Ahemad 2019). To 
date, the majority of PGPB-assisted HM remediation and 
plant growth studies have been conducted with glycophytes, 
such as Thlaspi caerulescens (Whiting et al. 2001), Sedum 
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plumbizincicola (Ma et al. 2016), Pongamia pinnata (Yu 
et  al. 2017), Napier grass (Wiangkham and Prapagdee 
2018), and Festuca arundinacea (Seniyat and Lesley 2019). 
However, to the best of our knowledge, effects of amend-
ments like PGPB, OM, and EDTA on phytoremediation 
potential of Atriplex lentiformis grown under HM stress have 
not been explored previously. Hence, physiological and bio-
chemical response of A. lentiformis under PGPB, OM, and 
EDTA needs to be discoursed.

Atriplex lentiformis (Torr.) S.Wats., a halophytic plant 
is known to exhibit highly developed tolerance mechanism 
under varied pressed conditions like ionic and osmotic pres-
sure of salinity, excess of toxic ions, cold, and xeric envi-
ronment with the capability to maintain a propitious water 
potential gradient to guard their cellular structures (Meyer 
2005; Soliz et al. 2011). The additional attributes of high for-
age production (with considerably high content of protein) 
especially in view of large semi-arid regions in India with 
very poor vegetation cover and extremes of biotic pressure 
due to excessive grazing by a very heavy population of cattle 
load makes this species as an ideal one in this context. This 
species also has an ability to restore degraded agricultural 
lands and soil erosion prevention. However, very few studies 
are available with regard to the metal accumulation capacity 
of A. lentiformis for phytoremediation of contaminated soil.

In the current investigation, a halophytic species (Atri-
plex lentiformis) has been explored for the remediation of 
Cd and Ni with two PGPB (Pseudomonas fluorescens and 
Bradyrhizobium japonicum), EDTA and OM for the pos-
sible optimization of its growth, physiology, defense, and 
metal uptake ability. The reason of using Pseudomonas and 
Bradyrhizobium for the alleviation of the taken problem has 
been done after extensive research and validation of char-
acteristics like Cd and Ni resistance capacity, many plant 
growth-promoting traits, and compatibility with each other, 
as documented by Al-Dhabi et al. 2019, Alsohim 2020; 
and Zeffa et al. 2020, respectively. Through this research 
work, possibility of developing a viable and self-sustainable 
phytoremedial—cum—safe forage supply system is being 
explored using A. lentiformis especially under the pressing 
situations.

Materials and Methods

PGPR Material, Compatibility Assessment, 
and Characterization of Plant Growth‑Promoting 
Traits

Two PGPR strains (Bradyrhizobium japonicum—PGPB1 
and Pseudomonas fluorescens—PGPB2) were procured from 
National Chemical Laboratory, Pune, India in freeze-dried 
cultures and stored at − 20 °C. Both cultures (NCIM5350 

and NCIM2100) were revived according to the specified and 
optimum incubation conditions prescribed for each strain. 
The identity of 16S rRNA sequence of both strains was done 
by performing a resemblance against the GenBank database 
(http:// www. ncbi. nih. gov/ BLAST). Existing 16S rRNA gene 
sequences (from the National Center for Biotechnology 
Information, NCBI GenBank database) of approximately 
related bacteria were used to construct the phylogenetic tree 
by the neighbor-joining method using MEGA6.0 software 
(Saitou and Nei 1987; Tamura et al. 2013). Cd and Ni resist-
ances of both PGPB strains were tested by streaking them on 
King’s B medium (for PGPB1) and Tryptone Yeast extract 
agar (for PGPB2) supplemented with a standard aqueous 
solution of Cd (Merck-119777) and Ni (Merck-119792) of 
400-ppm concentration and incubated at 30 °C. After 4 days 
of incubation, single colonies were picked from the Petri 
plates and sub-cultured to get pure cultures. Stock cultures 
were made in nutrient broth containing 50% (wt/vol) glycerol 
and stored at − 80 °C.

After the resistance test, both PGPR isolates were tested 
for plant growth-promoting traits, like ACC (1-aminocy-
clopropane-1-carboxylate) deaminase, siderophore, IAA 
(Indole acetic acid) production, phosphate solubilization, 
and available phosphate. ACC deaminase activity was deter-
mined by the modified protocol of Honma and Shimomura 
(1978) and Penrose and Glick (2003). Individual colonies of 
each PGPB strain were inoculated in nutrient broth test tubes 
(10 ml) and kept for 3 days in a shaker (120 rpm) at 30 °C. 
After centrifugation (6000 rpm) for 10 min, bacterial cells 
were collected and washed with 1% NaCl solution. Collected 
cells were again added to 10 ml of nutrient broth contain-
ing 5-mM ACC. Number of mmol of α-ketobutyrate pro-
duced by the reaction was measured by spectrophotometer at 
540 nm using a standard curve of α-ketobutyrate. Both quali-
tative and quantitative assays were corroborated for sidero-
phore production in both PGPR strains by Chrome Azurol S 
(CAS) Assay (Schwyn and Neilands 1987). The formation 
of bright zone with yellow fluorescent color by the culture in 
the medium confirmed the production of siderophore. IAA 
production was determined by Gorden and Paleg (1957) 
method using lysogeny broth (LB) supplemented with 0.01% 
wt/vol L tryptophan as the precursor of IAA. IAA concentra-
tion (μg/ml) was calculated by the standard curve of known 
concentration of IAA solution. Phosphate solubilization by 
both PGPBs was identified by Katznelson and Bose (1959) 
protocol and marked positive (clear halo around colonies 
against an opaque background) and negative (colonies 
without halo). Sperberg’s hydroxyapatite broth (20 ml) was 
used for quantitative estimation of phosphate solubilization 
and was carried out in Erlenmeyer flasks inoculated with 
PGPB (500 mL inoculum with ~ 2 ×  108 CFU/mL). Steri-
lized medium without PGPB inoculum was treated as con-
trol. After incubation for 5 days at 28 °C, the supernatant 

http://www.ncbi.nih.gov/BLAST
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was harvested by centrifugation at 10,000 rpm for 10 min 
and used to assay the available phosphorus (P) (Olsen and 
Sommers 1982). The amount of solubilized phosphorus was 
calculated using the standard curve of orthophosphate. The 
available P content was expressed in mg/ml.

Both PGPR strains were tested for their compatibility 
before applying them to plants. Compatibility of both PGPR 
was tested between themselves by streaking one PGPR on 
one side and the other PGPR perpendicularly up to the test 
PGPR (as cross-streak). The growth was visually observed 
after 3 days and recorded as positive or negative.

Plant Material and Experimental Design

Certified seeds of Atriplex lentiformis were procured from 
the United States Department of Agriculture—Agriculture 
Research Service (USDA-ARS), Washington State Univer-
sity, USA, and Forest Research Institute, Jodhpur, Rajasthan, 
India. The seeds were first sterilized in 0.1%  HgCl2 and then 
soaked in petri plates containing double distilled water or 
bacterial suspensions having  108 CFU  ml−1 (according to 
the treatment plan) for 3 h, after this seeds were kept in 
dark and allowed to germinate. A greenhouse pot experi-
ment was set up in the botanical garden of Department of 
Botany, St. John’s College, Agra (27.18° N 78.02° E), India. 
The experimental soil was collected from the botanical gar-
den of the college (sandy loam-sand 60–80%, silt 10–25%, 
clay 8–15%) with pH 7.18 ± 0.51, electrical conductivity 
(EC 1:2.5) 1.04 ± 0.23 ds/m, moisture content 8.32 ± 0.59% 
and 1.10 ± 0.1%, 20.00 ± 0.7 kg/ha, 320.65 ± 5.4 kg/ha, 
616 ± 15 kg/ha of organic carbon, available  P2O5, avail-
able nitrogen, and available  K2O, respectively. Sodium 
(Na), calcium–magnesium (Ca + Mg), and potassium (K) 
content of soil was 730 ± 5, 4.4 ± 0.5, and 23 ± 4 mEq  l−1, 
respectively. Each plastic pot was filled with autoclaved and 
air-dried 4-kg soil and artificially spiked with respective 
salts of  CdCl2.5H2O and  NiSO4.6H2O as a source of HMs 
depending upon the treatment to be given. Pot soil was thor-
oughly mixed and kept aside for 14 days in order to stabi-
lize. After emergence of the first five true leaves, seedlings 
were again soaked in bacterial suspension for 2 h as per the 
treatment plan and were transferred manually in pots having 
4 kg soil and placed into a growth chamber with a 16/8-h 
light/dark cycle, day/night temperatures of 27/22 °C, and 
70–80% relative humidity. The pots were dampened with 
distilled water once per day. After 10 days, 5 ml of PGPB 
inoculum  (106–108 CFU  ml−1), EDTA (5 mmol/kg soil), 
and 250 g of organic manure (with 40–50% organic matter) 
were injected near the rhizosphere of seedlings in accord-
ance with the treatments. The treatments selected were as 
follows: 1. Control 0 ppm HM; 2.  Cd25 ppm; 3.  Cd50 ppm; 4. 
 Cd25 ppm + PGPB1; 5.  Cd25 ppm + PGPB2; 6.  Cd25 ppm + OM; 
7.  Cd25 ppm + EDTA; 8.  Cd25 ppm + PGPB1 + PGPB2 + OM; 

9.  Ni50 ppm; 10.  Ni100 ppm; 11.  Ni50 ppm + PGPB1; 12. 
 Ni50 ppm + PGPB2; 13.  Ni50 ppm + OM; 14.  Ni50 ppm + EDTA; 
and 15.  Ni50 ppm + PGPB1 + PGPB2 + OM. All treatments 
were maintained in triplicates, including the control and kept 
in randomized block design. At the end of the study, i.e., 
120 DAT (days after treatment), pots were dismantled and 
each plant was washed in deionized water and divided into 
root and shoot and analyzed for metal content. The soil was 
also tested to find the residual metal content. In addition, 
chlorophyll, proline content, lipid peroxidation, root length, 
shoot length, biomass, and antioxidative enzyme activity of 
plants were also measured.

Biochemical Analysis

Chlorophyll content of leaf was estimated as per the method 
given by Lichtenthaler (1987). The amount of proline in 
plants was calculated according to the method given by 
Bates et al. (1973). Lipid peroxidation was expressed as 
MDA (malondialdehyde) content and was measured by 
Heath and Packer (1968) method.

Antioxidative Enzyme Assay

The samples of the plant leaves were first processed by 
washing (2–3 times) in distilled water. One gram of leaf 
sample was crushed in liquid nitrogen using a mortar and 
pestle with 10 ml of 0.1-M phosphate buffer (pH 7) con-
taining 0.5-mM EDTA in case of SOD and CAT and 0.5-
mM EDTA and 1-mM ascorbic acid in case of APX. The 
filtrate was passed through 4 layers of cheesecloth followed 
by centrifugation at 16,000 rpm for 20 min at 4 °C, and the 
supernatant was used as an enzyme extract to measure the 
antioxidant activities. Bradford assay was used to determine 
the soluble protein content in the enzyme extract. Bovine 
serum albumin (BSA) was used as the standard.

Catalase (EC 1.11.1.6) activity was measured as a 
decrease in absorbance (240 nm) according to the method 
of Aebi (1984). Reaction mixture (3 ml) containing 50 µl 
of enzyme extract with 1.5 ml of 0.1 M phosphate buffer 
(pH 7), 0.5 ml of 75 mM  H2O2 (Hydrogen peroxide), and 
distilled water to make up the volume was used to measure 
the enzyme activity by comparing decomposed amount of 
 H2O2 (initial reading–final reading) with a standard curve 
drawn with known concentrations of  H2O2 and expressed 
as µmol  H2O2 consumed/min/mg protein (extinction 
coefficient = 37.5  mM−1  cm−1).

Ascorbate peroxidase (EC 1.11.1.11) activity was deter-
mined at 290 nm for a period of 30 s as per the method 
given by Nakano and Asada (1987) and expressed as µmol 
ascorbic acid oxidized  min−1 mg  protein−1. The reaction was 
started with the addition of  H2O2 to the reaction mixture 
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containing phosphate buffer (50 mM), EDTA (0.5 mM), and 
ascorbic acid (3 mM).

Superoxide dismutase (EC 1.15.1.1) activity was esti-
mated by measuring the inhibition of photochemical reduc-
tion of nitroblue tetrazolium dye (NBT) by the enzyme as 
a decrease in absorbance (at 560 nm) according to Dhindsa 
et al. (1981). Methionine (13.33 Mm), NBT (75 µM), EDTA 
(0.1  mM), 50-mM buffer, 50-mM  Na2CO3, and 0.1-ml 
enzyme with water (to make up a final volume of 3 ml) was 
used as a reaction mixture. The reaction was started by keep-
ing the tubes in light of 15-W fluorescent lamp with 2-μM 
riboflavin for 15 min followed by placing of the tubes in dark 
to stop the reaction. Control was used as a complete reaction 
mixture (colored) without enzyme, while a non-irradiated 
mixture was used as a blank.

Heavy Metal Analysis

After 120 DAT, soil, root, and shoot samples were col-
lected and dried in an oven at 80 °C for 48 h followed by a 
microwave-assisted wet digestion method with 3 mL  HNO3 
(69%, Merck) + 9 mL HCl (30%, Merck) for 0.5 g soil, and 
5 mL  HNO3 (69%, Merck) + 2 mL  H2O2 (30%, Merck) for 
0.5-g plant sample. The filtrate was analyzed for metal (Cd, 
Ni) by graphite furnace atomic absorption spectrophotom-
etry using a Solaar M2–Thermo Unicam instrument. Both 
blank and standard reference materials (Virginia tobacco 
leaves CTA-VTL-2, Polish Certified Reference Material, 
and NIST2709–San Joaquin Soil) were included for quality 
assurance. The recovery rates for the elements analyzed were 
89% for Ni and 93% for Cd.

Statistical Analysis

The experiment and all the tests were performed in triplicate. 
Data recorded for the calculation of plant growth, photosyn-
thetic pigments, proline, lipid peroxidation, metal accumu-
lation, and antioxidative enzyme activities were analyzed 
using one-way ANOVA (SigmaPlot 11.0) and the mean 
differences were detected using Tukey’s LSD test (α < 0.05 
level). Pearson’s coefficient of Correlation was calculated at 
a significance level of p ≤ 0.05 and p ≤ 0.01.

Results

Identification, Compatibility, Screening, 
and Characterization Of PGPB

The PGPB strains (NCIM5350 and NCIM2100) used in 
this study were phylogenetically identified by 16S rRNA 
sequencing and showed close resemblance with Bradyrhizo-
bium japonicum (PGPB1) and Pseudomonas fluores-
cens (PGPB2), respectively (Table 1). The obtained gene 
sequences were lined up with NCBI (National Center for 
Biotechnology Information) database and were handed down 
for the formation of a phylogenetic tree (Fig. 1). Both the 
strains of PGPB were found to be compatible in cross-streak 
assay as they did not inhibit the growth of each other and 
were able to grow simultaneously in the same Petri plate 
without showing any inhibition zone. Screening experiment 
results of PGPB1 and PGPB2 for Cd and Ni (up to 400 ppm) 
resistance exhibited their tolerance toward both the metals 
as clear colonies were obtained after incubation on King’s 
B media and Tryptone Yeast extract agar, respectively, sup-
plemented with the respective HM.

In addition to metal tolerance, PGPB1 and PGPB2 also 
exhibited some plant growth-promoting traits (Table 2). 
Both PGPB produce fluorescent yellowish orange bright 
colonial zones that confirmed the production of sidero-
phores. The PGPB2 was found to produce ACC Deaminase 
(82.4 nmol α-ketobutyrate/mg protein/hour) while PGPB1 
showed negative results for the same. IAA production was 
exhibited by both the PGPBs. Both of them showed good 
phosphate solubilization efficiency. The strains did not show 
any disease symptoms in A. lentiformis and were found to be 
highly compatible with standard bioinoculants.

Plant Growth Response

Treatments with both the metals (Cd and Ni) significantly 
affected the growth parameters of A. lentiformis like root 
length, shoot length, and biomass which were in positive 
correlation with metal concentration (Figs. 2 and 3). Plants 
treated with Cd experienced more toxicity (low shoot, 
root length, and biomass) as compared to Ni treatments 

Table 1  Identification of procured PGPB by general biochemical characteristics and 16S rRNA sequencing

Code General Properties Nearest species
in database

Sequence
length

Accession no
in GenBank

Identity

Colony appearance Gram reaction Biochemical test

Oxidase Catalase Citrate

PGPB1 White −  +  +  + Bradyrhizobium japonicum 1355 NCIM5350 99%
PGPB2 Creamy white −  +  +  + Pseudomonas fluorescens 1329 NCIM2100 99%
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(Table 3). A number of toxicity symptoms like rolling of 
leaves, chlorosis, and stunted growth were observed visu-
ally throughout the experiment in plants treated with Cd. 
Plants treated with PGPB displayed better growth than 
control even in the presence of metals or in comparison 
to EDTA or OM. The application of biological amend-
ments (PGPB1 + PGPB2 + OM) were found to be the most 
effective treatment to overcome the stress generated by 
the toxicity of Cd/Ni. They significantly promoted plant 
growth as compared to the plants treated with metals only 

Fig. 1  Phylogenetic tree based on partial 16S rRNA gene of selected plant growth-promoting metal-tolerant bacterial strain showing similarity 
with Pseudomonas fluorescens and Bradyrhizobium japonicum (accession numbers are in parentheses)

Table 2  Plant growth-promoting traits of Bradyrhizobium japonicum 
(NCIM5350) and Pseudomonas fluorescens (NCIM2100)

PGPR traits P. fluorescens B. japonicum

ACC Deaminase (nmol 
α-ketobutyrate/mg protein/hour)

82.4 ± 2.3 negative

IAA (μg/mL) 30.4 ± 1.9 22.6 ± 1.5
Siderophore production (cm)  +  +  +  + 
Phosphate solubilization efficiency % 216 ± 11.8 182 ± 9.2
Available P (μg /mL) 0.84 ± 0.2 0.57 ± 0.3
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 (Cd25,  Ni50). Maximum biomass was observed in plants 
treated with  Cd25 + PGPB1 + PGPB2 + OM (38.54 g) and 
 Ni50 + PGPB1 + PGPB2 + OM (40.84 g) indicating the syn-
ergistic impact of both PGPBs (Table 3).

Chlorophyll, MDA, and Proline Content

Data presented in Fig. 4 show a greater reduction in the 
total chlorophyll content of leaves due to Cd as compared 
to Ni stress. Inoculation with Pseudomonas fluorescens 
and Bradyrhizobium japonicum was found to be the most 

effective treatment for scaling down the adverse effects of 
Cd and Ni on chlorophyll, although EDTA and OM also 
improved the chlorophyll content as compared to the non-
inoculated plants. The data showed that the order of chloro-
phyll reduction for both the metals was as follows: 10.2 and 
18.2% under 25- and 50-ppm concentration of Cd, whereas 
5.2 and 17.3% under 50- and 100-ppm concentration of Ni.

Lipid peroxidation in leaves of A. lentiformis meas-
ured as MDA content is presented in Fig. 5. It was sig-
nificantly increased due to Cd and Ni stress. Maxi-
mum MDA content was observed in  Cd50 (10.12  µg/g/
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Fig. 2  Relationship of Cd uptake with catalase activity (a); superoxide dismutase activity (b); peroxidase activity (c); shoot length (d); root 
length (e); and biomass (f)
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FW) and  Ni100 (9.45  µg/g/FW) treatments which were 
about twofold higher than control. However, in treat-
ments with amendments, a significant decrease was 
observed especially in  Cd25 + PGPB1 + PGPB2 + OM and 
 Ni50 + PGPB1 + PGPB2 + OM treatments. A. lentiformis 
with a high MDA level indicate high lipoxygenase activity.

Accumulation of stress indicating osmolyte (proline) was 
found to be notably affected under metal stress. An increase 
up to 90.3%  (Cd25 ppm), 135%  (Cd50 ppm), 42.3%  (Ni50 ppm), 
and 124.6%  (Ni100 ppm) was reported, respectively (Fig. 6). 
Similar to MDA, proline content also showed a gradual 

decrease at all time intervals, in plants treated with amend-
ments and PGPB.

Antioxidative Defense System, Amendments, PGPB, 
and Heavy Metal Uptake

All the antioxidative enzymes that had been measured 
at 120 DAT showed remarkable variation in accordance 
with various treatments and amendments. Antioxida-
tive activity was found to be in markedly significant cor-
relation with metal uptake (for both the metals) at 1% 
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level of significance (Table 3 and 4). Application of all 
the amendments and PGPB increased the metal uptake 
and improved the overall plant health. Among all the 
treatments highest fluctuation in antioxidative activ-
ity was found in  Cd25 + PGPB1 + PGPB2 + OM and 
 Ni50 + PGPB1 + PGPB2 + OM treatments (Fig. 7).

All the three enzymes showed a positive interconnec-
tion with metal accumulation and both PGPBs, as test 

plants with high metal accumulation  (Cd25 + PGPB1; 
 Cd25 + PGPB2;  Cd25 + PGPB1 + PGPB2;  Ni50 + PGPB1; 
 Ni100 + PGPB2;  Ni50 + PGPB1 + PGPB2) also showed 
highest enzyme activities displaying the influence of 
PGPB1 and PGPB2 (Fig. 7). Order of treatment efficiency 
affecting metal uptake was as follows:  Cd25 +  PGPB1  
+ PGPB2  + O M >  Cd2 5 + PG PB1 >  Cd 25 +  PGPB2 >   
Cd25  + EDTA >   Cd25 + OM for Cd an d  Ni5 0 + PG 

Table 3  Effects of amendments 
and PGPB augmentation 
on growth parameters, 
accumulation, and partition of 
heavy metals in A. lentiformis 

Each value is the mean of replicates (n = 4); values followed by the same letter (small letters for Cd treat-
ments, capital letter for Ni treatments) in each column are not significantly different from each other as 
detected by Tukey’s LSD (p ≤ 0.001)
ND not detected

Treatments Metal 
in root
(mg/kg)

Metal 
in shoot
(mg/kg)

Shoot 
length
(cm)

Root 
length
(cm)

Biomass
(g)

Control ND ND 84.3 ± 1.7a 21.2 ± 0.7a 30.14 ± 1.5a

Cd25 ppm 6.12 ± 0.6a 4.42 ± 0.4a 70.2 ± 2.5b 18.3 ± 1.2b 27.34 ± 2.0b

Cd50 ppm 9.11 ± 0.9b 5.58 ± 0.7b 68.3 ± 2.0b 17.2 ± 0.8b 24.24 ± 1.8c

Cd25 ppm + PGPB1 10.57 ± 0.5c 6.81 ± 0.5c 91.1 ± 1.5c 20.7 ± 1.4c 35.44 ± 1.6d

Cd25 ppm + PGPB2 9.61 ± 0.7b 5.33 ± 0.9b 87.3 ± 2.8c 19.5 ± 0.9d 33.64 ± 1.5d

Cd25 ppm + OM 7.35 ± 0.5d 5.29 ± 0.7b 79.5 ± 2.7d 18.2 ± 1.1e 30.54 ± 2.1a

Cd25 ppm + EDTA 6.33 ± 0.4a 5.32 ± 0.5b 75.7 ± 2.2e 17.5 ± 0.7e 29.04 ± 1.7a

Cd25 ppm + PGPB1 + PGPB2 + OM 14.15 ± 0.6e 7.19 ± 0.6c 93.4 ± 2.8f 21.5 ± 0.6c 38.54 ± 2.6e

Control ND ND 84.3 ± 1.7A 21.2 ± 0.7A 30.12 ± 1.5A

Ni50 ppm 41.27 ± 0.4A 21.74 ± 0.4A 75.7 ± 3.1B 19.4 ± 0.8B 28.34 ± 1.2B

Ni100 ppm 45.43 ± 0.3B 26.46 ± 0.3B 73.2 ± 1.8B 17.7 ± 0.9C 25.28 ± 1.7C

Ni50 ppm + PGPB1 43.87 ± 0.6C 24.15 ± 0.8C 83.2 ± 1.3C 22.7 ± 1.4A 39.14 ± 2.3D

Ni50 ppm + PGPB2 42.72 ± 0.4C 23.51 ± 0.9C 81.4 ± 2.9C 21.5 ± 1.7A 37.04 ± 1.9E

Ni50 ppm + OM 39.47 ± 0.5D 24.65 ± 0.6D 79.3 ± 2.0D 20.3 ± 0.9A 33.44 ± 2.7F

Ni50 ppm + EDTA 42.15 ± 0.7C 25.33 ± 0.4D 78.2 ± 1.3D 19.1 ± 0.8D 29.94 ± 3.4B

Ni50 ppm + PGPB1 + PGPB2 + OM 45.67 ± 0.3B 24.68 ± 0.5C 85.7 ± 2.1E 23.3 ± 1.8E 40.84 ± 2.2G
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PB1  + PGPB2 +  OM >   Ni50 +  PGPB1 >   Ni50  + PGPB 
2 >  Ni5 0 + EDTA >  Ni50 + OM for Ni. A. lentiformis 
showed phytostabilization of Cd and Ni as the roots 
of the plant exhibit greater potential for accumulating 
given metals especially under the ascendancy of Pseu-
domonas fluorescens over Bradyrhizobium japonicum. 
Twofold increase in Cd uptake was measured in roots 
 (Cd25 + PGPB1 + PGPB2 + OM) with highest CAT activ-
ity thus Cd stabilization by plant showed strong interde-
pendence with CAT activity with a correlation coefficient 
value of 0.879. Cd uptake reached maximum (67%) in 

 Cd25 + PGPB1 + PGPB2 + OM treatment and minimum 
(48.2%) for  Cd25 + EDTA. Thus amply demonstrating the 
edge of the biological inoculants (PGPB) over the chemi-
cals (EDTA). A linear relationship has been observed 
between the CAT activity and metal uptake in regression 
analysis with  R2 value of 0.889 for Cd and 0.768 for Ni. 
Similar trends were also reported for SOD and APX.

Increased metal uptake exhibited a strong dependence 
on antioxidative defense activity of the plant; however, the 
ratios of changes in enzyme concentration differ for both the 
metals. Correlation between Cd treatments and CAT activity 

0

2

4

6

8

10

12

Control Cd 25 Cd 50 Cd 25 +
PGPB1

Cd 25  +
PGPB2

Cd 25 +
OM

Cd 25 +
EDTA

Cd 25 +
PGPB1

+
PGPB2
+ OM

Ni 50 Ni 100 Ni 50 +
PGPB1

Ni 50 +
PGPB2

Ni 50 +
OM

Ni 50  +
EDTA

Ni 50 +
PGPB1+
PGPB2
+ OM

M
D

A
 c

on
te

nt
 (µ

g 
g-1

FW
)

30 DAT 60 DAT 90 DAT 120 DAT

Fig. 5  Effect of heavy metals, amendments, and PGPB on MDA content in A. lentiformis 

0

2

4

6

8

10

12

Control Cd 25 Cd 50 Cd 25 +
PGPB1

Cd 25  +
PGPB2

Cd 25 +
OM

Cd 25 +
EDTA

Cd 25 +
PGPB1

+
PGPB2
+ OM

Ni 50 Ni 100 Ni 50 +
PGPB1

Ni 50 +
PGPB2

Ni 50 +
OM

Ni 50  +
EDTA

Ni 50 +
PGPB1+
PGPB2
+ OM

Pr
ol

in
e 

(µ
m

ol
 g

-1
)

30 DAT 60 DAT 90 DAT 120 DAT

Fig. 6  Effect of heavy metals, amendments, and PGPB on proline in A. lentiformis 



3878 Journal of Plant Growth Regulation (2023) 42:3868–3887

1 3

Table 4  Correlation coefficients 
among metal uptake (Cd/Ni), 
enzymatic activities, and plant 
biometric characteristics

*Correlation is significant at 0.05 level (2-tailed)
**Correlation is significant at 0.01 level (2-tailed)

Cd
Ni

Metal
uptake

CAT SOD APX Shoot
length

Root
length

Biomass

Metal uptake – 0.879** 0.772** 0.800** 0.889** 0.775** 0.857**
CAT 0.880** – 0.713** 0.907** 0.865** 0.870** 0.873**
SOD 0.948** 0.945** – 0.584* 0.850** 0.774** 0.844**
APX 0.859** 0.974** 0.894** – 0.700** 0.749** 0.677*
Shoot length 0.827** 0.799** 0.874** 0.804** – 0.870** 0.964**
Root length 0.794** 0.822** 0.868** 0.837** 0.963** – 0.920**
Biomass 0.891** 0.821** 0.915** 0.827** 0.957** 0.945** –
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was most prominent as compared to the other enzymes 
(Table 4).

Discussion

In the present study amendment-based phytoremediation 
strategy for HMs was worked out based upon certain selec-
tion criteria like capability to improve the plant growth, the 
bioavailability of HM in soils, and the selection of an appro-
priate plant species with the potential to withstand stress 
and characteristics required for metal uptake. Hence, this 
study was carried out on Atriplex lentiformis with two metal-
resistant PGPBs, OM, and EDTA. It was found that Atriplex 
lentiformis has the potential to remediate HM from the soil 
especially when its potential is combined with PGPBs, OM, 
and EDTA. This plant is equipped with inherent specific and 
robust mechanism of salinity tolerance and can survive over 
a wide range of stress-producing abiotic factors that seems 
to analog and turn-up mechanisms that can confer HM toler-
ance (Al-Aqeel and Vinod 2016; Bulent et al. 2019).

PGPBs are the plant-associated free-living, soil-borne 
bacteria, which have the ability to enhance the plant growth 
by facilitating the soil nutrient availability, stimulating 
root growth, cell division, suppressing the HM-induced 
toxicity and plant pathogens, and improving induction of 
systemic resistance. PGPB1 and PGPB2 strains used in 
the present study were phylogenetically identified by 16S 
rRNA sequencing and showed close resemblance with 
Bradyrhizobium japonicum (PGPB1) and Pseudomonas 
fluorescens (PGPB2). Further, screening experiment results 
of PGPB1 and PGPB2 for Cd and Ni (up to 400 ppm) resist-
ance showed their tolerance toward both the metals as clear 
colonies were obtained after incubation on King’s B media 
and Tryptone Yeast extract agar, respectively, supplemented 
with the respective HM. Mechanisms which impart resist-
ance to HM in bacterial species include deposition of metal 
in the cell wall and vacuole, accumulation, and modification 
of toxic metal into less toxic form (Tang et al. 2018). Both 
the strains were found to be positive for oxidase, CAT, and 
citrate. Chellaiah (2018) demonstrated Pseudomonas for its 
Cd-resistant capability (up to 500 ppm) and reported that 
the PGPB was able to maintain its plant growth-promoting 
traits up to 200-ppm Cd concentrations in soil. P. fluorescens 
and B. japonicum have the ability for Ni sequestration and 
plant growth promotion (Seneviratne et al. 2016). They can 
directly enhance the metal uptake through modifying metal 
bioavailability in the rhizosphere by altering soil pH, chela-
tor release (e.g., organic acids, siderophores), and oxidation/
reduction reactions. Egamberdieva et al. (2017) explored the 
coordination between Bradyrhizobium and Pseudomonas 
and found that they can synergistically improve the toler-
ance level of the plant by changing the architecture of root 

system and promote nitrogen and phosphorus acquisition 
with increased nodule formation, thus this study supports the 
results of compatibility assay for Bradyrhizobium and Pseu-
domonas. PGPB are known to boost soil fertility by the pro-
duction of siderophores and phytohormones and mitigate the 
ethylene-regulated strain by synthesizing ACC deaminase 
and enhance plant stress tolerance to drought, salinity, and 
HM toxicity (Jahanian et al. 2012; Maxton et al. 2018; Gupta 
and Pandey 2019; Kang et al. 2019; Orozco-Mosqueda et al. 
2020). The use of PGPB possessing the measured multiple 
plant productive properties as well as metal resistance and 
detoxifying characters came out to be an assured, cost effec-
tive, and environment supporting HM bioremediating tool.

In this experiment, Cd toxicity significantly reduced root 
and shoot length along with reduced biomass. This may be 
attributed to the inhibition of mitotic activity of cells due 
to Cd exposure, which leads to reduced root length and dry 
biomass (Gratão et al. 2009). Cd exposure causes osmotic 
stress in plants by lowering water content, stomatal conduct-
ance, and transpiration rate, therefore results in physiologi-
cal damage (Rizwan et al. 2016; Zaid et al. 2022). Cd also 
interferes with the uptake and transport of P, K, Mg, and 
Ca (Nazar et al. 2012). However, the application of inocu-
lants of both the PGPB with OM were found to be the most 
effective amendment in overcoming stress generated by 
the toxicity of Cd/Ni thereby significantly promoting plant 
growth as compared to the metal-treated plant  (Cd25,  Pb50). 
Similar results were also reported by Tank and Saraf (2009) 
on selected five strains of microbes testing their potential 
as plant growth promoters, on the basis of their phosphate 
solubilization ability, IAA, siderophore, HCN (Hydrogen 
cyanide) production, and bio-control potentials. The results 
suggested that the use of these PGPB can enhance plant 
growth in Ni- and Cd-spiked soil and can remediate them 
from contaminated sites. Maria et al. (2010) studied the 
interaction of Atriplex nummularia with halotolerant and 
bioprospect nitrogen-fixing bacteria. The results from this 
study indicated that the test PGPBs when injected at the 
seedling level besides seed treatments and could produce 
desirable effects like fixing nitrogen and promoting growth 
under HM stress, thus exhibiting their high adaptability and 
efficiency in shorter duration.

These microorganisms can directly enhance the phytore-
mediation cycle through modifying metal bioavailability by 
altering soil pH, chelator release (e.g., organic acids, sidero-
phores), and oxidation /reduction reactions. The present 
study is also consistent with previous findings of Treesub-
suntorn et al. (2018) who documented that Bacillus subtilis 
and B. cereus, when inoculated to Cd-exposed Oryza sativa 
plants led to higher root and shoot biomass. This may be 
due to the development of plant growth hormone (IAA) by 
augmented microbes that control the hormones within plant 
tissues and make them adjust to environmental stresses. A 
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study conducted by Egamberdieva et al. (2017) explored the 
coordination between Bradyrhizobium and Pseudomonas 
and found that they can synergistically improve the toler-
ance level of the plant by changing the architecture of root 
system and promote nitrogen and phosphorus acquisition 
with increased nodule formation.

Plant antioxidant system is severely altered by HM stress, 
through the generation of ROS molecules, such as super-
oxide radicals, hydrogen peroxide, and hydroxyl radical, 
which cause oxidative damage leads to cell death (Del Río 
et al. 2003; Zaid and Wani 2019). Under these circumstances 
PGPB strains can protect plant from ROS induced oxidative 
damage by the reduction of ROS generation by the produc-
tion of various enzymatic and non-enzymatic antioxidants, 
therefore regulate the ROS level in the plant (Karthik et al. 
2016). Inoculation of Pseudomonas sp. CPSB21 decreased 
the ROS generation in Helianthus annuus (sunflower) and 
Solanum lycopersicum (tomato) by increased production 
of enzymatic antioxidants, such as SOD and CAT (Gupta 
et al. 2018). Likewise, in the present investigation, PGPBs 
enhanced the plant metal tolerance level, which can be cor-
roborated with the modulation of the antioxidative enzymes 
that play a vital role in resisting oxidative damage as an 
adaptive strategy of the plant for survival under metal stress 
thereby providing an impetus to plant biomass, root length, 
shoot length, and overall growth. These results confirmed 
the ability of Atriplex to grow well in Cd/Ni-contaminated 
soil.

Increased accumulation of HMs like Ni and Cd by hyper-
accumulators plants such as Brassica napus and Brassica 
juncea was reported when the plants were inoculated with 
Bacillus sp. (Zaidi et al. 2006). The results demonstrated that 
the synchronized use of both microorganisms and plants for 
soil remediation resulted in faster and more efficient clean-
ing of the polluted sites (Weyens et al. 2009).

HM toxicity can result in a reduction of chlorophyll 
content either by inhibition of chlorophyll biosynthesis or 
acceleration of its degradation (Gopal and Rizvi 2008); 
this was in conformity with the findings presented in 
Fig. 4. A decrease in the content of chlorophyll pigment 
due to Cd/Ni has also been reported by Szopiński et al. 
2019. The possible reason for the reduction of the photo-
synthetic pigment may be ascribed to the fact that excess 
metal hampers the uptake of Mg and Fe (Piccini and Mala-
volta 1992). However, the inoculation of both PGPB sig-
nificantly improved the chlorophyll content (Fig. 4). The 
synergistic impact of both PGPB strains with OM under Cd 
and Ni contamination resulted in highest increase of chlo-
rophyll content by 24.4 and 34.5%, respectively, as com-
pared to single strain inoculum for both Cd/Ni treatments. 
Chlorophyll content in  Cd25 + PGPB1 + PGPB2 + OM and 
 Ni50 + PGPB1 + PGPB2 + OM was 1.3 and 1.4 times higher 
than observed under  Cd25 and  Ni50, respectively. Inoculation 

of Klebsiella pneumoniae in Vigna mungo enhanced the lev-
els of chlorophyll under Cd stress (Dutta et al. 2018). It was 
reported by Rizvi et al. (2019) that Azotobacter chrococcum, 
when augmented with Cu- and Pb-exposed Zea mays plants, 
enhanced the chlorophyll contents. Increase in chlorophyll 
upon PGPB inoculation could be associated with the change 
of microbial population in the rhizosphere of the plant and 
the synthesis of various growth substances like IAA, sidero-
phore, phosphate solubilization (improved acquisition of 
iron, nitrogen, phosphorus, and essential minerals), reduced 
oxidative damage, and ethylene production by them.

In the present investigation, the imposition of Cd/Ni 
induced a significant increase in MDA and  H2O2 contents 
in Atriplex plants showing the role of excess toxic metals in 
oxidative stress. When toxic metal ions enter the cell they 
react with  H2O2 to form free radicals  (OH− in a Haber–Weiss 
and Fenton reactions) and damage the plant cell by initiating 
non-specific lipid peroxidation (MDA synthesis) and leading 
to the synthesis of hydroperoxyl fatty acids (Garnier et al. 
2006). In contrast, a substantial decrease in the content of 
MDA and  H2O2 has been observed in plants treated with 
bacterial inoculation, which is the indication that a better 
protective mechanism exists in bacterial-inoculated plants 
as they have developed various defense mechanisms to scav-
enge free radicals and peroxides. The rise in the cellular 
level of  H2O2 may be due to higher MDA contents (Rowe 
and Abdel-Magid 1995). Combined application of PGPB 
with OM decreased the MDA content, which was in congru-
ence with the earlier studies, correlating the regulation of 
lipid peroxidation to better stress tolerance mechanisms (Liu 
et al. 2013) and reflects the ameliorative ability of selected 
PGPB and OM to oxidative stress.

Osmotic adjustment under HM stress is an adaptation 
mechanism operated by both halophytes and glycophytes in 
order to maintain their water balance (Flowers and Colmer 
2008). Besides the accumulation of HMs and its sequestra-
tion in the vacuole, the osmotic balance between vacuole 
and cytoplasm in response to HM stress is through the syn-
thesis of organic solutes to retain the stability of the pro-
teins in cells (Zhang et al. 1999). Plants synthesize a vari-
ety of organic solutes, such as proline, glycine betaine, and 
soluble sugars, which are collectively known as osmolytes. 
These are accumulated in high concentrations in cells with-
out disturbing cellular biochemistry and functions (Cush-
man 2001). They protect subcellular structures, mitigate 
oxidative damage caused by free radicals and maintain the 
enzyme activities under stress environment (Ahmad et al. 
2019; Yokoi et al. 2002). Proline accumulation is an adaptive 
strategy of the plant to various abiotic stresses, and it plays 
a significant role in the detoxification of ROS, stabilization 
of proteins and protein complexes (Suprasanna et al. 2014; 
Slama et al. 2015; Nazir et al. 2019). Application of amend-
ments under Cd/Ni stress resulted in reduction of proline 
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in A. lentiformis, which manifests improved physiology, 
reduced oxidative stress, and adaptation toward HM toxic-
ity acting as a sensing or signaling code for lesser proline 
accumulation in plant. Similarly, decrease in plant proline 
contents upon PGPB inoculation has been associated with 
lower membrane damage (MDA and  H2O2) in maize plants 
under HM by Islam et al. (2014). The proline accumulation 
is frequently reported in halophytic plants exposed to HM 
stress and has been correlated with a plants capacity to toler-
ate and adapt to HM stress (Errabii et al. 2007; Slama et al. 
2008). Besides proline, HM stress also causes increased 
accumulation of glycine betaine in halophytic species Sesu-
vium portulacastrum (Lokhande et al. 2010). Wang and 
Showalter (2004) reported higher accumulation of glycine 
betaine in Atriplex prostrate, which plays a positive role in 
maintenance of membrane integrity and stability under HM 
stress. Furthermore, proline accumulation also has been sug-
gested to have a role in detoxification of ROS (Szabados and 
Savoure 2009).

One of the main limits of phytoextraction is the low sol-
ubility and availability of HM for root uptake. Chelating 
agents used to extract metals from soils, among chelators 
EDTA is regarded as the most effective in solubilizing soil-
bound HMs (Nascimento et al. 2006). Moreover, EDTA has 
been shown to increase HM movement to roots via mass 
flow or diffusion, enhance HM uptake, and trigger root to 
shoot translocation of HM (Nascimento et al. 2006).

In the present investigation, we tested the metal tolerance 
and accumulation ability by the halophyte species A. lenti-
formis. We also assess EDTA efficiency for improvement 
of Cd/Ni by this species. Our results indicated that A. len-
tiformis do not exhibit any toxicity symptom, such as chlo-
rosis, necrosis, or reduced growth. This confirms its strong 
tolerance to Cd/Ni as already shown by similar studies (Van 
Engelen et al. 2007; Zaier et al. 2010). On the other hand, 
considering the low bioavailability of Cd/Ni in soil, we 
suggested that increased mobility of Cd/Ni by EDTA could 
enhance the potential of metal accumulation in the shoot. 
The result obtained in our study was consistent with the 
findings of others studies showing that the enhancement of 
HM availability in soils by the addition of EDTA improves 
metal phytoextraction (Liphadzi and Kirkham 2006; Van 
Engelen et al. 2007).

Antioxidant enzymes are considered to be the most 
important defense system toward oxidative stress caused by 
HMs (Weckx and Clijsters 1996). Activities of CAT, SOD, 
and APX are reported to increase under oxidative stress (Gill 
and Tuteja 2010). Furthermore, HMs are believed to cause 
oxidative damage to plants through the production of ROS, 
which cause damage to biomolecules, such as membrane 
lipids and proteins. Besides these, excess Cd and Ni indi-
rectly induce oxidative stress by interrupting the equilib-
rium between ROS production and detoxification (Ishtiyaq 

et al. 2018). Under such conditions, scavenging of  O2
− by 

SOD and  H2O2 decomposition by APX and CAT is primarily 
responsible for the maintenance of cellular redox state. APX 
activity exhibited maximum range of variation and showed 
a linear relationship with SOD (8.12 U/min/mg protein) and 
CAT (17.15 U/min/mg protein). APX is an indispensable 
component of the ascorbate–glutathione pathway required 
to scavenge  H2O2 and to maintain the redox state of the cell 
(Tripathi et al. 2009). APX is mainly produced in the chlo-
roplast of the plant cell, therefore, the higher activity of APX 
seems to help leaf cells to sustain their redox potential and 
decrease ROS production, thereby preventing PSII damage.

The bacterial SODs play an essential role in their sur-
vival in the rhizosphere by facilitating the removal of free 
radicals (Wang et al. 2007). On average, the activity of SOD 
increased in the plants when A. lentiformis was inoculated 
with PGPB1 and PGPB2. Plants showed up to 48.5 and 
45.8% increase in the SOD activities (in the case of Cd) 
and up to 10.6 and 13% increase (for Ni), while plants co-
inoculated with (Bradyrhizobium + Pseudomonas + OM) 
showed an increase up to 32.2 and 15.8% under Cd and Ni 
stress, respectively.

A variety of tolerance mechanisms have evolved in halo-
phytic plants against HM ions, which allow plants to survive 
while accumulating high concentrations of HMs. (Baker and 
Walker 1990; Cobbett and Goldsbrough 2002). Moreover, 
effective phytoremediation depends on the bioavailability 
of HMs which can be greatly influenced by bioaugmenta-
tion of some metal-resistant bacteria. PGPB can simultane-
ously promote plant growth and accelerate the process of 
metal remediation. Saleh and Saleh (2006) used biological 
inoculation technology, on the host cowpea (Vigna sinensis) 
in pot cultures with Zn (0.0–1000 mg/kg dry soil) and Cd 
(0.0–100 mg/kg dry soil). They found that micro-symbionts 
significantly increased dry weight, root:shoot ratios, leaf 
number, and area, plant length, leaf pigments, total carbo-
hydrates, and N and P content of infected plants as compared 
to non-infected controls at all levels of HM concentrations. 
This study revealed that all three amendments were able to 
enhance the metal uptake and accumulation in A. lentiformis 
and provided impetus to the physiology in a healthier way. A. 
lentiformis showed a significant decrease in growth param-
eters upon high dosage of Ni (100 ppm) and Cd (50 ppm) as 
HM-contaminated soils often show negative repercussions 
on plant growth and scarcity of nutrients (Wan et al. 2012).

The researchers also indicated that the mechanisms 
used by PGPB in the remediation of HM-contaminated 
soils may rely entirely on the species of PGPB and plant 
involved in the process. For example, the specific response 
of plant tissues toward HM accumulation under the influ-
ence of PGPB may be consistent with previous studies of 
lentil plants where the uptake of Ni and Zn was higher in 
the root as compared to shoot and grain (Wani et al. 2008). 
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Likewise, another study found that inoculation with Brevi 
bacillus spp. decreased the Zn uptake in Trifolium repens 
(Vivas et al. 2006). Seyed et al. (2018) investigated the effect 
of siderophore-producing PGPB strains—Bacillus safensis 
FO-036b (T) and Pseudomonas fluorescens inoculation on 
Helianthus annuus (sunflower) growth and metals accumula-
tion. In which PGPB inoculations solubilize and increased 
the Zn and Pb accumulation in test plant. Similarly, Amjad 
et al. (2017) and Vartika et al. (2016) reported that inocu-
lation of siderophore-producing PGPR strains significantly 
increased the accumulation of Zn, Pb, and Fe in their respec-
tive host plants.

The results obtained in this work revealed that HMs with 
agronomic supplements such as (PGPB, OM, and EDTA) 
reduce the oxidative stress in A. lentiformis, mainly when 
plant inoculated with Bradyrhizobium japonicum (PGPB1) 
and Pseudomonas fluorescens (PGPB2) or co-inoculated 
with Bradyrhizobium japonicum and Pseudomonas fluore-
scens (Fig. 7). These symbiotic pairs are likely to possess 
a higher efficiency in their nodule antioxidative systems for 
maintaining lower nodule  H2O2 levels against Cd/Ni stress 
(Rodrigues et al. 2013). Similar results have been reported 
in Trigonella foenum-graecum co-inoculated with Ensi-
fer meliloti and Bacillus exposed to moderate and severe 
drought (Barnawal et al. 2013) and in cowpea plants co-
inoculated with Bradyrhizobium, Puccinia graminis, and 
P. durus (Egamberdieva et al. 2013). Our results also sug-
gest that Atriplex plants inoculated with Bradyrhizobium 
(PGPB1) and Pseudomonas (PGPB2) showed greater oxi-
dative protection followed by OM and EDTA, respectively. 
An increase in CAT activity has been shown as a measure 
of antioxidant defense in halophytes (Lokhande et al. 2013).

The mechanisms used by PGPB in the remediation of 
HM-contaminated soils may rely entirely on the species 
of PGPB and plants involved in the process. Plant adap-
tation to HM-induced stress is controlled by cascades of 
molecular networks. Plant genomes contain a large number 
of genes with specific expression pattern in response to HM 
uptake and their transport to specific part. For every essen-
tial metal a particular gateway (metal transporter) is present 
for its entry in plant. This metal transporter allows only that 
particular metal ion or its close homolog to pass through 
it. However, due to the structural similarity of HMs with 
other essential nutrients, often, these HMs are transferred 
to root with the help of membrane transporter proteins. So 
far, several genes and gene families have been identified in 
plants, which play a key role in metal transportation and 
accumulation. Several metal transporters gene families have 
been identified in Arabidopsis thaliana which are directly 
or indirectly involved in HM transport and accumulation, 
namely ZIP (Zinc-regulated transporter—ZRT, Iron regu-
lated transporter, IRT), Natural Resistance-Associated 
Macrophage Protein (NRAMP), ABC transporter, Cation 

Diffusion Facilitator (CDF), Heavy Metal ATPase (HMA), 
Cation proton exchanger (CAX), Heavy Metal ATPase 
(HMA), Low-affinity Cation Transporters (LCT), Copper 
transporter (COPT), and metal tolerance protein (MTP). 
(Nakanishi et al. 2006; Sasaki et al. 2012; Takahashi et al. 
2012). IRT and NRAMP family genes are involved in the 
uptake of HMs to root from soil (Sasaki et al. 2012). HMA 
gene families and AtALS3 gene facilitates HM loading in 
shoot from root through xylem (Takahashi et al. 2012). In 
general, to cope up with HM toxicity, plants activate the 
metal assimilation pathway by increasing transcription of 
related genes.

PGPB-assisted phytoremediation studies conducted in the 
recent past concluded that PGPB inoculation influences the 
HM uptake in the plant by regulating the gene expression 
pattern of major metal transporter gene families (Ghassemi 
and Mostajeran 2018; Jebara et al. 2018). Further, PGPB 
inoculations play a vital role in the expression of growth 
and metabolic process-related genes expression, which sys-
tematize the plant’s growth (biomass, leaf surface area, and 
lateral root formation), physiology, and biochemical expres-
sions (Ambreetha et al. 2018). Khanna et al. (2019) observed 
that inoculation of PGPR strains significantly enhance the 
antioxidant system of Lycopersicon esculentum (tomato) by 
up-regulating mRNA expression of SOD, POD, and PPO 
genes under Cd stress. In the present investigation, a similar 
generalization may be proposed for Atriplex to understand 
the response of HM transport and assimilation pathway 
under the influence of PGPB inoculation.

Saleh and Saleh (2006), used biological inoculation 
technology, on the host plant cowpea (Vigna sinensis) in 
pot cultures with Zn (0.0–1000 mg  kg−1 dry soil) and Cd 
(0.0–100 mg  kg−1 dry soil), and they found that micro-
symbionts significantly increased dry weight, root:shoot 
ratios, leaf number, leaf area, plant length, leaf pigments, 
total carbohydrates, nitrogen, and phosphorus content of 
infected plants as compared to non-infected controls at all 
levels of HM concentrations. The present study revealed that 
all three amendments were able to enhance the metal uptake 
and accumulation in A. lentiformis and provide impetus to 
physiology in a healthier way. A. lentiformis showed a sig-
nificant decrease in growth parameters upon high dosage 
of  Ni100 ppm and  Cd50 ppm as HM-contaminated soils often 
show negative repercussions on plant growth and scarcity 
of nutrients (Wan et al. 2012).

APX are indispensable components of the ascorbate–glu-
tathione pathway required to scavenge  H2O2 and are produced 
mainly in chloroplasts and maintain the redox state of the cell 
(Tripathi et al. 2009). Therefore, the higher activity of APX 
seems to help leaf cells to sustain their redox potential and 
decrease ROS production, thereby preventing PSII damage. 
Enhanced APX activity is mainly associated with an adaptive 
mechanism to increase the level of ROS content produced by 
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HM exposure. Karthikeyan et al. (2007) reported an increase 
in the activities of antioxidant enzymes such as CAT, APX, 
and SOD due to the treatment with diazotrophic bacteria, such 
as Azospirillum and Azotobacter. These findings may be corre-
lated with the present outcomes where inoculation with Pseu-
domonas fluorescens (PGPB2) and Bradyrhizobium japoni-
cum (PGPB1) resulted in enhanced activities of antioxidative 
enzymes that might protect the photosynthetic machinery from 
oxidative damages and finally enhanced photosynthetic rate 
that results in increased biomass production.

An effective phytoremediation depends upon the bioavail-
ability of HMs which can be greatly influenced by bioaugmen-
tation of some metal-resistant bacteria. PGPB can simultane-
ously promote plant growth and accelerate the process of metal 
remediation. Use of Pseudomonas species for remediation of 
HMs like Pb, Cd, Ni, and Cr have been documented (Karim-
pour et al. 2018). Pseudomonas and Bradyrhizobium inoculum 
can increase the bioavailability and mobilization of HM (Dary 
et al 2010). The results of the current investigation suggest that 
a major benefaction of PGPB for better growth and tolerance 
of A. lentiformis was the stimulation of antioxidative enzymes 
which enabled the selected halophyte to overcome all the per-
nicious symptoms of HM accumulation. Within a range of salt 
concentrations optimal for growth, the sequestration of saline 
ions into the vacuoles results in increased succulence of the 
plant’s vegetative parts which is a common characteristic of 
the halophytes (commonly called as halosucculence) (Short 
and Colmer 1999). Succulence minimizes the toxic effect of 
excessive ion accumulation and is associated with accretion 
of osmotically active solutes for maintenance of cell turgor 
pressure (Luttge and Smith 1984).

The data on adaptability of the plant exposed to various 
abiotic factors reveal that A. lentiformis sustains its growth 
by sequestration of HMs into the vacuoles to maintain the 
osmotic balance between vacuole and cytoplasm. The exact 
physiological adaptation to HM stress and fate of accumu-
lated metal in A. lentiformis whether it is subcellular local-
ized or sequestered by metallothionine or phytochelatin or 
proline is yet be elucidated. However, the ability of this plant 
to take up Cd and Ni, from contaminated soils with its maxi-
mum uptake in roots followed by shoot makes A. lentiformis, 
a potential phytoremediator. The feature of A. lentiformis 
to accumulate high amount of HMs in its tissues may be 
exploited for reducing HM levels in the potential agriculture 
soil and in the arid and semi-arid regions by repetitive cul-
tivation and harvesting of plant in these areas.

Conclusion

Plant growth-promoting bacteria like Bradyrhizobium 
japonicum and Pseudomonas fluorescens could be used suc-
cessfully to promote plant growth, physiology, antioxidative 

defense, and uptake of metal from soil. Synergistic interac-
tions between the consortia of Pseudomonas fluorescens, 
Bradyrhizobium japonicum, and OM with Atriplex len-
tiformis significantly improved the growth, antioxidative 
defense, and metal uptake than these PGPBs alone. Thus 
it can be concluded that inoculating the rhizosphere soils 
with selected metal-tolerant bacteria along with OM can be 
a sustainable, economical and eco-friendly option to elevate 
bioavailable metal concentration in the soil for plant uptake 
and thereby improving overall phytoremedial potential of 
the test plant. Activity of antioxidative enzymes was found 
to have a positive correlation on Ni and Cd uptake by A. 
lentiformis. Remediation of contaminated soils is a cumber-
some and slow process that requires long periods of time to 
be effective. Therefore, direct use of contaminated sites with 
appropriate candidate species in association with biological 
amendments is likely to be more efficient method in order to 
remediate such lands. Consequently, the production of safe 
animal forages from contaminated soils was also one of the 
aims of this research especially in view of the stressed envi-
ronment, sparse vegetation cover, and heavy load of biotic 
stress found therein. Atriplex species being equipped with 
excellent halophytic attributes and enormous forage poten-
tial can efficiently serve the purpose, especially in view of 
being identified as an efficient phytostabilizer. This process 
can be accelerated by implementing biological amendment-
based phytoremediation, thus offering a self-sustaining and 
long-term solution for such habitats. Other species of Atri-
plex can also be screened along with different biological 
amendment combinations to further enhance the amplitude 
of phytoremediation prospects. Further, in spite of the infor-
mation available on the physiological and biochemical basis 
of tolerance to HM stress, an intensive research needs to be 
focused toward understanding the molecular basis of metal 
tolerance in Atriplex, is warranted which could provide an 
additional resource for the improvement of HM stress toler-
ance in forage and other crops.
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