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Abstract
Rice (Oryza sativa L.) is an important food crop that belongs to family Gramineae and needs a larger amount of water to 
complete its life cycle as compared to other crops. Hence, rice production is severely affected by water stress. Drought is an 
important issue in rainfed areas across the globe which limits rice production. Several morphological characters like germina-
tion, plant height, plant biomass, number of tillers, various root and leaf traits, physiological characters like photosynthesis, 
stomatal conductance, transpiration, water use efficiency, relative water content, chlorophyll content, photosystem-II activity, 
carbon isotope discrimination, membrane stability, and abscisic acid content of rice are reduced under drought conditions. 
Drought also induces the accumulation of several biochemical osmoprotectants like proline, polyamines, sugars, antioxi-
dants and alters the expression of several genes including transcription factors and defense-related proteins, hence thereby 
affects the yield of rice crop. Drought escape, drought avoidance, and drought tolerance are the mechanisms that prevent 
plant from harmful effects of drought. Thus, this review is focused mainly on recent information about the morphological, 
physio-biochemical, and molecular effects, responses, and adaptation mechanisms of rice under drought stress. Here we also 
discussed that how we can improve the rice for drought tolerance using various molecular tools and techniques.

Keywords  Rice (Oryza sativa L.) · Morphological · Physiological · Biochemical · Molecular effects · Drought stress · 
Abiotic stress

Introduction

Rice is an important food crop that belongs to the genus 
Oryza of Gramineae family. Globally, it provides 23% per 
capita energy which accounts for 65% of caloric intake 
(Khush 1996). It ranks second among cereal in the world 
(Farooq et al. 2009a, b) and most widely consumed staple 
food (Pirdashti et al. 2009). Rice occupied 197.59 million 

hectares area in the world with 996.07 million tons produc-
tion (FAOSTAT 2018–19). India is second largest producer 
of rice with an annual production of over 172.58 million 
tons and has 44.5 million hectares area under rice cultivation 
(FAOSTAT 2018–19). Globally, with the increasing popu-
lation, the demand for rice and other staple food grains is 
going to be increased day by day. Hence, to meet the global 
rice demand in the coming years, its production needs to be 
significantly increased from the current level. Globally, rice 
production is constrained by a number of biotic and abi-
otic factors. Among these abiotic stresses like drought, high 
temperatures, salinity, and oxidative stress are often inter-
related, and may cause similar changes in plants (Szekeres 
2003). In the past decades, drought has become frequent due 
to increasing aberrations in rainfall patterns. It limits crop 
production and is becoming a more severe problem in many 
regions of the globe (Passioura 1996, 2007). Drought refers 
to a situation where demand of water is more than water 
supply to plants and it becomes a limiting factor for bio-
mass accumulation. Drought affects water relations both on 
the cellular level as well as a whole plant like other abiotic 
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stresses (Beck et al. 2007). It influences several physiologi-
cal, biochemical, and molecular processes in plants, like ion 
uptake, translocation, photosynthesis, respiration, carbohy-
drates, nutrient metabolism, harmonic balance, and expres-
sion level of several genes (Farooq et al. 2009c).

Since rice is an aquatic plant, it is very sensitive to 
drought stress for almost all its growth phases which cause 
poor expression of yield component traits (Hsiao et al. 1984; 
O’Toole 1982; Venuprasad et al. 2008, Bouman et al. 2005). 
Drought stress reduces cell division, cell elongation and thus 
restricts overall plant growth which is reflected from reduced 
height and lesser biomass. Drought at booting and seed set-
ting stages caused decreased grain size and grain number 
(Zhang et al. 2018a, b). Breeding for drought tolerance has 
been a very challenging task, due to the complex genetic and 
molecular regulation of this trait. The production of varieties 
of drought tolerance will need to put together many features 
of drought tolerance along with high yield capacity under 
non-drought conditions, but progress in breeding for drought 
tolerance has been very slow (Kumar et al. 2008). Neverthe-
less, attempts by the International Rice Research Institute 
(IRRI) in this direction have contributed to the production 
of certain genotypes of drought-tolerant rice. These include 
IR 74371-46-1-1, IR 74371-54-1-1, and IR 74371-70-1-1. In 
addition, in various regions of South Asia, several drought-
tolerant rice lines have been released (for example, DRR 42, 
44 in India, SukhaDhan 4, 5 in Nepal, and BRRI Dhan 66, 
71 in Bangladesh). In different countries, a conventionally 
bred line IR74371-70-1-1 was released with various names: 
in India as SahbhagiDhan, in Nepal as SukhaDhan 3, and in 
Bangladesh as BRRI 56 Dhan. This suggests the suitability 
of this line for a wide variety of environments to demon-
strate improved results. But conventional breeding is costly, 
laborious, and takes a long time to develop a new variety for 
cultivation. Therefore, it is extremely important to have a 
comprehensive understanding of physiological and molecu-
lar basis of drought tolerance and associated morphological 
changes to facilitate designing of efficient breeding strategies 
for development of drought-tolerant varieties. In this review, 
we have discussed the morphological, physiological, and 
molecular responses of the rice plant under drought stress.

Drought‑Induced Economic Losses

Droughts have a significant impact on agricultural produc-
tion, but there is no agreement on how to measure and char-
acterize them, which has ramifications for drought research 
and policy (Fontes et al. 2020). The cost–benefit analysis 
is frequently used to shape the right policy response to 
drought, particularly with respect to the costs of mitigation 
and climate adaptation in the agriculture sector (Mechler 
et al. 2008; Fontes et al. 2020). Recently, Kim et al. (2019) 

reported global patterns of drought-induced yield losses and 
associated national economic losses for the major cereals 
including rice, wheat and maize from 1983 to 2009. They 
applied empirical relationships among crop yields, a drought 
index, and annual precipitation to calculate production losses 
which was then translated into economic losses for these 
crops due to drought. The worldwide aggregated total eco-
nomic loss of rice for the period 1983 to 2009 was estimated 
to be approximately $37Billion (Kim et al. 2019). More such 
studies are needed for evaluation of drought-induced eco-
nomic losses in rice which will help design policy measures 
and technological development for effectively mitigating the 
drought in the most vulnerable regions.

Drought Categorization of Soils

Hsiao (1973) categorized drought stress based on the soil 
water potential (SWP) and reduction in leaf relative water 
content (RLWC) into three main categories; mild stress 
(SWP: − 0.1MPa; reduction in RLWC: 8-10%), moderate 
stress (SWP: − 1.2 to − 1.5; reduction in RLWC: 10-20%) 
and severe stress (SWP: < − 1.5; reduction in RLWC: 
> 20%). The US drought monitor map uses a range of indi-
cators to measure intensity of drought and categorizes it into 
five categories; abnormally dry, moderate drought, severe 
drought, extreme drought and exceptional drought (https://​
droug​htmon​itor.​unl.​edu/​About/​About​theDa​ta/​Droug​htCla​
ssifi​cation.​aspx). Although, drought is the most significant 
constraint to rainfed rice productivity; there are few papers 
which characterize the soil parameters in relation to the 
intensity of drought stress in the area. It has been reported 
that rice fields in similar locales that are totally rainfed are 
likely to have varying soil water potential and water table 
depth values (Singh et al. 2017). Other drought stresses that 
occur at the seedling and vegetative stages also provide con-
siderable problems to rainfed rice growers, and can lead to 
varied crop performance and soil characteristics (Pandey and 
Bhandari 2008; Singh et al. 2017).

Evapotranspiration and Soil Moisture

Monitoring and modeling of land surface and vegetation 
processes is a critical component in determining the water 
and carbon dynamics of terrestrial ecosystems. In drought-
related studies, the appropriate assessment of evapotranspi-
ration (ET) and soil moisture content (SMC) is very crucial 
(Verstraeten et al. 2008). Controlling water stress levels and 
timing is critical for proper phenotyping for drought toler-
ance. Guimarães et al. (2016) determined the upland rice 
plant water use and its association with grain output during 
periods of irrigation withholding in order to improve the 

https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
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effectiveness of drought phenotyping. Such experiments 
are required for evaluating soil condition, which is directly 
linked with crop productivity.

Crop‑Specific Drought Sensitivity 
Assessments

To combat drought stress, new rice cultivars with greater 
drought resistance should be developed. It is desirable to 
create a simple and accurate approach for evaluating rice 
drought tolerance for breeding reasons, particularly for 
producing highland rice (Zu et al. 2017). It is necessary to 
evaluate drought sensitivity of crop during their life in dif-
ferent time for understanding their need for water. Zu et al 
(2017) explained a new method that can be utilized to assess 
efficiently the drought tolerance degree (DTD) of upland 
rice varieties. The DTD is defined as the mean value of the 
relationships between the length of the green leaf and the 
total length of the three upper leaves in each rice shoot after 
the drought treatment and therefore takes values from zero 
to one. There is a need to develop such type of methods for 
crop-specific drought sensitivity assessments in near future.

Geographical Location of Drought 
Resistance

India and Bangladesh provided the majority of the repro-
ductive stage drought-tolerant accessions (Rahman and 
Zhang 2018). Nearly 40,000 germplasms (accessions and 
breeding lines) were screened for the finest drought-tolerant 
germplasm between 1978 and 1985; nevertheless, breeding 
lines made up the bulk of the top 20 excellent germplasms. 
India has slightly more tolerant accessions than Bangla-
desh, although the majority of Indian accessions came from 
Bangladesh’s neighboring states. Furthermore, suggested 
cultivars for drought stress breeding such as Kataktara Da2, 
Dular, Shada Shaita, and DA 28 originated in Bangladesh, 
and the majority of these are still planted in large regions of 
the country (de Datta et al. 1988; Torres et al. 2013; Rahman 
and Zhang 2018).

Survival Mechanism of Plants Under 
Drought Stress

There are three ways by which plants can survive under 
drought conditions, i.e., drought escape, drought avoidance, 
and drought tolerance. The drought escape can be defined 
as the process in which a plant can complete its life cycle 
before developing the critical water deficiency in soil (Basu 
et al. 2016; Osmolovskaya et al. 2018). It consists of two 

different mechanisms like rapid phenological development 
and developmental plasticity. When the plants can produce 
flowers and seeds with minimum vegetative growth under 
limited water supply is known as rapid phenological devel-
opment. When the plants can complete their proper vegeta-
tive growth, flowering and seed production during abundant 
rain seasons are known as developmental plasticity. This 
allows desert ephemerals to both survive long periods with-
out rain and escape drought. Drought escape is an impor-
tant process that allows rice to grow in a well manner and 
also to produce the grains while limited water availability 
(Kumar et al. 2008). Drought avoidance is referred as the 
ability of plants to maintain high water potential in tissues 
in spite of less moisture in soil. Rice genotype that shows the 
drought avoidance may follow ABA biosynthesis and other 
biochemical mechanisms or adaptation by a root system, to 
maintain the water status in plants. These drought avoidance 
rice genotypes can reduce the loss of yield which leads to 
drought stress (Singh et al. 2012). Drought avoidance can 
be also improved by improving water use efficiency (WUE) 
and minimizing the loss of water from plant. The rice geno-
types that circumvent drought have several characteristics 
like, deep root system which has higher branching ability 
and soil penetration, high root–shoot ratio, less leaf rolling, 
early closure of stomata, and higher cuticle resistance (Blum 
et al. 1989; Samson et al. 2002; Wang et al. 2006). Like-
wise, drought tolerance is referred to as the ability of plants 
to survive under low water content in the tissues (Turner 
1979; Delphine et al. 2010). Drought tolerance is one of the 
complex characters which is governed by polygenic effects 
and also includes complex morphological and physiological 
mechanisms (Li and Xu 2007), like maintenance of turgor 
pressure with the help of osmotic adjustment, increased cell 
elasticity, decreased cell size, and desiccation resistance 
with help of protoplasmic resistance (Sullivan and Ross 
1979). The degree of drought tolerance can be determined 
by tissue water potential of plants and the traits involved in 
this phenomenon are appraised as secondary traits. Several 
secondary traits have been used for improvement of drought 
tolerance are leaf rolling, relative water content, osmotic 
adjustment and stomatal conductivity (Nguyen et al. 1997; 
Babu et al. 2001; Kato et al. 2006).

Effects of Drought on Rice Plants

The effects of drought on the plants can appear at all phe-
nological stages at any stage of growth and development of 
plant, when the water deficiency occurs in the field. Plants 
respond to drought by a range of changes at morphological, 
physiological, and molecular levels. A description of vari-
ous changes in plants during the drought is given in Fig. 1.
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Morphological Responses Under Drought

Growth

Growth is an important factor that is governed by several 
events (such as morphological, physiological, ecological, 
biochemical and genetic) and their complex interactions. 
It is established by cell division, cell elongation and cell 
differentiation and involves two main parts of a plant that 
participate in the event of growth, i.e., root and shoot sys-
tem of the plant. Water stress critically impacts plant growth 
and development than any other environmental stress effects. 
The quality and quantity of the plant growth depends on the 
complex interactions of the events during the water stress. 
During the water stress, growth of the cell is inhibited due 
to reduction in the turgor pressure (Taiz and Zeiger 2006) 
and cell elongation can be inhibited because of the inter-
ruption of water flow from xylem to surrounded elongat-
ing cells (Nonami 1998; Farooq et al. 2009a, b). Drought 
impaired he cell division, cell elongation and cell expansion 
which ultimately resulted in a reduction of the growth and 
development of a plant (Nonami 1998; Kaya et al. 2006; 
Hussain et al. 2008) (Fig. 2). It also reduces the germination, 
establishment (Harris et al. 2002) and severely enabled the 
sprouting of the seeds (Kaya et al. 2006).

Responses of Leaf, Root and Other Plant Characters

Water stress severely affects the growth and development 
of the leaves and roots and these are the important compo-
nent which play important role in rice adaptation to drought 
stress. Since plants obtain the water and mineral nutrients 
from soil via, roots, so growth, development, proliferation, 
and size of the root are important factors for water stress 

resistance (Yoshida and Hasegawa 1982). Shallow rooting 
cultivars are more sensitive to drought than deep-rooting 
cultivars (Nemoto et al. 1998; Farooq et al. 2009e) because 
the deep root system of a plant allows obtaining the water 
from the depth of soil profile (Kondo et al. 2003). It has 
been found in several studies that rice varieties which have 
longer and thicker roots were found more drought resistant 
than other varieties those having short and thin root sys-
tem (O’Toole and Chang 1979). In another study, the rice 
varieties which have deep root were found better adaptive 
during dry conditions (Boyer 1996). Drought reduces the 
number of leaves and new tillers decrease leaf elongation, 
promotes leaf rolling and increase leaf death(Cutler et al. 
1980; Hsiao et al. 1984; Turner et al. 1986) in rice plants 
which results in reducing the photosynthetically active radia-
tion (PAR) (Inthapan and Fukai 1988). The leaf expansion 
rate was decreased when 20 days of drought stress was given 

Fig. 1   Physiological, morphological, biochemical and molecular changes in rice under drought stress condition leads to yield decline

Fig. 2   Mechanisms of growth inhibition in rice due to drought stress
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at vegetative phase in rice. Stomata are sensitive to water 
stress (Farooq et al. 2009d). When the leaf water potential 
decreases, it reduces the leaf conductance (O’Toole et al. 
1984), which results in to decrease in the photosynthetic 
rate and radiation use efficiency (Inthapan and Fukai 1988). 
Several other responses of the plant have been observed dur-
ing the water stress like reduction in height, leaf area and 
biomass production, decreasing the number of tillers and 
their abortion and changing in dry matter of roots and depth 
of root. According to recent studies water stress impact seed-
ling and it significantly reduces the fresh and dry weight of 
seedlings (Farooq et al. 2008, 2009c).

Yield and Related Traits

Yield is the ultimate trait that is severely affected by water 
stress. There are several yield regulating factors that are 
affected by water stress. Many of these factors are respon-
sible for the yield of a plant in several complex manners. 
Water stress effects yield by halting the leaf gas exchange 
which may adversely affect several processes and reduce 
the tissue size of source and sink, loading of phloem and 
assimilate translocation, etc. (Farooq et al. 2009a, b). In 
short, water stress decreases the growth and development 
of the crop plants that in turn causes inhibition of the grain 
filling process and flower developments. The reduction in 
grain filling process in plants occurs due to the decreasing 
of assimilate partitioning and starch and sucrose synthesiz-
ing enzymes. Under drought stress, the yield of rice plants 
depends on the drought timing and growth stages of the 
plant (Garrity and O’Toole 1994). Drought affects the yield 
component at different growth stages of plant, like vegeta-
tive stage (Guan et al. 2010; Sarvestani et al. 2008),Repro-
ductive stage (Singh et al. 2018; Lafitte et al. 2007; Venu-
prasad et al. 2007; Dixit et al. 2012, 2014a, b; Guan et al. 
2010; Swamy et al. 2017),flowering stage (Puteh et al. 2013; 
Sarvestani et al. 2008; Shamsudin et al. 2016a, b; Lanceras 
et al. 2004; Yang et al. 2019),anther dehiscence stage (Eka-
nayake et al. 1989) and Grain filling stage (Basnayake et al. 
2006; Lanceras et al. 2004), Heading stage (Lafitte et al. 
2006), panicle exertion stage (O’Toole and Namuco 1983). 
For example, water stress before 12 days of anthesis makes 
a severe impact on spikelet fertility with a higher reduc-
tion in the grain yield (Cruz and O’Toole 1984; Ekanayake 
et al. 1989) and water stress at reproductive phase leads to 
an increase in the number of unfilled grain on a spike and 
reduced grain weight thus ultimately reduce the grain yield 
of plants (Wopereis et al. 1996). Several other scientists 
also reported the reduction in yield of rice under drought 
stress condition (Jongdee et al. 2006; Kumar et al. 2008; 
Jian-Chang et al. 2008; Atlin et al. 2006; Carrijo et al. 2017; 
Daryanto et al. 2017; Zhang et al. 2018a, b) (Table 1).

Physiological Responses Under Drought

Drought induces various physiological changes in plants that 
may be critical for their survival under moisture deficit con-
ditions. Some of the physiological responses to water stress 
in rice are described below.

Leaf Water Potential

During water stress, leaf water potential of rice plants 
decreases significantly in comparison to control plants (Hu 
et al. 2004; Farooq et al. 2009c; Parent et al. 2010). The 
net photosynthetic rate of a leaf is also decreased with the 
decreasing of leaf water potential when the water content 
or soil water potential reached at threshold level. In a study, 
the leaf water potential was decreased with the increased 
period of water stress induced by the supplying 20% PEG 
in all rice varieties. A significant difference was observed 
at 14 days after water stress treatment (Larkunthod et al. 
2018). Liu et al. (2007a, b, c) found that upland rice cultivars 
decline the leaf water potential in comparison to lowland 
rice cultivars.

Stomatal Conductance

Stomatal conductance decreases the rate of transpiration 
and plays an important role to regulate the water balance 
of plants. The closing of stomata decreases the growth rate 
and expansion of cells thus significantly reduced the yield 
and biomass of the plants (Nemeskari et al. 2015; Rauf et al. 
2015; Pirasteh-Anosheh et al. 2016). Several researchers 
believed that closing of the stomata is the first reaction given 
by the plants to prevent them during water stress for sav-
ing the water loss by transpiration (Torres-Ruiz et al. 2013; 
Clauw et al. 2015; Nemeskeri et al. 2015). Ouyang et al. 
(2017) reported the significant variation in stomatal con-
ductance among species of rice. They observed that lowland 
rice showed much higher stomatal conductance than other 
cultivars. Stomatal conductance was found to decrease in all 
cultivars during the water stress treatments.

Phenology and Ontogeny or Leaf Area and Leaf Area 
Index

Leaf area also plays an important role during water stress. 
Rice plants reduce their leaf area under water stress to 
save themselves from drought (Kramer 1969). It has been 
observed that rice plants with reduced leaf areas use less 
water and are found less productive (Blum 2007). Plants 
with reduced leaf area can fight during water stress condi-
tions but their growth rate and biomass production are rela-
tively low than the normal irrigated plants (Henson 1985). 
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Kamaruddin et al. (2018) observed that flag leaf area had a 
significant reduction in rice genotypes as compared to con-
trol plants under drought. Decreased flag leaf area results in 
small leaf size, senescence of leaf, and decreased emergence 
rate of a leaf (Solomon et al. 2007).

Effect of Drought on Root–Shoot Signaling

During stress environments, plants can regulate the signals 
positively or negatively between shoots and roots to main-
tain their growth and development. Root–shoot signaling 
reduced the growth and distribution of roots, growth, and 

functions of shoots during environmental stress (Novak and 
Lipiec 2012). Several molecules and factors act as signal 
molecules to regulate the physiological processes of a plant 
during the environmental stress such as Auxin, Cytokinin, 
Abscisic acid, Gibberellins, Ethylene and pH (Schachtman 
and Goodger 2008). Abscisic acid has been recognized as 
a stress hormone and plays an important role in root−shoot 
signaling during stress (Schachtman and Goodger 2008). 
During the water stress, plant roots synthesizes abscisic acid 
and transport it in the shoots via xylem, where it reduces 
the expansion of leaves and closes the stomata (Wang et al. 
2000). Closing of stomata caused by the efflux of potassium 

Table 1   Yield reduction in rice under drought stress condition

Stage of growth Level of stress Reduced yield (%) References

Vegetative stage Severe stress 50.6 Guan et al. (2010)
Vegetative stage Water stress 21 Sarvestani et al. (2008)
Flowering stage Severe stress 76.7–83.7 Puteh et al. (2013)
Flowering stage Water stress 50 Sarvestani et al. (2008)
Flowering stage Severe stress  > 70 Shamsudin et al. (2016a, b)
Flowering Short severe stress 54% Lanceras et al. (2004)
Tillering and reproductive 

stage
7 days at reproductive stage 19.71–46.07 Singh et al. (2018)

Reproductive Mild stress 53.92% Lafitte et al. (2007)
Reproductive Severe stress 94.48% Lafitte et al. (2007)
Reproductive Severe stress 24–84% Venuprasad et al. (2007)
Reproductive stage Moderate stress 51–57 Dixit et al. (2014a, b)
Reproductive stage Severe stress 70 Dixit et al. (2014a, b)
Reproductive stage Moderate stress 90.6 Dixit et al. (2012)
Reproductive stage Severe stress 63.1 Dixit et al. (2012)
Reproductive stage Severe stress 74.5 Guan et al. (2010)
Reproductive stage Moderate to severe stress 51–60 Swamy et al. (2017)
– Severe stress 45–50% Jongdee et al. (2006)
– Mild stress 15–20% Jongdee et al. (2006)
Reproductive stage Severe stress 87–75% Kumar et al. (2008)
Reproductive stage Very severe stress 95% Kumar et al. (2008)
Reproductive stage Mild stress 35–56% Kumar et al. (2008)
– Mild stress 15–54% Jian-Chang et al. (2008)
Reproductive stage Mild stress 10–38% Atlin et al. (2006)
Reproductive stage Severe stress 56–76% Atlin et al. (2006)
Grain filling Mild stress 30–55% Basnayake et al. (2006)
Grain filling Severe stress 60% Basnayake et al. (2006)
Grain filling Mild stress 19% Lanceras et al. 2004)
Grain filling Prolonged severe stress 84% Lanceras et al. (2004)
Grain filling Prolonged mild stress 52% Lanceras et al. (2004)
Heading Severe stress 23% Lafitte et al. (2006)
– Drying, soils dried beyond − 20 kPa 22.6 Carrijo et al. (2017)
– Drought, water stress (40% water deficit)  > 50 Daryanto et al. (2017)
– Mild 17% Zhang et al. (2018a, b)
– Moderate 27.8% Zhang et al. (2018a, b)
– Severe 32% Zhang et al. (2018a, b)
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ions from the guard cells resulting in loss of turgor pressure, 
which is promoted by the abscisic acid. Stomatal closure is 
an important process for plant adaptation under water stress 
conditions in the field. The level of abscisic acid has been 
found 50-folds increased due to loss of the turgor pressure of 
the cell (Guerrero and Mullet 1986). A series of signals from 
roots to shoots are responsible for the physiological changes 
in plants and determines the adaptation level of plants during 
the stress condition.

Photosynthesis

Photosynthesis is an important metabolic process that is 
directly altered by the drought. It determines the production 
of a crop. Plants respond to water stress by closing their 
stomata (Cornic and Massacci 1996; Hu et al. 2004; Farooq 
et al. 2009a, b), reducing the CO2 entrance into plant leaves, 
lipid peroxidation and in balancing of water status (Allen 
and Ort 2001). The amount of heat dissipated by the plant 
declines with the decreasing transpiration rate (Condon et al. 
2002). Higher temperature and water pressure make a nega-
tive impact on plant and reduce the leaf photosynthesis and 
WUE thus ultimately reduce the photosynthesis rate and 
transpiration rate of the plant. These effects can be partially 
balanced by the increasing atmospheric CO2 concentration. 
The lower rate of transpiration for saving the water status 
can be managed by maintaining the optimal concentration 
of CO2 in sub stomatal chamber at a lower level of stomatal 
opening (Condon et al. 2002). Water stress inhibits the gas 
exchange in plants and this may have resulted in decreased 
leaf expansion, alteration in photosynthesis system, prema-
ture leaf senescence, chloroplast lipid oxidation and changed 
structure of proteins and pigments (Menconi et al. 1995). 
In several studies, the net photosynthetic rate of rice plants 
has been found to increase by 20–30% under the drought 
stress (Farooq et al. 2009c). It has been also found in several 
studies that stressful condition affects on photoassimilates 
(sink strength) (Sharkey 1990; Tezara et al. 1999; Paul and 
Foyer 2001; Von Caemmerer 2003; Zhou et al. 2007). Sink 
strength decreases the process of photosynthesis under a 
stressful environment. Photosynthetic capacity of rice plants 
has been found a decreased cause of early stomatal closure in 
response to drought stress resulted to decrease in the assimi-
lation rate and yield of plants (Yang et al. 2019). It has been 
investigated that when the plants were in gradually stress 
condition, the distribution of assimilates between roots and 
shoots was not affected. However, roots were found to have 
additional biomass in such conditions.

Rice is a C3 cereal and has well defined grain (sink). 
Flag leaf of the plants has maximum contribution toward 
photosynthesis process and stores 62–90% carbon for grain 
development (Yoshida 1981). Tolerant plants maintain 
their assimilate export from source (leaves) to sink (storage 

organs) under the unfavorable environment and maintain 
their growth, development and yield during changed envi-
ronments. Rubisco activity is reduced under drought condi-
tions and it is responsible for decreasing the photosynthetic 
activity of a plant (Bota et al. 2004). During the drought, 
cell shrinks thus reduce the cell volume. At this time, the 
concentration of solutes in cell increased which may become 
toxic for the activity and function of the several important 
enzymes which are required for the photosynthetic process 
of the plants (Hoekstra et al. 2001).

Effect of Drought Stress on Pigment 
Composition

Photosynthetic pigments are an essential component of 
plants that plays an important role in light harvesting and in 
generating reducing power. Water stress affects both chlo-
rophyll-A and chlorophyll-B (Farooq et al. 2009a, b). How-
ever, carotenoids may help to plant to stand against water 
stress. The changes in chlorophyll and carotenoids under 
the drought stress condition can be summarized as follows.

Chlorophyll Content

Chlorophyll is a major component of photosynthesis in green 
plants and has a positive relationship with photosynthetic 
rate. During the drought stress, chlorophyll degradation and 
oxidation of pigments occurs and this is considered as a typi-
cal symptom of oxidative stress and responsible for decreas-
ing the chlorophyll content of the plant. Drought affects both 
chlorophyll-A and chlorophyll-B (Farooq et al. 2009a, b).
The leaves of plant become old and yellow while losing 
chlorophyll and decreased the power of photosynthesis dur-
ing the stress condition (Ahmadi 1985). Stress tolerance of 
plants is associated with high chlorophyll content (Kraus 
et al. 1995; Pastori and Trippi 1992). The measurement of 
chlorophyll fluorescence helps to understand the involve-
ment of chlorophyll during the environmental stress (Brestic 
and Zivcak 2013; Jedmowski and Bruggemann 2015; Guidi 
et al. 2019). Stress has a negative impact and decreases chlo-
rophyll content of plant. However, it has an important role 
in plant adaptation and maintaining the growth and develop-
ment under the drought condition (Munne-Bosch and Alegre 
1999; Sarani et al. 2014).Khan et al. (2017) observed the 
reduced chlorophyll content in drought stressed plants than 
normal plants (Nahakpam 2017).They reported the reduction 
in chlorophyll content of two rice cultivars under drought. 
The reduction was more pronounced in Super-7 (approx. 
14.28%) in compare to PR-115 (approx. 7.04%) variety 
under drought. Whereas, Prasad et  al. (2019) reported 
reduced chlorophyll content (SPAD value) in five rice 
genotypes Nagina 22 (approx 3% reduction), Swarna sub1 
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(approx 30% reduction), NDR 97(approx. 10% reduction), 
Shusk Samrat (approx 12% reduction) and NDR 9830102 
(approx 20% reduction) at reproductive stage. Drought 
decreased chlorophyll-a content by 11.2 to 61.6% from 3 to 
12 days of treatment and chlorophyll-b content by 21.4% at 
6 days and it decreased the chlorophyll-a/b ratio by 18.2 to 
58.5% from 3 to 12 days of treatment. It also decreased total 
chlorophyll content by 9.01 to 66.2% from 3 to 12 days of 
drought stressed condition (Nasrin et al. 2020).

Carotenoids

All photosynthetic and several non-photosynthetic organ-
isms synthesize the carotenoids by de novo method of syn-
thesis. Carotenoids are the molecules that belong to isopre-
noid class(Andrew et al. 2008).Carotene plays an important 
role in the antioxidant defense system of plants but having 
much susceptibility to oxidative stress. Chloroplast is pre-
sent in all green plants and contains Beta-carotene which is 
bound to the core of PSI and PS II complex (Havaux 1998). 
The concentration of both carotenoids and chlorophyll is 
decreased under the water stress condition (Kiani et al. 2008) 
because of ROS production in thylakoids(Reddy et al. 2004).
Drought decreased the carotenoids content by 0.41 to 32.7% 
from 3 to 12 days of treatment (Nasrin et al. 2020). So the 
tolerance of the plants to drought can be improved by either 
inducing pigment synthesis or the modification in pathways 
that involves in pigment synthesis.

Osmolyte Accumulation

Under stressful conditions, different types of organic and 
inorganic substances are accumulated in the cytosol of the 
plants to reduce the osmotic potential by which they main-
tain their cell turgor (Rhodes and Samaras 1994). Several 
substances like Proline, Sucrose, soluble carbohydrates and 
others are accumulated under drought stress and improve 
the water uptake of plants from drying soil. The accumula-
tion process of such substances under water stress conditions 
is called osmotic adjustment. The accumulation of proline 
occurs firstly in the plants under water stress condition to 
decrease the cells injury. Glycine betaine is also an important 
substance that improves the resistance of plants to several 
abiotic stresses. It has been suggested by several scientists to 
introduce the gene of glycine betaine in non-glycine betaine 
producing plants because it helps to improve the resistance 
of plant to abiotic stress (Chen and Murata 2002; Sakamoto 
and Murata 2002; Kumar et al. 2004). However, glycine 
betaine is not produced by rice plants in stress or non-stress 
condition (Rhodes and Hanson 1993). So, the transgenic 
plant of rice with overexpression of glycine betaine gene 
will increase the production of glycine betaine and shows 
resistance to water stress (Rhodes and Hanson 1993).

Seed Priming

When the metabolic processes for seed germination starts 
but the radical of seeds does not emerge cause of partial 
hydration of seeds is known as seed priming (Bradford 
1986). It regulates the seed within lag phase (Taylor et al. 
1998), so that seeds are not able to reach in log phase of 
growth. Primed seeds in rice usually show improved rate 
of germination, equal germination and percentage of total 
germination (Farooq et al. 2006; 2009d). It happens because 
of metabolic repair (Farooq et al. 2006; 2009d) during the 
process of seed imbibitions (Farooq et al. 2006).

Effects of Drought on Biochemical 
Characteristics

To maintain cell turgidity under water stressed conditions, 
plants accumulate several organic and inorganic compounds 
in the cytosol to maintain their osmotic potential (Rhodes 
and Samaras 1994). The process of biochemicals accumula-
tion in cell is known as osmotic adjustment. Sucrose, glycine 
betaine, Proline, and several other solutes when accumu-
lates in cytoplasm, osmotic adjustment is achieved which 
improves water uptake by a plant from drying soil. Among 
these compounds, due to its large importance in the stress 
tolerance, proline is most widely studied (Mostajeran and 
Rahimi-Eichi 2009; Chutia et al. 2012). The accumulation 
of soluble sugars is also induced by drought (Usman et al. 
2013; Maisura et al. 2014). At molecular level, reactive oxy-
gen species (ROS) is produced by the cell as a result of 
drought, which causes oxidative stress in cell. In terms of 
thiobarbituric acid (TBA) and thiobarbituric acid reactive 
substances (TBARS), the level of superoxide radical (O2) 
and lipid peroxidation (LPO) have been found increased, and 
on the other hand, the concentration of total soluble proteins 
and thiols have been found decreased in rice plants under 
drought. Several other experiments showed enhanced anti-
oxidant enzymes like superoxide dismutase (SOD), guaiacol 
peroxidase (GPX), ascorbate peroxidase (APX), monode-
hydroascorbate reductase (MDHAR), glutathione reductase 
(GR) and dehydroascorbate reductase (DHAR) activity in 
the rice crop when subjected to drought stress (Sharma and 
Dubey 2005). Rice plants activate the antioxidants defense 
mechanism and increase the level of these enzymes during 
oxidative stress by drought. Better antioxidant production 
was observed in drought-tolerant varieties as compared to 
susceptible ones (Lum et al. 2014). Also, the drought tol-
erance varieties shows increased proline level and higher 
soluble sugars production under drought stress (Mostajeran 
and Rahimi-Eichi 2009; Chutia et al. 2012).
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Role of Proline Under Drought

Proline plays an important role in plants when the plant suf-
fered by various stress (Verbruggen and Hermans 2008). 
In rye grasses, Kemble and Mac-Phersonin (1954) firstly 
reported the accumulation of free proline due to water stress. 
Due to its osmolytic properties, proline accumulation con-
tributes to drought tolerance and better performance to plant 
(Vajrabhaya et al. 2001). Under drought stress condition in 
rice, the variation in proline concentration has been observed 
(Sheela and Alexallder 1995; Mostajeran and Rahimi-Eichi 
2009; Bunnag and Pongthai 2013; Kumar et al. 2014; Lum 
et al. 2014; Maisura et al. 2014).Proline accumulation in 
the leaf of rice was increased by 1.3- to 10.2-folds from 9 
to 18 days of drought treatment (Nasrin et al. 2020).Like-
wise, Swapna and Shylaraj (2017) imposed the drought 
by15% PEG6000 with osmotic potential (OP) of − 2.35 
to − 2.95 MPa for 5 days at (28 ± 2) °C and observed the 
increased proline content by 31.81-folds in Swarnaprabha 
variety under drought with compare to control plants. Pro-
line has an osmolytic activity and plays three important 
roles, i.e., as a defense molecule (saves the cell by oxidative 
stress), as a metal chelator and a signaling molecule during 
drought stress (Hayat et al. 2012). The accumulation of pro-
line under drought stress increases the antioxidants activity 
which improves the damage repairing ability of plants. Pro-
line can be used as a biochemical marker for screening the 
varieties for drought-tolerant under drought stress condition 
(Fahramand et al. 2014).

Role of Polyamines Under Drought

Polyamines are the important molecule involved in plant 
response to drought (Calzadilla et al. 2014). Polyamines like 
Putrescine, spermine and spermidine are mostly present in 
plants. They act as antioxidant, help in membrane stabili-
zation and controls ionic and osmotic homeostasis. Higher 
polymer content is seen by the water-tolerant plant and this 
is attributable to increased photosynthesis ability, decreased 
water loss and improved osmotic responses. Many scien-
tists suggested the role of polyamines, like it improves the 
binding activity of TFs (Panagiotidis et al. 1995) to DNA 
thus regulates action of gene, ionic maintenance, senescence 
inhibition, preventing free radical formation and helps to 
stabilizing membranes (Bouchereau et al. 1999), involved 
in protein phosphorylation and conformational changes of 
DNA (Martin-Tanguy 2001). Under the drought condition 
in rice, the instant response of polyamines accumulation has 
been observed (Yang et al. 2007; Basu et al. 2010). It has 
been suggested in several studies that rice plants have higher 
capacity to biosynthesis of PAs especially spermidine and 
spermine under the drought condition (Yang et al. 2007). 
Thus rice plants can enhance their tolerance to drought. 

Several events, mechanisms and components such as photo-
synthesis, WUE, synthesis of Proline, phenolics and antho-
cyanins respectively can be improved by the application of 
polyamines (Farooq et al. 2009c). The foliar application has 
been found more efficient than seed priming in several stud-
ies and spermidine is found more effective among polyam-
ines to enhance tolerance in rice plant under drought (Farooq 
et al. 2009c; Do et al. 2013).Genetic engineering technology 
can be used to modify the Polyamines level of a plant. A 
gene, Datura adc, encodes arginine decarboxylase has been 
introduced in rice. These transgenic rice plants produce 
higher level of putrescine under drought, enhance the syn-
thesis of spermidine and spermine and resulted plants save 
themselves by drought stress (Capell et al. 2004).Thus, the 
drought-tolerant plants can be produced by overexpression 
of the polyamines synthesizing gene in transgenic plants 
(Calzadilla et al. 2014).

Role of Plant Growth Regulators Under Drought

Plant growth regulators are the substances that can regulate 
the growth and development of plants. They act as chemical 
messengers for intracellular communication (Fishel 2006). 
It has been found that PGRs improve the plant tolerance 
to drought. Rice plants accumulate ABA under drought 
(Wang et. al. 2007; Ye et al. 2011; Ashok et al. 2013). ABA 
reduces the water stress effects and helps to better growth 
and development of plants under the stress condition. ABA 
reduces loss of water through transpiration by stomatal 
closure (Zhu 2002; Wang and Song 2008) and induces the 
expression of several genes whose products are involved in 
providing strength to plant under drought. ABA significantly 
increases the level of antioxidant enzymes (Latif 2014; Li 
et al. 2014), improves protein transport, inducing the car-
bon metabolism and resistance proteins expression, resulted 
plant shows tolerance to drought (Zhou et al. 2014; Pandey 
and Shukla 2015). It has been found in several studies that 
cytokines regulates the cell differentiation, leaf senescence 
and other important processes of plant growth and develop-
ment (Sakakibara et al. 2006; Reguera et al. 2013). It has 
been found to regulate the assimilate partitioning (Ronzhina 
et al. 1994), sink strength (Kuiper 1993) and relationship of 
source/sink (Roitsch 1999). The increased level of cytokines 
improves the survival rate of plants under drought (Rivero 
et al. 2007). It has been found that synthesis of cytokinins 
in rice improves the drought tolerance (Peleg and Blumwald 
2011; Reguera et al. 2013).

Role of Antioxidant Under Drought

Drought stress imparts disturbance between the production 
and quenching of reacting oxygen species (ROS) (Smirnoff 
1998; Faize et al. 2011). ROS cause lipid peroxidation, 
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proteins denaturation, DNA mutation, disturbance in cellular 
homeostasis and several other types of oxidative damages in 
a cell by the production of hydrogen peroxide, singlet oxy-
gen, superoxide radical and hydroxyl free radical. The plant 
cell saves themselves from harmful effect of ROS by the use 
of complex antioxidation defense system. The antioxidant 
defense system maybe non-enzymatic as well as enzymatic. 
In the cell, SOD, MDHAR, GPX, DHAR, APX and GR are 
enzymatic antioxidants whereas ascorbate and glutathione 
are non-enzymatic antioxidants (Bors et al. 1989; Noctor and 
Foyer 1998). These antioxidants play an important role in 
ROS scavenging system and presence of these antioxidants 
in cell can improve the drought tolerance of rice plants. In 
rice, the action of ASA, APX, GSH (Selote and Khanna-
Chopra 2004), SOD, MDHAR, DHAR, GR (Sharma and 
Dubey 2005), Phenyl ammonia lyase and CAT (Shehab et al. 
2010) has been found increased with the increased level of 
drought stress. Catalase activity was found to be increased 
in the leaf of rice by 74.70% and also increased superoxide 
dismutase activity in the leaf of rice by 1.1-folds at 15 days 
of drought treatment (Nasrin et al. 2020). Nahar et al. (2018) 
found the increased level of CAT in shoots (approx 25%) and 
roots (approx. 28.57%), increased level of SOD in shoots 
(approx. 100%) and roots (approx. 111%), increased level 
of GPX in shoots (approx.100%) and roots (approx. 78%), 
increased level of APX in shoots (approx. 100%) and roots 
(approx. 150%), increased level of GR in shoots (approx. 
155%) and roots (approx 140%) by comparing with control 
plants under drought stress applied by using PEG6000 using 
different varieties. In the tolerant cultivar, SOD enzymatic 
activity increased significantly only in the root tissue in the 
reproductive stage (268.00 Un/Mg), whereas in the sensi-
tive cultivar, SOD increased in the leaf (112.17 Un/Mg) and 
root (172.56 Un/Mg) tissues during the reproductive stage 
(Deus et al. 2015). The increased level of these antioxidant 
enzymes protects the plants from oxidative damages under 
the drought stress in rice. SOD, POD and CAT are found to 
effectively reducing the ROS production and thereby sav-
ing the plants from negative effect of drought stress (Lum 
et al. 2014; Yang et al. 2014).Wang et al. (2019) reported the 
activity of SOD, POD and CAT which maintains the abil-
ity to scavenge hydrogen peroxide under drought condition, 
was increased with accumulation of time and intensity of 
drought stress in rice. Therefore, increasing the production 
of naturally occurring antioxidant enzymes can be a strategy 
to save the plants from oxidative damage and enhancing the 
drought resistance of plants (Hasanuzzaman et al. 2014).

Molecular Responses and Mechanism 
of Drought

Underpinning molecular basis of drought tolerance is very 
crucial for development of drought-tolerant varieties. Over 
the past two decades, extensive studies have been conducted 
to understand molecular basis of drought tolerance in rice 
(McCouch et al. 2003; Yue et al. 2006; Pandey and Shukla 
2015). Transcriptomics analyses of rice genotypes under 
drought stress have shown differential expression of large 
number of genes associated with physiological, biochemical 
and signaling pathways to be critical for drought tolerance 
response (Rabbani et al. 2003). Among the main catego-
ries of genes differentially expressed under drought are (1) 
genes associated with biosynthesis of osmolytes, (2) genes 
involved in water uptake and transport; water channels and 
transporters, (3) genes encoding for detoxification enzymes 
and protective function proteins, (4) transcriptional control/ 
signaling pathways associated genes (Yamaguchi-Shinozaki 
and Shinozaki 2005). Drought-induced intricate signaling 
network is a very critical component for activation molecu-
lar level responses that may determine adaptation of rice 
genotypes to low water regime. In rice, like any other plant 
species, drought stress is sensed at the level of plasma mem-
brane level and transmitted through a range of signaling mol-
ecules (transducers) and thus finally regulate downstream 
genes encoding for protective proteins such as antioxidant 
enzymes, osmolyte biosynthesis pathway genes and stress 
associated proteins. Among the various transducers involved 
in drought signaling, receptor like kinases (RLKs) are the 
most important as these activate protein phosphorylation 
cascade needed for early stress responses (Tena et al. 2011; 
Ramegowda et al. 2014). RLKs are known to sense drought 
stress at the plasma membrane level by their extracellular 
domain which leads to dimerization followed by phos-
phorylation of the cytoplasmic domain that subsequently 
activates downstream signaling components. In rice two 
RLKs, GROWTH UNDER DROUGHT KINASE (GUDK) 
and STRESS INDUCED PROTEIN KINASE 1 (OsSIK1) are 
shown to be critical for drought tolerance response (Ouyang 
et al. 2010; Ramegowda et al. 2014). The GUDK phospho-
rylates a APETALA2/ETHYLENE RESPONSE FACTOR 
OsAP37 which then activates a range of drought stress 
responsive genes.

The drought responsive mechanisms in plant are broadly 
grouped into ABA-dependent and ABA-independent path-
ways (Liu et al. 2018). Water deficit causes enhanced ABA 
accumulation in vegetative parts leading to a range of 
morphological effects like stomata closure, accumulation 
of stress associated proteins and metabolites with protec-
tive function, and accumulation of H2O2 in guard cell. In a 
recent study, it was reported that early stage low water deficit 
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treatment induced early flowering through ABA-dependent 
pathway and enabled rice plants escape drought (Du et al. 
2020). Similarly, overexpression of LOS5/ABA3, which is 
involved in ABA biosynthesis was found to improve the 
grain filling and grain yield in rice under drought stress (Hu 
and Xiong 2014). The ABA-dependent responses essentially 
result from expression of ABA-responsive genes that con-
tain a conserved ABA-responsive element (ABRE) in their 
promoter regions. On the other hand ABA- independent 
pathway involves drought-induced genes whose expression 
does not depend on accumulation of ABA and their promoter 
regions are.

Transcription factors (TFs) have also been implicated as 
major regulators of drought stress response in plants (Sahebi 
et al. 2018). TFs binds to the cis-elements located in the 
promoter region of their target downstream genes to regulate 
their expression and in turn responses to drought stress. Over 
the years many TF families such as AP2/ERF, MYB, NAC, 
WRKY, NF-Y and CAMTA have been demonstrated to have 
a role in abiotic stress tolerance (Mizoi et al. 2012, Puranik 
et al. 2012 and Lindemose et al. 2013). Notably, overexpres-
sion of some of the members of these TF genes under stress 
inducible or constitutive promoters conferred enhanced tol-
erance in rice against drought stress. Among these, AP2/
ERF family TF, DREB that interacts with C-repeat/DRE (A/
GCC​GAC​) elements have been most widely used to create 
drought-tolerant rice lines (Wang et al. 2008; Chen et al. 
2008). Transgenic rice lines overexpressingOsDREB1G 
and OsDREB2B showed significantly higher level of tol-
erance to drought stress (Chen et al. 2008). Several mem-
bers of NAC family also have role in drought tolerance. For 
example, a stress responsive NAC 1 (SNAC1), when over-
expressed in rice, improved drought tolerance by regulating 
expression of its target gene OsSRO1c (You et al. 2013). 
Many other studies have demonstrated enhanced tolerance 
in rice lines expressing transcription factor genes such as 
HVCBF4 (Oh et al. 2007), Ap37 (Kim and Kim 2009, Oh 
et. al. 2009), OsNAC045 (Zheng et al. 2009), TSRF 1 (Quan 
et al. 2010), JERF 3 (Zhang et al. 2010a, b), OsDREB2A 
(Cui et al. 2011), OsDREB2A (Mallikarjuna et al. 2011), 
SbDREB 2 (Bihani et al. 2011), Os5DIRI (Datta et al. 2012), 
At DREB1A (Hussain et al. 2014; Ravikumar et al. 2014), 
OsNAC6 (Rachmat et al. 2014), and the BZIP family genes 
(Xiang et al. 2008; Liu et al. 2014a, b). Therefore, TFs have 
been considered as key targets to generate stress tolerance 
plants using genetic engineering approaches (Liu et  al. 
2014a, b).

Besides, signaling and transcription factor genes, there 
are many other proteins that play role in drought response. 
Accumulation of dehydrins and Late Embryogenesis Abun-
dant (LEA) proteins in response to both low-temperature 
and water stress have been observed (Close 1997). LEA pro-
teins are small proteins ranging from 10 to 30 kDa that are 

mostly present in plants that are produced during the embryo 
development maturation period and function as chaperons 
(Yadira and Reyes 2011). Overexpression of OsLEA3 in 
rice enhanced drought tolerance in response to water stress. 
Similarly, overexpression of HVA1 gene from barley which 
encodes LEA protein conferred enhanced tolerance in 
rice (Sivamani et al. 2000; Babu et al. 2004). Many stud-
ies reported changes in individual gene expression in rice 
under drought stress condition. These include glutathione 
reductase (Kaminaka et al. 1998), a translation elongation 
factor (Li and Chen 1999), an endo-1, 3-glucanase (Akiyama 
and Pillai 2001).

Drought Tolerance Associated Quantitative Trait 
Loci (QTLs)

A plant’s drought tolerance system is very complex, reg-
ulated by several genes known as Quantitative Trait Loci 
(QTLs) (Fleury et al. 2010). The use of genomic methods 
has contributed to the discovery of QTLs correlated with 
characteristics of drought tolerance. Some of the signifi-
cant and consistent grain yield QTLs during reproductive 
stage have been successfully established and validated by 
the rice drought breeding program at IRRI (qDTYs) such 
as qDTY12.1 (Bernier et al. 2007), qDTY2.1 (Venuprasad 
et al. 2009),  qDTY3.1(Venuprasad et al. 2009),  qDTY1.1 
(Vikram et al. 2011; Ghimire 2012), qDTY3.2 (Vikram et al. 
2011), qDTY2.2 (Swamy et al. 2013), qDTY6.1 (Dixit et al. 
2014a, b)using molecular markers. A variety of mapping 
experiments on drought stress in rice have been published. 
A list of QTLs listed for rice under drought is shown in 
Table 2.

By evolving different protein classes including transcrip-
tional factors, molecular chaperones, enzymes, and other 
functional proteins, plants have evolved stable stress mech-
anisms or signaling chain processes (Usman et al. 2017). 
These proteins maximize plants’ tolerance or immunity to 
drought conditions. In fact, multiple genomic methods have 
detected a several number of these genes (regulatory part 
and protein). These genes have been introduced into the rice 
genome either by repression or by overexpressions (Table 3) 
to examine their effect on drought improvement.

miRNA and Drought Responses

miRNAs are 20–22 nt long molecules that serve as an impor-
tant regulator of genes at the post-transcriptional level (Bal-
drich et al. 2015; Gebert and MacRae 2018). They have been 
implicated in multiple processes such as growth and devel-
opment, photosynthesis, biotic and abiotic stress responses 
and hormone signaling. miRNAs work closely with target 
genes and TFs to regulate associated processes. Studies 
have shown the role for miRNA genes in shaping drought 
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Table 2   Reported Quantitative Trait Loci (QTLs) under drought for shoot and root responses

Name of trait Name of population Name of marker Type of lines Number of QTL References

Cellular membrane 
stability

IR62266 × CT9993 AFLP, RFLP& SSR Doubled haploid line 9 Tripathy et al. (2000)

Dehydration avoidance Bala × Azucena AFLP, RFLP & SSR Recombinant inbred 
lines

17 Price et al. (2002)

Deep roots 3 Populations SSR, SNP Recombinant inbred 
line

6 Lou et al. (2015)

Grain yield Cocodrie (drought-
sensitive) × Nagina 
22 (N22) (drought-
tolerant

SSRs, Indel markers, 
genic SSRs and 
SNPs

190 F2:3 progeny lines 1 Baisakh et al. (2020)

Grain yield over years 
and location

Apo/2 × Swarna SSR Recombinant inbred 
lines

1 Venuprasad et al. (2009)

Grain yield under 
severe lowland 
drought over environ-
ments

R77298 × Sabitri SSR BC1 derived 1 Yadav et al. (2013)

Grain yield under 
drought

Two population SSR Bulk-segregant and 
Selective genotyping

– Vikram et al. (2012)

Grain yield in aerobic 
environments

Three populations SSR Bulk-segregant 1 Venuprasad et al. (2012)

Heritability for grain 
yield

CT9993 × IR62266 AFLP Doubled haploid lines 1 Kumar et al. (2007)

Leaf water relations and 
rolling

Azucena × Bala AFLP, RFLP & SSR Recombinant inbred 
line

13 Khowaja and Price 
(2008)

Morphological and 
physiological traits

IR64 × Azucena RFLP Doubled haploid Lines 15 Hemamalini et al. (2000)

Osmotic adjustment CT9993 × IR62266 AFLP, RFLP & SSR Doubled haploid line 5 Zhang et al. (2001)
Osmotic adjustment and 

Dehydration tolerance
CO39 × Moroberekan RFLP Recombinant inbred 

line
1 Lilley et al. (1996)

Root traits IR1552 × Azucena SSR Recombinant inbred 
line

23 Zheng et al. (2003)

Root architecture and 
distribution

IR64 × Azucena RFLP Doubled haploid line 39 Yadav et al. (1997)

Root number, thickness, 
length, and penetra-
tion index

IR58821 × IR52561 AFLP & RFLP Recombinant inbred 
line

28 Ali et al. (2000)

Root penetration, root 
number, and tiller 
number

CO39 × Moroberekan RFLP Recombinant inbred 
line

39 Ray et al. (1996)

Root penetration Azucena × Bala AFLP & RFLP Recombinant inbred 
line

18 Price et al. (2000)

Seedling drought resist-
ance

Indica × Azucena AFLP, RFLP & SSR Recombinant inbred 
line

7 Zheng et al. (2008)

Seed fertility, spikelet 
per panicle and grain 
yield

Teqing × Lemont SNP Introgression lines 5 Wang et al. (2014)

Total water uptake, 
drought resistance 
and yield-related 
parameters

IR55419-04 × Super 
Basmati

SSR composite interval 
mapping

1&3 Sabar et al. (2019)

Yield and yield traits at 
the reproductive stage

IR64 × Cabacu SNP Recombinant inbred 
line

1 Trijatmiko et al. (2014)

Yield at reproductive 
stage over environ-
ments

Two populations SSR Bulk-segregant analysis 2 Palanog et al. (2014)
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responses of plants. Differential expression of miRNA 
genes has been observed under stress. Under drought stress, 
miRNA genes act by regulation of ABA induced signal-
ing (Samad et al. 2017). There are several families of TFs 
implicated under drought stress that regulate auxin-induced 
changes in tissues and organs, such as auxin response fac-
tors (ARFs), the NAC domain and AGO1(Sorin et al. 2005). 
miR160 targets ARF10 and ARF16, while ARF6 and ARF8 
are controlled by miR167 in rice (Huang et al. 2014a, b; Li 
et al. 2016). Both miR160 and miR167 were downregulated 
in rice roots under drought stress. MiR164 targeted NAC 
genes and was shown to negatively regulate the resistance 
of drought in rice (Fang et al. 2014a, b).

On the other hand, miR160 negatively controls ARF10, 
resulting in sensitivity to ABA, which suggests cross-talk 
between the two hormones (Liu et al. 2007a, b, c). In rice, 
the miR167-ARF8-GH3 pathway is strongly reserved (Yang 
et al. 2006). In rice (Zhao et al. 2007), miR397 was also 
induced under drought conditions. Up regulation of Auxin 
responsive genes are occurred by suppressing miR396, 
where OsGRF6 positively controls auxin signaling in 
rice(Hu et al. 2018; Liu et al. 2014a, b).MiR396 and miR397 
cross-talk and co-expression networks provide evidence that 
brassinosteroid (BR) and auxin is involved in controlling 
rice growth and yield (Zhang et al. 2014). BR cross talks 
with auxin and or GA to monitor rice yield (Niu et al. 2017). 
In Arabidopsis and rice, miR156 was dramatically induced, 
where it negatively controls SPL9 to improve tolerance of 
abiotic stress such as salinity and drought (Cui et al. 2014). 
The knockdown of miRNA166 in rice resulted in morpho-
logical changes related to the resistance to drought, such as 
leaf rolling and xylem constriction (Zhang et al. 2018a, b). 
In addition, miR167, miR394 and miR399 control physi-
ological changes to the adventitious root growth in drought 
stress during mineral deficiency in rice (Grewal et al. 2018). 
MiR408 cleaves OsUCL8 (plastocyanin-like protein) to 
positively control photosynthesis and grain yield in rice 
(Zhang et al. 2017). MiR397 is downregulated in rice under 
drought (Zhou et al. 2010; Fahad et al. 2017) while miR397b 
is upregulated in Arabidopsis by ABA and drought. Another 
modulator, miR398, controls rice respiration by targeting 

subunit V (COX5b) of cytochrome C oxidase, which func-
tions as an electron transporter in respiration (Ding et al. 
2013; Cheah et al. 2015).

Two zinc finger TFs are regulated by miR159 such as 
OsTZF1 (CCCH-tandem zinc finger protein 1) and OsDOS 
(delay of senescence protein onset) that negatively control 
senescence and thus provide immunity to abiotic stresses 
such as drought in rice (Kong et al. 2006; Pomeranz et al. 
2010). MiR159, along with miR167 and miR172, mediates 
resistance to senescence in rice (Lim et al. 2003). In addi-
tion, miR164 was strongly expressed in rice leaves, where 
SIP19 (salicylic acid-induced protein 19) was negatively 
regulated by it, hence delayed senescence (Xu et al. 2014). 
NAC genes are also targeted to negatively control drought 
resistance by miR164 in rice (Fang et al. 2014a, b).

Seven miRNAs were identified by Li et al. (2011a, b) in 
rice during oxidative stress which was responsible for the 
regulation of H2O2 (miR169, miR319a.2, miR397, miR408-
5p, miR528, miR827, miR1425). Many others like miR164 
and miR169 (Andres-Colas et al. 2018), downregulation 
ofmiR159f, miR397a, miR398b, miR408-3p, miR528-5p, 
miR1871, and miR2878-5p was found to involve in antioxi-
dant defense system.

Fertilizer Management

Fertilizers input play vital role in increasing crop productiv-
ity. Over the past five decades, productivity of rice in irri-
gated ecosystems has increased due to the combined use of 
modern semi-dwarf varieties and high inputs of nitrogen 
fertilizers (Banayo et al. 2021a, b). The improved fertilizer 
management system, known as “site-specific nutrient man-
agement,” has been developed for use in rice cultivation 
in tropical Asia, where fertilizer requirements of rice crop 
are estimated from the nutrient supply of the soil and the 
needs of plants (Dobermann et al. 2002). This approach 
has been extensively evaluated in farm studies over the past 
two decades (Buresh et al. 2019; Pampolino et al. 2007). 
Among the major plant nutrients, appropriately higher lev-
els of nitrogen have been shown to alleviate drought stress 

Table 2   (continued)

Name of trait Name of population Name of marker Type of lines Number of QTL References

Yield improvement Crosses between 
elite Geng variety, 
Jigeng88, and four 
donors from three dif-
ferent countries

SSR Joint segregation dis-
tortion method

– Cui et al. (2018)

Yield under reproduc-
tive stage stress over 
seasons

Swarna × WAB SSR Backcross inbred line 1 Saikumar et al. (2014)
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tolerance and reduce grain yield losses in rice as well as 
many other species. The plant supplied with appropriate 
level of nitrogen have better stomatal dynamic, maintain 
photosynthetic integrity, elasticity in root system develop-
ment and have strong antioxidant capacity. A recent study 
by Du et al. (2020) suggests that heavy nitrogen application 
before start of the drought may be an important approach to 
improve grain yield in rice. However, too much of nitrogen 
application in rice nursery can produce seedling with weak 
stem that are easily damaged during transplanting. Further, 
rice varieties are also known to differ in their response to 
N fertilizer, therefore choosing fertilizer-efficient varieties 
in drought conditions appears to be the key to increasing 
rice productivity through better fertilizer management in the 
rainfed lowlands (Haefele et al. 2016; Banayo et al. 2021a, 
b).

Conclusions

Abiotic stress signaling is a significant area for augment-
ing plant productivity. Among the abiotic stress, drought 
is a major global problem, which severely reduced quality 
and crop production worldwide. Due of advances in omic-
based integrated approaches and rice genome sequencing 
project provides the genetic and genomic information to 
the researchers for improving the trait against stress con-
dition. Several novel molecular markers were investigated 
after genome sequencing project and being utilized for crop 
improvement. The responses of rice at genomic, transcrip-
tomic and phenomics levels under drought stress are also 
decoded and this information can be utilized for improving 
drought tolerance in rice using integrated approaches. The 
integration of the multidisciplinary fields like genomics, 
transcriptomics and other omics with precise phenotyping 
can be used for the improvement of rice against drought 
stress in future and this can result in the higher production 
of rice for global food security.
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