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Abstract
For thousands of years, crop production has almost entirely depended on conventional agriculture. However, the reality is 
changing. The ever-growing population, global climate change, soil degradation and biotic/abiotic stresses are a growing 
threat to food production and security. Thus, sustainable alternatives to increase crop production for a population projected 
to reach 9.8 billion by 2050 are a major priority. In addition to vertical and soilless farming, innovative products based on 
bioresources, including plant growth stimulants, have been a target for sustainable food production. Such solutions have led 
to the exploitation of microorganisms, including microalgae and cyanobacteria as potential bioresources for food and plant 
biostimulant products. Microalgae (eukaryotic) and cyanobacteria (prokaryotic) are photosynthetic microorganisms with 
the capacity to synthesize a vast array of bioactive metabolites from atmospheric CO2 and inorganic nutrients. The present 
review outlines the nutritional value of microalgae and cyanobacteria as alternative food resources. The potential aspects of 
microalgae and cyanobacteria as stabilizers of the net change in soil organic carbon (C) levels for reduced farmland degra-
dation are also highlighted. The applications of microalgae and cyanobacteria as remedies for improved soil structure and 
fertility, and as enhancers of crop productivity and abiotic stress tolerance in agricultural settings are outlined. This review 
also discusses the co-cultivation of crops with microalgae or cyanobacteria in hydroponic systems to favor optimum root 
CO2/O2 levels for optimized crop production.
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Introduction

Agricultural production is critically affected by plant dis-
eases, soil quality, global climate change and the expo-
nentially growing population. Global climate change leads 
to increased weather-related disasters, such as floods and 
droughts, causing food shortages and famine (Myers et al. 
2017). Plant diseases and soil degradation also affect plant 
growth and development (Teng and Johnson 1988; Savary 
et al. 2012), leading to reduced crop yield and food produc-
tion. This scenario threatens food security and is aggravated 
by the growing population projected to reach 9.8 billion by 
2050.

Over the years, the development of chemical products 
such as synthetic fertilizers and pesticides significantly 
improved crop productivity. However, the extensive applica-
tion of such chemical products cause negative impacts on the 
environment and the ecosystem (Bhandari 2014; Prashar and 
Shah 2016; Zhang et al. 2018). Thus, modern agriculture 
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is challenged to search for sustainable food sources and 
ecofriendly methods of improving crop resilience and pro-
ductivity. In this context, organic products such as plant 
biostimulants have been described as sustainable alterna-
tives to improve plant growth, nutrient uptake, nutrient use 
efficiency, tolerance to abiotic stress and/or crop quality 
(Calvo et al. 2014; du Jardin 2015). The emerging develop-
ment of innovative sustainable agricultural products has led 
to the exploitation of microorganisms including microalgae 
and cyanobacteria as potential bioresources for food and 
plant biostimulants (Gonçalves 2021; Alvarez et al. 2021). 
Microalgae (eukaryotic) and cyanobacteria (prokaryotic) are 
unicellular microscopic photosynthetic organisms that grow 
in diverse aquatic habitats and even humid soils (Khan et al. 
2018). Microalgae and cyanobacteria have been described 
as high-nutrient food resources (García et al. 2017). Several 
species are presently exploited for the generation of pro-
tein food supplements and nutraceutical products such as 
Omega-3, astaxanthin and beta-carotene (Nethravathy et al. 
2019; Rahman 2020), making them sustainable alternative 
food resources with health benefits. In agricultural settings, 
microalgal and cyanobacterial biomass application to farm-
lands can stabilize the net change in soil organic carbon (C) 
levels and reduce farmland degradation. Microalgae and 
cyanobacteria can also produce bioactive substances such as 
sulfated exopolysaccharides (EPS) and phytohormones that 
are beneficial for soil structure and plant growth (Gayathri 
et al. 2015; Abinandan et al. 2019). Microalgae and cyano-
bacteria extracts improve plant growth and nutrient uptake, 
contributing to crop growth and yield (Renuka et al. 2018; 
Alvarez et al. 2021). Microalgae and cyanobacteria can be 
grown in hydroponic system substrates, fixing carbon diox-
ide (CO2) through photosynthesis and releasing bioactive 
compounds such as sulfated EPS and phytohormones into 
the nutrient substrate (Zhang et al. 2017; Barone et al. 2019).

The present review outlines the nutritional value of 
microalgae and cyanobacteria as sustainable alternative food 
resources. This review also discusses how the utilization 
of microalgae and cyanobacteria can be exploited to help 
restore degrading or abandoned farmlands. The applications 
of microalgae and cyanobacteria as remedies for improved 
soil structure and fertility, and as enhancers of crop produc-
tivity and abiotic stress tolerance in agricultural settings are 
outlined. The review also highlights the use of microalgae 
and cyanobacteria for optimized crop production in hydro-
ponic co-culture systems.

Microalgae and Cyanobacteria

Microalgae and cyanobacteria are microorganisms that exist 
in various aquatic and terrestrial ecosystems (Rajvanshi 
and Sharma 2012), and carry out oxygenic photosynthesis, 

a high-energy demanding process of water oxidation to 
molecular oxygen (O2) and reduction of CO2 to organic 
compounds (Tamagnini et al. 2002). Oxygenic photosyn-
thesis first appeared in the ancestors of present-day cyano-
bacteria more than 3.7 billion years ago. Cyanobacteria are 
considered among the oldest life forms on Earth and are the 
original producers of the Earth's oxygenic atmosphere (Saad 
and Atia 2014). The close association of cyanobacteria with 
green algae, green plants and other organisms arose more 
than 1.2 billion years ago from an early endosymbiosis event 
where a cyanobacterium was taken up into a heterotrophic 
organism (Björn and Govindjee 2008). Cyanobacteria were 
originally classified as blue-green algae (Cyanophyta) under 
botanical codes (Oren 2014a; Demoulin et al. 2019), until 
their prokaryotic features were established in the 1960s and 
a proposal was made to include cyanobacteria within the 
bacteriological code (Stanier et al. 1978). Cyanobacteria 
in nature are all oxygenic photoautotrophs, with the pos-
sible exception of their capacity for facultative anoxygenic 
photosynthesis (Lau et al. 2015; Garcia-Pichel et al. 2020). 
Microalgae and cyanobacteria are capable of producing a 
broad variety of unique, potent substances (Chu and Phang 
2019; Kini et al. 2020).

Microalgae and cyanobacteria are suitable bioresources 
for food and commodities production, and can address the 
underlying challenges related to food sources and sustain-
able agriculture (Stephens et al. 2013; Saifullah et al. 2014).

Microalgae and Cyanobacteria are Reliable 
Food Resources for Human Nutrition

Food security is a major priority worldwide, affecting both 
developing and developed countries (Rosegrant and Cline 
2003; Schmidhuber and Tubiello 2007; Savary et al. 2012). 
The rapidly growing population will demand 60% increase 
in agricultural output by 2050, but climate change threatens 
the current and future agricultural production (Rosenzweig 
et al. 2014). The human population growth and agricultural 
intensification are major drivers of environmental degrada-
tion. Croplands and pastures are one of the largest terrestrial 
biomes on the planet, covering ~ 40% of the land surface 
and making agricultural production the planet’s single most 
extensive form of land use (Foley et al. 2005). In the tropics, 
new farmlands are cleared to the detriment of rainforests, 
savannas and diverse ecosystems (Gibbs et al. 2010; Cos-
tantini 2015). Microalgae and cyanobacteria are sustainable 
resources for food and agricultural product innovation; they 
are primary producers that exist in various aquatic and ter-
restrial ecosystems, and require no arable land for produc-
tion (Rajvanshi and Sharma 2012; Hopes and Mock 2015).

Microalgae and cyanobacteria can produce a broad vari-
ety of nutritional value compounds, including proteins, 
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lipids, carbohydrates, different pigments, vitamins and 
anti-oxidants. Microalgae are a pivotal food source since 
their first use by the Chinese 2000 years ago to survive dur-
ing famine (Mobin et al. 2019). Microalgae species such 
as Dunaliella tertiolecta and Euglena gracilis are effective 
sources of healthy food in Japan (Nethravathy et al. 2019). 
Cyanobacterial species such as Arthrospira spp., also known 
as Spirulina, have also been used as sources of food by many 
civilizations. The Aztecs were among the first people who 
harvested this cyanobacterium in Lake Texcoco within the 
valley of Mexico (Barrios et al. 2017). Spirulina is rich in 
proteins (55% to 70% protein content per total dry weight), 
iron and essential unsaturated fatty acids such as omega 3 
(Tokuşoglu and Ünal 2003), and are one of the richest natu-
ral green sources of vitamin B12 (Dochi et al. 2010). Spir-
ulina also has various beneficial effects on human health, 
including antihypertensive effects, prevention of renal failure 
and the growth of beneficial intestinal Lactobacillus bacteria 
(Beheshtipour et al. 2013). Arthrospira ssp. are part of the 
diet of certain human populations where these cyanobac-
teria grow naturally, such as in the lakes of Chad in Africa 
(Spolaore et al. 2006; Mata et al. 2010; Hamed 2016), where 
spirulina (locally known as Dihé by the local people) is har-
vested for food (Fig. 1a and b) (Caterina et al. 2004).

Microalgal species such as Dunaliella salina produce 
β-carotene under stress conditions, which provide numerous 
benefits for human health (Hosseini and Shariati 2009; Oren 
2014b; Wu et al. 2020). β-Carotene is a major carotenoid 
present in the human diet and the main source of vitamin 
A in humans (Johnson 2002; Elvira-Torales et al. 2019), 
but research is still needed for dietary recommendations 
of algal sourced β-carotene, and caution should be taken 
for large doses (EFSA 2012). Microalgal species such as 
Haematococcus pluvialis produce astaxanthin, a carotenoid 
well known for its antioxidant activity as well as anticancer, 
photoprotection, and anti‐inflammatory properties (Yuan 
et al. 2011). Astaxanthin was approved by the U.S. FDA as 
an effective nutritional supplement with potent antioxidant 
properties (Nethravathy et al. 2019). Microalgae and cyano-
bacteria also produce long-chain polyunsaturated fatty acids 
(PUFAs) such as eicosapentaenoic acid (EPA) and doco-
sahexaenoic acid (DHA) which are effective nutraceuticals 
with many health benefits (Sathasivam et al. 2019). Table 1 
illustrates examples of dietary ingredients produced by 
microalgal and cyanobacterial species, beneficial for human 
consumption.

Microalgal and Cyanobacterial Products Market

Microalgal and cyanobacterial biomass production can 
be used to obtain different kinds of extracts economically 
important in commerce. Leading commercial players in 
microalgal and cyanobacterial products include Cyanotech 

Corporation (U.S.), DIC Lifetec Co. Ltd. (Japan), Cellana 
Inc. (U.S.), Alltech, Inc. (U.S.), Algaetech International 
Sdn Bhd (Malaysia), BlueBioTech GmbH (Germany) and 
Parry Nutraceuticals Limited (India) (Algae Products Mar-
ket Information 2018). The Cyanotech Corporation sources 
Arthrospira sp. food supplements and astaxanthin from natu-
ral microalgae Haematococcus pluvialis. The current market 
value of astaxanthin is around $2,000/kg (Shah et al. 2016; 
Nethravathy et al. 2019). Although consumed by humans, 
microalgae-derived astaxanthin is principally consumed 
by the salmon feed industry (Nethravathy et al. 2019). H. 
pluvialis produced astaxanthin gives salmonids the typical 
salmon coloration, which is desired by the customers. Major 
microalgal astaxanthin producers in the market include: 
Cyanotech corporation (USA), Alga technologies (Israel), 
Jingzhou Natural Astaxanthin Inc (China), Fuji chemical 
industry Co. Ltd (Japan), and Parry Nutraceuticals (India) 
(Shah et al. 2016; Nethravathy et al. 2019).

Other beneficial ingredients such as lutein are commer-
cially marketed in the form of powder, capsules, or oleores-
ins containing 3% to 80% of lutein (Nethravathy et al. 2019). 
microalgae-based lutein production provides a promising 
alternative to marigold petals, the current main commercial 

Fig. 1   Women of Chad preparing (a) and selling (b) spirulina dried 
on sand, locally known as Dihé by the local people of Chad (Caterina 
et al. 2004)
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supply of lutein (Fernández-Sevilla et al. 2010; Lin et al. 
2015; Xie et al. 2021). Several microalgae species includ-
ing Chlorella spp., Scenedesmus spp., Muriellopsis spp., 
and Dunaliella spp. produce significant lutein content. How-
ever, production of microalgal lutein at commercial scale is 
still at the laboratory stage and not yet implemented in large-
scale commercial production (Lin et al. 2015). Microalgae 
and cyanobacteria can be dried as food or consumed in the 
form of capsules and tablets as food supplements (Spolaore 
et al. 2006; Mata et al. 2010), or incorporated into other food 
and dairy products, such as pasta, bread, soft drinks, yogurt 
or snacks (Gross 2004; Mohamed et al. 2013). High value 
molecules produced by microalgae and cyanobacteria such 
as DHA and lutein are found in human breast milk and can 
be incorporated in formulas (Eggersdorfer and Wyss 2018).

Microalgae and cyanobacteria are suitable alternatives 
for consumers who are increasingly concerned about their 
health and diet control (Hamed 2016). Illnesses such as high 
cholesterol and heart disease linked to poor eating habits 
could be reduced by the substantial consumption of healthy 
microalgal or cyanobacterial food products due to their high 
nutrition value (Hamed 2016). For example, β‐1,3‐glucan 
polysaccharides, the main component in Chlorella spp. are 
active immunostimulators, free-radical scavenger and reduc-
ers of blood lipids (de Jesus Raposo et al. 2015; Sathasivam 
et al. 2019).

Microalgae and cyanobacteria production and commer-
cialization is often limited by the high cost of cultivation. 
The optimization of culture medium is an important strat-
egy for increasing the cost-effectiveness of the productions 
(Ronga et al. 2019). Low-cost resources such as nutrient-
rich wastewaters, agricultural by-products and inexpensive 

synthetic fertilizers, are effective strategies for increasing 
the cost-effectiveness of the production (Mata et al. 2010; 
Gong and Jiang 2011). However, such strategies could not 
be suitable for algal biomass production destined for human 
consumption. Microalgae and cyanobacteria cultivation for 
food production can be grown in controlled optimized condi-
tions to maximally promote the growth rate and productiv-
ity (Andrianantoandro et al. 2006; Narala et al. 2016; Tan 
et al. 2020). Culture parameters in photobioreactors (PBRs) 
can also be controlled to trigger enhanced production of 
specific value-added products under artificial growth con-
ditions for the industrialization of microalgae and cyanobac-
teria (Kothari et al. 2017). Cultivation parameters including 
pH, temperature, light intensity, nutrient composition and 
concentration and CO2 supply are major growth factors of 
microalgae and cyanobacteria (Renhe et al. 2021; Figueroa-
Torres et al. 2021).

Microalgae and Cyanobacteria vs. Crop Plants

Microalgae and cyanobacteria are good sources of proteins, 
carbohydrates, lipids and several useful metabolites. Micro-
algae and cyanobacteria do not require arable land (they are 
cultivated in controlled culture systems) as they can grow 
in brackish and even seawater, which is unusable for normal 
agriculture (Masojídek and Torzillo 2014). In addition, the 
microalgal yield of storable compounds can greatly exceed 
that of traditional crops. Table 2 illustrates the advantages of 
cultivation of microalgae and cyanobacteria over crop plants, 
including higher efficiency of CO2-fixation and energy 
conversion, biomass productivity, and lower resources 
requirements.

Table 1   Dietary ingredients produced by microalgae and cyanobacteria for healthy food production

Bioactive compounds Microalgae/cyanobacteria species References

Asthaxanthin Haematococcus pluvialis Shah et al. (2016), Li et al. (2020)
Carbohydrates Porphyridium cruentum and Spirogyra sp. Chen et al. (2013), Samiee-Zafarghandi et al. (2018)
Essential PUFAs Crypthecodinium sp., Schizochytrium sp., and Ulkenia 

sp.
Doughman et al. (2007), Nethravathy et al. (2019)

Exopolysaccharides and carot-
enoids (B-Carotene)

Dunaliella salina Pignolet et al. (2013), Koller et al. (2014)

Lipids Schizochytrium sp., Pavlova lutheri, Chlo-
rella sp., Scenedesmus sp., and Isochrisis sp.

Rodolfi et al. (2009)

Lutein Chlorella zofingiensis, Chlorella sorokiniana, Muriel-
lopsis sp., Scenedesmus almeriensis, Coccomyxa 
acidophila, and Chlorella protothecoides

Nethravathy et al. (2019)

Phycocyanin and phycoerythrin Arthrospira sp. and Porphyridium cruentum Hsieh-Lo et al. (2019)
Proteins Spirulina maxima and Chlorella sp. Garrido-Cardenas et al. (2018), Amorim et al. 

(2020), Lafarga et al. (2021)
Sterols Isochrysis galbana and Pavlova lutheri Ahmed and Schenk (2017), Randhir et al. (2020)
Vitamin C, K, B12, A, and E Chlorella sp., Arthrospira sp., Isochrisis galbana, Por-

phyridium cruentum, Pavlova sp., and Tetraselmis sp.
Tarento et al. (2018), Jacob-Lopes et al. (2019)
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Microalgae can be produced at a large scale in artificial 
open systems (circular and raceway ponds where the culture 
is directly exposed to open air) or closed systems, where 
the culture is fully enclosed in a PBR (Narala et al. 2016). 
Open systems can be divided into natural ponds (eutrophic 
lakes or small natural basins) and artificial raceway ponds 
(Hamed 2016). Raceway ponds are the most widely used 
systems for the commercial production of microalgae (Jer-
ney and Spilling 2018). They are generally the cheapest to 
construct, and their function is quite simple (Borowitzka 
2013; Enzing et al. 2014). They are generally constructed 
as oval‐shaped recirculation channels in which the culture 
medium flow is guided around bends by baffles placed in 
the flow channel, and they are stirred with a paddlewheel to 
ensure culture homogenization, as shown in Fig. 2a. PBRs 
are reactors that offer a closed‐culture environment in which 
phototrophs are grown or used to carry out photobiological 
reactions (Tredici 2004) (Fig. 2b and c). PBRs allow better 
control of culture growth conditions, and most importantly, 
the microalgae are protected and relatively safe from inva-
sion by competing microorganisms (Vishwanath Patil1 et al. 
2005; Narala et al. 2016).

PBRs are the best culture systems for optimized culture 
production and biomass quality, despite their high setup, 
maintenance and energy input costs. In comparison to PBRs, 
circular and raceway ponds have higher contamination risks, 
culture evaporation and exposure to weather components, 
making these culture systems highly dependent on geo-
graphical conditions (Kumar et al. 2015; Muhammad et al. 
2020). Open culture systems can be a great challenge for 
countries in the equatorial and monsoon climate regions of 
Africa but are highly suitable for the warm desert climate of 
Northern Africa. On the other hand, large-scale microalgal 
or cyanobacterial production using PBRs may not be practi-
cal in most parts of sub-Saharan Africa, considering that the 
larger population of these regions consists of smallholder 
farmers (Langyintuo 2020) with less financial capacity for 
sophisticated large-scale algal production.

Technological Developments in Microalgal 
and Cyanobacterial Cultivation to Improve the Algal 
Production and Industrialization

The latest technological developments in microalgal and 
cyanobacterial cultivation and harvesting, such as automa-
tion, phenotyping, and synthetic biology, were described 
by Fabris et al. (2020). A significant body of research has 
focused on optimizing conditions that maximally pro-
mote microalgae and cyanobacteria growth rates, or trig-
ger enhanced production of specific value-added products 
under artificial growth conditions for the industrialization 
of microalgae and cyanobacteria (Andrianantoandro et al. 
2006). Figure 3 shows cyanobacterial culture optimization 

by manipulating different growth parameters for oriented 
production of EPS.

The cultivation of microalgae and cyanobacteria has an 
advantage over heterotrophic systems due to their photo-
synthetic mechanisms and ability to fix C from inorganic 
sources (Fajardo et al. 2020). Despite the several advantages 
and inconveniences reported, there is no single "best prac-
tice" method for cultivating microalgae and cyanobacteria, 
especially at a large scale (Fajardo et al. 2020). The final 
design of the system is dependent on the final product, the 
geographical location, and local resources available (e.g., 
accessibility to water, CO2, and waste streams) (Fabris et al. 
2020).

Advanced molecular techniques for research and devel-
opment in microalgae are still underdeveloped compared to 

Fig. 2   Raceway pond prototype (a), round flasks (b) and vertical 
column PBR (c) at the Microalgae Biotechnology Laboratory of the 
Moroccan Foundation for Advanced Science Innovation and Research 
(MAScIR)
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fungi, bacteria or even higher plants (Fajardo et al. 2020). 
Sophisticated studies including the overexpression or down-
regulation of several genes in a single organism, are only 
practically possible in Chlamydomonas reinhardtii (Wijffels 
and Barbosa 2010; Doron et al. 2016; Sanchez-Tarre and 
Kiparissides 2021). However, new advances in microalgae 
and cyanobacteria biotechnology are rapidly emerging, pav-
ing the way to the establishment of a sustainable, algae-
based bioeconomy (Hamed 2016; Fu et al. 2019; Fabris 
et al. 2020; Fajardo et al. 2020). The available number of 
full or near‐full genome sequences of diverse microalgal 
species has increased over the last decade (Kumar et al. 
2020). Such species include Chlamydomonas reinhardtii 
(Colina et al. 2018; Merchant et al. 2007; Nguyen et al. 
2011; Schmollinger et al. 2014), Chlorella pyrenoidosa 
(Duan et al. 2019; Kumar et al. 2020), Chlorella sorokini-
ana (Tejano et al. 2019; Kumar et al. 2020), Chlorella vul-
garis, Dunaliella salina (Yue et al. 2016; Wang et al. 2019; 
Kumar et al. 2020), Phaeodactylum tricornutum (Bowler 

et al. 2008; Yang et al. 2014; Longworth et al. 2016) and 
Thalassiosira pseudonana (Armbrust et al. 2004). Genome 
sequencing of microalgal species will provide a significant 
genetic resource for the study of their metabolic pathways, 
regulatory networks, and genetic potentials. Web-based 
resources such as pico-PLAZA (http://​bioin​forma​tics.​psb.​
ugent.​be/​pico-​plaza/), AlgaePath (http://​algae​path.​itps.​
ncku.​edu.​tw) and ALCOdb (http://​alcodb.​jp) are available 
databases for algal genomics (Kumar et al. 2020). These 
emerging technologies will provide tools for highly efficient 
algae-based solutions to a range of societal needs. In-depth 
understanding of algal biology, genetics and biochemical 
capacities, will improve both their production and process-
ing for consumption or product innovation in agriculture.

Microalgae and Cyanobacteria 
for Sustainable Agriculture

Microalgal and Cyanobacterial Biomass Application 
to Degraded Soils: A New Approach to Restoring 
Organic Matter on Degraded Farmlands

The conversion of natural ecosystems to agriculture results 
in the depletion of soil organic C levels, releasing 50 to 100 
GT of C from soil into the atmosphere (Lal 2009). This C 
loss is mainly caused by reductions in the amount of plant 
roots and residues returned to the soil, and higher soil ero-
sion (Lemus et al. 2005). The soil C deficit created by the 
depletion of soil organic C stocks represents an opportu-
nity to store C in soil through diverse land management 
approaches. Naturally, soil organic C levels are based on 
the interactions between many ecosystem processes, of 
which photosynthesis, respiration, and decomposition are 
key. Carbonic matter in degraded soils may take years to 
restore (Ovsepyan et al. 2019), considering that soil organic 
C input rates are primarily determined by plant roots and 
litter deposited from plant shoots (Lemus et al. 2005).

The microalgal and cyanobacterial biomass is rich in 
organic matter due to the organic C incorporated through 
photosynthesis, and it is therefore a suitable target for the 
development of innovative products for soil quality recovery. 
The total carbohydrate and starch contents of microalgae are 
approximately 20% and 10% dry weight (DW), respectively 
(Laurens et al. 2012; Cheng et al. 2017). Cyanobacterial spe-
cies also have high carbohydrate contents, up to 60% DW. 
The carbohydrate contents vary with microalgal or cyano-
bacterial species but can be significantly increased according 
to cultivation conditions and time (Cheng et al. 2017). The 
restoration of C storage on degraded land parcels can begin 
from the decay of microalgae and cyanobacteria organic 
compounds, that are highly enriched in C (Ontl and Schulte 
2012). Other organic compounds produced by microalgae 

Fig. 3   MAScIR exploitation of microalgae and cyanobacteria for 
research purposes by manipulating different growth parameters for 
oriented production of EPS. Photo taken at the Microalgae Biotech-
nology Laboratory of the Moroccan Foundation for Advanced Sci-
ence Innovation and Research (MAScIR), 2020

http://bioinformatics.psb.ugent.be/pico-plaza/
http://bioinformatics.psb.ugent.be/pico-plaza/
http://algaepath.itps.ncku.edu.tw
http://algaepath.itps.ncku.edu.tw
http://alcodb.jp
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and cyanobacteria, including proteins and lipids, also con-
tribute to soil organic matter (Ontl and Schulte 2012).

Microalgal and cyanobacterial biomass can also pro-
vide soil microbes with energy in the form of C. Although 
decomposition of this biomass by soil microbes will result 
in C loss from the soil as CO2 from microbial respiration, a 
small proportion of the original C will be retained in the soil 
through the formation of humus, which is beneficial for soil 
water retention (Ontl and Schulte 2012; Bastida et al. 2012).

Microalgal and cyanobacterial biomass can boost the 
productivity of arable land parcels as soil amendments with 
the capacity to increase soil organic C and stabilize the bal-
ance between soil C inputs and outputs in farm soils (Alva-
rez et al. 2021). Various factors including climate change, 
historic land use patterns, land management strategies, and 
topographic heterogeneity influence soil C changes on farm-
lands, (Ontl and Schulte 2012). Other ecosystem processes, 
such as soil erosion and leaching of dissolved C into ground-
water, can also lead to C loss in soils (Tiefenbacher et al. 
2021; Thaler et al. 2021). C inputs from photosynthesis on 
agricultural farmlands are less than C losses from the soil; 
therefore, soil organic C levels decrease over time (Ontl and 
Schulte 2012). Thus, alimentation of the soil with C-rich 
products such as microalgal and cyanobacterial biomass 
could be an important method to stabilize the net change in 
soil organic C levels. When C inputs and outputs are in bal-
ance with each other, there is no net change in soil organic 
C levels.

Role of Microalgae and Cyanobacteria in Soil 
Fertility and Structure

Microbes play a vital role in determining soil structure and 
fertility (Vaishampayan et al. 2001; Singh Jay Shankar 2014; 
Singh et al. 2016). Although most microalgal species can 
utilize both organic and inorganic nitrogen (N), they can 
only assimilate nitrite (NO2

·−), nitrate (NO3
·−), and ammo-

nium (NH). Cyanobacteria, on the other hand, can convert 
atmospheric N2 to ammonia by N2-fixation (Cai et al. 2013; 
Ahmed et al. 2014). Cyanobacteria can also tolerate various 
stresses, such as drought, high or low temperatures, pH and 
salinity, giving them an advantage over various competitors 
in different ecological niches (Gröniger et al. 2000; Ibañez 
et al. 2012; Sand-Jensen and Jespersen 2012). Cyanobacteria 
in particular have been a specific target in agriculture due to 
their ability to fix atmospheric N2 and CO2 and produce a 
diversity of biologically active metabolites (Vaishampayan 
et al. 2001; Singh Jay Shankar 2014; Singh et al. 2016). 
Cyanobacteria establish symbiotic associations (Subash-
chandrabose et al. 2011; Hamouda et al. 2016). Certain 
cyanobacteria species also adapt to local climatic conditions 
and survive in wet soils (Nisha et al. 2007). Up to 25% of the 
total biomass of the cyanobacteria surviving in wet soils is 

from EPSs (Nisha et al. 2007). EPS significantly contribute 
to the soil’s nutritional status, structural stability and crop 
productivity. They act as a gluing agent on soil particles, 
leading to soil aggregation, organic content accumulation, 
and an increase in the water holding capacity of the top 
layer of soil (Malam Issa et al. 2001; Nisha et al. 2007). 
An increase in water holding capacity and organic content 
favors the growth of plant-growth promoting rhizobacteria 
(PGPR) (Xiao and Zheng 2016). Therefore, microalgal or 
cyanobacterial growth in humid soils could subsequently 
ameliorate soil chemical, physical and biological properties 
that sustain soil fertility (Flaibani et al. 1989; Zulpa et al. 
2003; Paul and Nair 2008).

The aerobic N-fixing capacity of some cyanobacteria 
makes them important players in the biogeochemical N 
cycle of both aquatic and terrestrial environments (Garcia-
Pichel 2009). Cyanobacteria are a natural component of 
paddy fields and a beneficial contributor to rice production 
in tropical countries. Rice production in tropical countries is 
largely dependent on biological N2 fixation by cyanobacteria 
(Vaishampayan et al. 2001), adding approximately 20–30 kg 
fixed N ha−1 in addition to organic matter to paddy fields 
(Ahmed et al. 2014; Singh et al. 2016). Cyanobacteria also 
improve the availability of phosphorus (P) to crops through 
the solubilization and mobilization of insoluble organic 
phosphates (Singh et al. 2016; Jhala et al. 2017; Gonçalves 
2021).

Microalgal and cyanobacterial biofertilization enhanced 
the photosynthetic performance and growth of willow (Salix 
viminalis L.) (Grzesik et al. 2017) and rice plants (oryza 
sativum) (Jochum et al. 2018). The application of microalgal 
biomass (Chlorella vulgaris and Scenedesmus dimorphus) to 
rice plants resulted in significant plant height increase under 
greenhouse conditions (Jochum et al. 2018), indicating that 
microalgal biomass can provide a biological option for rice 
fertility programs. This approach could be especially impor-
tant for organic rice production where synthetic fertilizers 
cannot be used (Jochum et al. 2018).

Microalgal and cyanobacterial biomass recovered from 
wastewater treatments, CO2 sequestration or biodiesel gener-
ation could be valuable in agriculture as organic soil amend-
ments (Ansari et al. 2019). The use of wastewater could 
provide inexpensive solutions to microalgae and cyanobac-
teria cultivation, which require significant nutrient input 
(Renuka et al. 2018). Conversely, agricultural commerciali-
zation of microalgae or cyanobacteria biomass generated 
from wastewater requires thorough quality evaluation and 
validation. Although wastewaters are rich in nutrients such 
as organic and inorganic forms of C, N and P, which can 
be effectively utilized by microalgae, they contain undesir-
able substances such as heavy metals, pesticides, pharma-
ceutical compounds, chemicals and pathogens (Rana et al. 
2014; Arora et al. 2021). Microalgae and cyanobacteria 
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accumulate heavy metals. Thus, direct application of waste-
water Microalgal or cyanobacterial biomass to the soil may 
have potential risks on the environment, due to the pres-
ence of unwanted hazardous metals, toxins and pathogens 
(Renuka et al. 2018). Cyanotoxins produced by cyanobacte-
ria can also be absorbed and accumulated by plants, includ-
ing agricultural food crops, which can have direct negative 
effect on human and animals (Corbel et al. 2014).

Microalgal and Cyanobacterial Extracts 
as Biostimulants of Plant Growth and Productivity

Several experimental studies under open-field and green-
house conditions have demonstrated the plant growth-
enhancing capacity of microalgal and cyanobacterial extracts 
(Garcia-Gonzalez and Sommerfeld 2016; Puglisi et al. 2018; 
Chanda et al. 2019), indicating their potential use in agricul-
ture as plant growth enhancers.

Crude bioextracts obtained from microalgae and cyano-
bacteria can ameliorate the growth and development of 
crops. Liquid extracts of microalgae and cyanobacteria 
enhanced tomato plant growth through increased chlorophyll 
content and uptake of N, P and potassium (K) (Chanda et al. 
2020). Gas chromatography–mass spectrometry (GC–MS) 
analysis also showed that treatment with microalgal and 
cyanobacterial extracts enhanced the production of total 
lipids and pyridine-3-carboxamide, an amide active form 
of vitamin B3 (Surjana et al. 2010). The germination of 
lettuce in 2 and 3 g kg−1 soil with dry microalgal extracts 
derived from C. vulgaris promoted plant growth at the 
early stages of development (Faheed and Fattah 2008). In 
the same study, enhanced plant growth based on shoot and 
root dry weight and length was correlated with improved 
carotenoid and chlorophyll pigment biosynthesis. Sugar beet 
seedlings supplemented with extracts of the microalgae C. 
vulgaris or Scenedesmus quadricauda also exhibited higher 
total root length, surface area, and number of root tips (Bar-
one et al. 2018). The different changes in root architecture/
morphology induced by the microalgal extracts were attrib-
uted to the upregulation of several genes that may intervene 
in various metabolic pathways (Barone et al. 2018).

The biostimulant activity of microalgal and cyanobacte-
rial extracts is associated with their complex biochemical 
composition. Biologically active molecules derived from 
microalgal and cyanobacterial extracts include key amino 
acids (arginine and tryptophan), sulfated polysaccharides, 
polyunsaturated fatty acids, vitamins, osmolytes and phy-
tohormones (Ronga et al. 2019; Colla and Rouphael 2020). 
This complex and multicomponent nature of extracts com-
plicates the study of the mode of action and the production, 
registration and use of many biostimulants (Yakhin et al. 
2017). Studies carried out in evaluating the effect of micro-
algae and cyanobacteria or their extracts on plant growth and 

tolerance mechanisms have been summarized in Table 3. 
Further studies such as hormone profiling, transcriptom-
ics, proteomics, and metabolomics analysis of treated and 
untreated plants could also reveal biostimulant activated 
signaling pathways involved in the stimulation of plant 
responses (Yakhin et al. 2017).

Cyanobacteria and Microalgae as Biostimulants 
of Crop Abiotic Stress Tolerance

Crop productivity is often affected by diverse abiotic stresses 
usually provoked by drought, soil salinization and low or 
high temperatures. Soil salinization is a major agricultural 
constraint (Shrivastava and Kumar 2015; Ronga et al. 2019) 
affecting ~ 800 million ha globally (Munns and Tester 2008) 
and is exacerbated by inappropriate chemical fertilization 
management practices that lead to osmotic imbalance in the 
soil, affecting crop growth and productivity (Goykovic Cor-
tés and Saavedra del Real 2007). Many studies have high-
lighted the biostimulant properties of extracts from different 
microalgal and cyanobacterial species for improving abiotic 
stress tolerance in higher plants, including salt stress (Rod-
ríguez et al. 2006; Shrivastava and Kumar 2015; El Arroussi 
et al. 2018).

Dunaliella sp. and Phaeodactylum sp. mitigated salt 
stress in bell pepper (Capsicum annuum L.) seedlings by 
reducing superoxide O2

− production and lipid peroxida-
tion (Guzmán-Murillo et al. 2013). Crude extracts of the 
cyanobacteria Arthrospira sp. and the microalga Chlorella 
sp. improved the salt stress tolerance of wheat (Triticum aes-
tivum L.) and enhanced the antioxidant capacity and protein 
content of grains from treated plants (Abd El-Baky et al. 
2010). Extracts from Nannochloris sp. also alleviated hydric 
stress in tomato (Solanum lycopersicum L.) as determined by 
improved root length and increased leaf area and plant height 
(Oancea et al. 2013). The application of EPS from halophilic 
microalgae (Dunaliella salina) also alleviated the effect of 
salt stress on the growth of tomato (Solanum lycopersicum 
L.) subjected to high salinity concentrations (3 and 6 g L−1 
NaCl) by mitigating the decrease in length and dry weight of 
the plant’s shoot and root systems, and increasing K uptake 
and the K+/Na+ ratio (El Arroussi et al. 2018). In the same 
study, the accumulation of proline, phenolic compounds and 
Na+, as well as catalase (CAT), peroxidase (POD) and super-
oxide dismutase (SOD) activities triggered by salt stress, 
were attenuated after EPS treatment. Metabolic pathways 
involved in the plant’s tolerance to stress, such as jasmonic 
acid-dependent pathways, were also enhanced.

Microalgal or cyanobacterial biostimulants are usually 
applied as total crude extracts containing diverse organic 
compounds, including hormones. This mixture of diverse 
organic compounds could contain molecules mimicking 
compatible solutes, signaling molecules or elicitors; hence, 
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they could have multiple direct or indirect effects on plant 
growth and stress tolerance (Renuka et al. 2018; Colla and 
Rouphael 2020). Figure 4 illustrates the possible biostimu-
lant effects of Microalgae-cyanobacteria Extract Formula-
tion (MEF) on salt-stressed tomato plants. Bioactive organic 
compounds in MEF can stimulate the antioxidative enzyme 
system, and consequently attenuate lipid peroxidation in 
plant cells. MEF can also enhance root growth, which favors 
nutrient uptake and consequent ion homeostasis in leaves 
and photosynthetic activity.

Co‑cultivation of Microalgae/Cyanobacteria 
and Plants in Hydroponic Systems: An Emerging 
Innovative Method for Biologically Stimulated Crop 
Growth and Productivity

Soilless cultivation (hydroponics) is the future for agricul-
tural production sectors. Research studies such as those on 
NO3

− management or crop quality increases by managing 
the electrical conductivity of the solution are commonly 
exploited in hydroponics. Emerging new and innova-
tive methods, such as the use of nanoparticles and ben-
eficial microorganisms, including PGPRs, have also been 
described. Crop co-cultivation with microorganisms such as 
microalgae or cyanobacteria in hydroponics can ameliorate 
plant growth. Microalgae and cyanobacteria produce and 
release a wide range of bioactive compounds in the culture 
solution.

In hydroponics, microalgae and cyanobacteria can be 
grown in the nutrient solution. The release of bioactive com-
pounds such as EPS and other metabolites in the substrate 
solution may trigger mechanisms related to plant tolerance, 
productivity and vigor (Fig. 5). Soil application of EPSs 
obtained from D. salina mitigated the effect of salinity stress 
by enhancing reactive oxygen species (ROS)-scavenging 
enzyme activities, phenolic compounds and key metabolites 
involved in antioxidative stress mechanisms (El Arroussi 
et al. 2018). Hydroponic co-cultivation of tomato plants with 
microalgae also stimulated crop performance and growth 
in terms of fresh and dry plant weight by ameliorating the 
substrate solution (Zhang et al. 2017; Barone et al. 2019). 
The plant growth stimulation was attributed to the constant 
use of CO2 and delivery of O2 to the hydroponic nutrient 
solution, through microalgal photosynthesis (Barone et al. 
2019). The lower CO2 levels, resulting from CO2 fixation 
by microalgae or cyanobacteria, and the liberation of O2 in 
the root zone of hydroponically grown plants can positively 
regulate plant growth. CO2 accumulation in an O2-deficient 
root zone can be a detrimental factor to certain crop plants 
in flooded fields or aeroponic systems (Boru et al. 2003a, b).

Crop co-culture with photosynthetic microorganisms 
in hydroponics releases more O2 in the nutrient solution 
to favor optimum root CO2/O2 levels for plant growth. 
The sole accumulation of CO2 in the root zone does not 
negatively affect plant growth unless O2 is deficient. Plant 
roots are naturally colonized by microorganisms and 

Fig. 4   Possible biostimulant effects of Microalgae-cyanobacteria 
Extract Formulation (MEF) on salt-stressed tomato plants. MEF 
enhances root growth, which favors nutrient uptake and consequent 
ion homeostasis in leaves and photosynthetic activity. MEF stimulate 

antioxidative enzymes, which consequently attenuate lipid peroxida-
tion in plant cells. Reactive Oxygen Species (ROS), Hydrogen Per-
oxidase (H2O2), Catalase (CAT), Peroxidases (POD), Superoxide Dis-
mutase (SOD), and Salt Overly Sensitive pathway (SOS)
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evolve more CO2 (CO2 concentrations in the rhizosphere is 
> 10-fold higher than in the atmosphere) (He et al. 2010). 
Exposure to no O2 combined with elevated CO2 levels 
attaining 30% (v/v) of total dissolved gases caused severe 
necrosis and stunted growth in soybean plants (Boru et al. 
2003b). These results indicate that the co-culture tech-
nique could especially benefit crop plants with lower toler-
ance to higher dissolved CO2 in O2-deficient media.

The co-cultivation of crops with Microalgae or Cyano-
bacteria in hydroponic systems has been studied for sev-
eral years (Hultberg et al. 2013; Ronga et al. 2019; Huo 
et al. 2020; Ergun et al. 2020; Supraja et al. 2020) as a new 
emerging innovative method for biologically stimulated 
crop growth and productivity. A plant-microalgae con-
sortia relatively increased the pH and dissolved O2 from 
microalgae photosynthesis, and significantly improved the 
removal rate of total dissolved solids, total nitrogen (TN), 
and total phosphorus (TP) of the nutrient solution (Huo 
et al. 2020). Aqueous extracts prepared from microalgae 
collected from a greenhouse hydroponics solution signifi-
cantly inhibited the growth of Fusarium oxysporum on 
slow nutrient agar (Schwarz and Gross 2015). Conversely, 
Lettuce fresh weight, shoot/root ratio, water and N uptake 
were significantly reduced in the presence of the micro-
algae Chlamydomonas spp. and Scenedesmus spp., com-
pared to treatments which excluded microalgae (Schwarz 
and Gross 2015).

Commercial crop co-cultivation with photosynthetic 
microorganisms may have limiting factors. Co-cultivation 
will require optimized nutrient solution for the growth of 

both crops and microalgal or cyanobacterial species. The 
source and concentration of N can affect the growth and 
biochemical composition of microalgal and cyanobacterial 
species (Ronga et al. 2019). Several factors such as nutri-
ent composition and concentration, light intensity, pH and 
electroconductivity (EC) affect the growth and the chemi-
cal composition of the microalgae or cyanobacteria (Danesi 
et al. 2002; Colla et al. 2007; Ogbonda et al. 2007). Crop 
co-cultivation with photosynthetic microorganisms is also 
limited to soft water microalgal or cyanobacterial species, 
as many crops poorly develop in highly saline sea water 
(Shrivastava and Kumar 2015). Hydroponic containers made 
of opaque material influences the growth of microalgae or 
cyanobacteria (Tocquin et al. 2003; Bawiec et al. 2019). In 
industrial setups, the hydroponic system could be mounted 
with a compartmentalized PBR, containing the photosyn-
thetic microorganism and nutrient solution, and connected to 
the plant growth tray made of opaque material for optimized 
root growth, as illustrated in the drip system and nutrient 
film technique by Lee and Lee (2015). Challenges resulting 
from pH changes and growth of mold in the reservoir or tub-
ing system can also be overcome by the use of non-recovery 
drip system. In this system, the hydroponic nutrient solu-
tion in the reservoir is delivered to each plant or pot using 
a pump, with the amount of nutrient solution for each plant 
adjusted by an electronic timer (Lee and Lee 2015). The 
nutrient solution is not collected and returned to the reser-
voir for recirculation through the system, thereby preventing 
fungal growth and pH changes (Lee and Lee 2015).

Fig. 5   Possible biostimulant 
effects of hydroponics co-
cultivation with microalgae 
or cyanobacteria on crops. 
Bioactive metabolites such as 
sulfated exopolysaccharides and 
phytohormones released in the 
substrate solution enhance plant 
growth. CO2 fixation and O2 
release from photosynthesis by 
microalgae or cyanobacteria in 
the substrate solution ameliorate 
root respiration
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The biostimulant effects of microalgae or cyanobacte-
ria in hydroponics may depend on a wide range of factors, 
including microalgae-excreted metabolites and phytohor-
mones and O2/CO2 ratio changes in the root zone (nutri-
ent solution). Analyzing all these factors will allow better 
exploitation of these microorganisms in developing microal-
gal and cyanobacterial biotechnology. Furthermore, hydro-
ponic waste solutions contain high nutrients (Lee and Lee 
2015). Thus, microalgae and cyanobacteria can be an effec-
tive method of removing nutrients from hydroponic waste 
solution, before they are discharged. The use of microalgae 
or cyanobacteria will prevent the generation of waste mate-
rials and hydroponic waste solution. The resulting biomass 
can be valorized in agriculture as soil conditioners, biostim-
ulants or biofertilizers.

Conclusion

The rapidly growing population and climate change require 
further innovation to address the practical limitations and 
serious environmental concerns associated with current agri-
cultural practices. Microalgae and cyanobacteria are targets 
for next-generation sustainable bioresources. They can be 
utilized to produce value-added bioproducts, and their rapid 
growth rates and higher biomass productivity offer several 
advantages over terrestrial crops. Microalgae and cyano-
bacteria can also be utilized in agricultural settings as soil 
conditioners and biostimulants of plant growth and abiotic 
stress tolerance.

Mass cultivation and commercial production of micro-
algae and cyanobacteria are highly dependent on the eco-
nomics of their biomass production. The utilization of 
waste-substrates for the production of microalgal and cyano-
bacterial biomass is an economically viable strategy. Con-
versely, challenges associated with waste generated biomass, 
such as the presence of unwanted hazardous metals, toxins 
and pathogens still require thorough studies and field scale 
evaluation before their commercialization. In-depth stud-
ies of the biostimulatory effects of microalgal and cyano-
bacterial extracts on plant growth-related parameters will 
also facilitate their production and processing for product 
innovation in agriculture. Technological developments in 
microalgal and cyanobacterial cultivation and harvesting, 
such as automation, phenotyping, and synthetic biology will 
provide tools for highly efficient algae-based solutions to 
meet a range of societal needs. Genetic manipulation, such 
as the overexpression or downregulation of several genes in 
a single organism, is also possible in the microalga Chla-
mydomonas reinhardtii, and is a practical method to improve 
product development of microalgae and cyanobacteria for 
large scale production.
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