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Abstract
Salt stress reduces plant growth by negatively interfering with the division rate and cellular expansion, limiting the growth 
and development of the roots, stems, and leaves. 24-Epibrassinolide (EBR) is a molecule extracted from plant tissues and 
is a plant growth regulator with a high capacity to modulate tolerance to abiotic stresses. The objective of this study was to 
verify the possible improvements promoted by pretreatment with EBR in salt-stressed tomato plants, evaluating the variables 
related to root anatomy, photosynthetic pigments, antioxidant system, and biomass accumulation. The experiment comprised 
four treatments: two salt conditions (0 and 150 mM NaCl, described as  Na+ (−) and  Na+ ( +), respectively) and two con-
centrations of 24-epibrassinolide (0 and 100 nM EBR, described as EBR (−) and EBR ( +), respectively). EBR modulated 
the protection and vascularization of root structures, as demonstrated by the increases in epidermis thickness (12%) and 
metaxilem diameter (119%), respectively. This steroid relieved oxidative damage, which was clearly linked to elevated activi-
ties of superoxide ascorbate peroxidase (24%) and guaiacol peroxidase (31%). EBR also benefited photosynthetic pigments, 
reducing the degradation of chlorophylls. In addition, pretreatment with EBR favoured a higher biomass, which was due to 
positive effects on leaf and root tissues, including better performance of photosynthetic machinery.
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Abbreviations
APX  Ascorbate peroxidase
BRs  Brassinosteroids
CAR   Carotenoids
CAT   Catalase
Chl a  Chlorophyll a
Chl b  Chlorophyll b
Ci  Intercellular  CO2 concentration

CO2  Carbon dioxide
E  Transpiration rate
EBR  24-Epibrassinolide
EDS  Equatorial diameter of the stomata
EL  Electrolyte leakage
ETAb  Epidermis thickness from abaxial leaf side
ETAd  Epidermis thickness from adaxial leaf side
ETR  Electron transport rate
ETR/PN  Ratio between the apparent electron transport 

rate and net photosynthetic rate
EXC  Relative energy excess at the PSII level
F0  Minimal fluorescence yield of the dark-

adapted state
Fm  Maximal fluorescence yield of the dark-

adapted state
Fv  Variable fluorescence
Fv/Fm  Maximal quantum yield of PSII 

photochemistry
gs  Stomatal conductance
H2O2  Hydrogen peroxide
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K  Potassium
LDM  Leaf dry matter
MDA  Malondialdehyde
Mg  Magnesium
Na+  Sodium
NPQ  Nonphotochemical quenching
O2

−  Superoxide
PDS  Polar diameter of the stomata
PN  Net photosynthetic rate
PN/Ci  Instantaneous carboxylation efficiency
POX  Peroxidase
PPT  Palisade parenchyma thickness
PSII  Photosystem II
qP  Photochemical quenching
RCD  Root cortex diameter
RDM  Root dry matter
RDT  Root endodermis thickness
RET  Root epidermis thickness
ROS  Reactive oxygen species
RUBISCO  Ribulose-1,5-bisphosphate carboxylase/

oxygenase
SD  Stomatal density
SDM  Stem dry matter
SF  Stomatal functionality
SI  Stomatal index
SOD  Superoxide dismutase
SPT  Spongy parenchyma thickness
TDM  Total dry matter
Total Chl  Total chlorophyll
VCD  Vascular cylinder diameter
WUE  Water-use efficiency
ΦPSII  Effective quantum yield of PSII 

photochemistry.

Introduction

Tomato is considered a model plant in research conducted 
in the agricultural sector (Suresh et al. 2014) because it 
has interesting characteristics, such as a short cycle, rapid 
growth, easy pollination, wide adaptability to climatic con-
ditions, and high rates of seed production (Bai and Lindhout 
2007; Gerszberg et al. 2015; Gerszberg and Hnatuszko-
Konka 2017). In this context, this species plays an important 
role in the generation of knowledge, more specifically on the 
deleterious effects caused by salt stress (Zheng et al. 2016) 
and ways to mitigate these interferences on metabolism (Shu 
et al. 2016) and growth in higher plants (Maia et al. 2018).

Soil salinity is a problem in several regions of the world, 
including agricultural areas (Qureshi et al. 2008; Qadir et al. 
2014), and the incorrect use of irrigation and inadequate soil 
management are the main causes of soil salinization due 
to anthropogenic action (Bouksila et al. 2013). In plants, 

salt stress generated by sodium  (Na+) causes osmotic and 
ionic imbalances (Dalio et al. 2011), reducing the plant 
water potential and impairing plant metabolism (Rengasamy 
2010).  Na+ ions also negatively impact nutrient uptake, often 
causing nutritional deficiency (Hafsi et al. 2017; Cao et al. 
2019). Additionally,  Na+ accumulation in the cytoplasm and/
or vacuoles causes oxidative stress in the cells (Chaves et al. 
2009), resulting in anatomical disturbances and interferences 
with the photosynthetic machinery, growth rate, and biomass 
(Ashraf and Harris 2004; Munns and Tester 2008b).

Salt stress reduces plant growth, negatively impacting the 
division rate and cellular expansion and limiting the growth 
and development of roots, stems, and leaves (Yu et al. 2015; 
Forieri et al. 2016a; Khoshbakht et al. 2018). Specifically, in 
root tissue, this stress induces a decrease in the metaxylem 
as a response to minimize cavitation and loss of function 
of vessel elements, which are essential structures for the 
conduction of water and assimilation of nutrients (Risopa-
tron et al. 2010; Oliveira et al. 2018). Additionally, mild or 
moderate  Na+ stress can provoke an increase in the thickness 
of the cell wall in an attempt to reduce the accumulation of 
this potentially toxic ion; however, at high concentrations, 
cell plasmolysis often ensues, triggering damage to protec-
tive tissues, including the epidermis and endoderm (Silva 
et al. 2020).

Chlorophyll (Chl) is an essential component of the pho-
tosynthetic machinery (Johnson 2016) and is responsible 
for the absorption of light in specific bands of the spectrum 
(Chen 2014) and the biosynthesis of carbohydrates indispen-
sable for plant metabolism (Kalaji et al. 2018). Structurally, 
Chl has a hydrophobic tail that inserts into the thylakoid 
membrane, a head formed by a porphyrin ring, and a circu-
lar group of  Mg2+ atoms (Hohmann-Marriott and Blanken-
ship 2011). Typically, exposure to  Na+ ions induces intense 
formation of  O2

− ions, which are generated by the fusion 
of excess electrons with  O2 molecules in the chloroplasts 
(Shelke et al. 2017). They cause damage to membranes and 
disturbances in the centres of PSII reactions (Nishiyama 
et al. 2004; Kalaji et al. 2011), resulting in photoinhibition 
(Tavakkoli et al. 2011; Ruban 2015).

Plants under salt stress often overproduce reactive oxy-
gen species (ROS), which superoxide  (O2

−) and hydrogen 
peroxide  (H2O2) are the major components (Gill and Tuteja 
2010). ROS are highly toxic substances that cause oxidative 
damage to membranes, proteins and nucleic acids in plant 
cells (Shahzad et al. 2018). Antioxidant metabolism plays 
a promising role in mitigating the impacts of ROS accumu-
lation (Kang and Nam 2016). Under oxidative stress, the 
enzymes superoxide dismutase (SOD), guaiacol peroxidase 
(POX), catalase (CAT) and ascorbate peroxidase (APX) (He 
et al. 2016) are responsible for ROS elimination, reducing 
damage to the photosynthetic apparatus and cell membranes 
(Guerrero et al. 2015).
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24-Epibrassinolide (EBR) is a molecule extracted from 
plant tissues and is natural and biodegradable (Tanveer 
et al. 2018). Chemically, it is one of the brassinosteroids 
(BRs) with plant growth regulatory activities (Müssig 2005). 
EBR is involved in multiple metabolic processes, includ-
ing cell division (Tong et al. 2014), cell elongation (Tang 
et al. 2011), vascular differentiation (Ibanes et al. 2009), 
reproductive development (Huang et al. 2013; Vogler et al. 
2014; Maita and Sotomayor 2015), germination (Wang et al. 
2011), formation of the root system (González-García et al. 
2011; Cai et al. 2018), senescence, abscission and matura-
tion (Hansen et al. 2009; Mazorra et al. 2013), gene regula-
tion (Mao et al. 2017), and modulation of tolerance to biotic 
and abiotic stresses (Sasse 2003; Choudhary et al. 2012; 
Pereira et al. 2019).

The hypothesis of this research was based on the negative 
effects induced by  Na+ stress in plants, such as disturbances 
in the anatomy of stem and root tissues (Akhtar et al., 2017; 
Silva et al., 2020), oxidative damage (Sheikh-Mohamadi 
et al. 2017), and interference with photosynthetic perfor-
mance (Hasanuzzaman et al. 2018). On the other hand, 
studies available in the literature demonstrate that EBR can 
mitigate the problems associated with this stress (Ahammed 
et al. 2020), increasing ROS scavenging (El-Mashad and 
Mohamed 2012; Rattan et al. 2020), and modulating ana-
tomical adaptations (Oliveira et al. 2018). Therefore, the 
objective of this study is to verify the possible improve-
ments by pretreatment with EBR in salt-stressed tomato 
plants, evaluating the variables linked to root anatomy, 
photosynthetic pigments, antioxidant system, and biomass 
accumulation.

Materials and Methods

Location and Growth Conditions

The experiment was performed at the Campus of Paragomi-
nas of the Universidade Federal Rural da Amazônia, Parago-
minas, Brazil (2°55′ S, 47°34′ W). The study was conducted 
in a greenhouse with controlled temperature and humidity. 
The minimum, maximum, and median temperatures were 
27, 33 and 26.2 °C, respectively. The relative humidity dur-
ing the experimental period varied between 60 and 80%.

Plants, Containers and Acclimation

Seeds of Solanum lycopersicum L. cv. Caline IPA-7 Hor-
tivale™ were germinated using Plantmax™ substrate. Fif-
teen-day-old seedlings with similar features and sizes were 
selected and placed in 1.2 l containers (0.15 m in height and 
0.10 m in diameter) filled with a mixed substrate of sand and 
vermiculite in a 3:1 ratio. A solution was used for nutrients 

(Lima and Lobato 2017), and the ionic force was started at 
50% and was modified to 100% after two days. After two 
days, the nutritive solution remained at total ionic force.

Experimental Design

The experiment was randomized with four treatments, 
including two salt conditions (0 and 150  mM NaCl, 
described as  Na+ (−) and  Na+ ( +), respectively) and two 
concentrations of brassinosteroids (0 and 100 nM EBR, 
described as EBR (-) and EBR ( +), respectively). Six repli-
cates for each of the four treatments were conducted, yield-
ing a total of 24 experimental units used in the experiment, 
with one plant in each unit.  Na+ concentration was defined 
based in study conducted by Stevens et al. (2006) with 
tomato plants, while EBR treatment was chosen in agree-
ment with Maia et al. (2018).

24‑Epibrassinolide (EBR) Preparation 
and Application

Twenty-day-old young plants were sprayed with 24-epi-
brassinolide (EBR) or Milli-Q water (containing a pro-
portion of ethanol that was equal to that used to prepare 
the EBR solution) at 5-d intervals until day 35. The 0 and 
100 nM EBR (Sigma-Aldrich, USA) solutions were prepared 
by dissolving the solute in ethanol followed by dilution with 
Milli-Q water [ethanol:water (v/v) = 1:10,000] (Ahammed 
et al. 2013).

Plant Conduction and Water Deficit Treatment

One plant per pot was used to examine the plant parameters. 
The plants received the following macro- and micronutri-
ents contained in the nutrient solution in agreement with 
Lima and Lobato (2017). To simulate  Na+ exposure, NaCl 
was used at concentrations of 0 and 150 mM  Na+, which 
was applied over 15 days (days 25–40 after the start of the 
experiment). During the study, the nutrient solutions were 
changed at 07:00 h at 3-day intervals, with the pH adjusted 
to 5.5 using HCl or NaOH. On day 40 of the experiment, 
physiological and morphological parameters were measured 
for all plants, and leaf tissues were harvested for anatomical 
and biochemical analyses.

Measurement of Chlorophyll Fluorescence and Gas 
Exchange

Chlorophyll fluorescence was measured in fully expanded 
leaves under light using a modulated chlorophyll fluorometer 
(model OS5p; Opti-Sciences). Preliminary tests determined 
the location of the leaf, the part of the leaf, and the time 
required to obtain the greatest Fv/Fm ratio; therefore, the 
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acropetal third of the leaves, which was the middle third of 
the plant and adapted to the dark for 30 min, was used in 
the evaluation. The intensity and duration of the saturation 
light pulse were 7500 µmol  m−2  s−1 and 0.7 s, respectively. 
Gas exchange was evaluated in all plants and measured in 
the expanded leaves in the middle region of the plant using 
an infrared gas analyser (model  LCPro+; ADC BioSci-
entific) in a chamber under constant  CO2, photosyntheti-
cally active radiation, air-flow rate, and temperature condi-
tions at 360 μmol  mol−1  CO2, 800 μmol photons  m−2  s−1, 
300 µmol  s−1, and 28 °C, respectively, between 10:00 and 
12:00 h. The water-use efficiency (WUE) was estimated 
according to Ma et al. (2004), and the instantaneous car-
boxylation efficiency (PN/Ci) was calculated using the for-
mula that was described by Aragão et al. (2012).

Measurements of Anatomical Parameters

Samples were collected from the middle region of the leaf 
limb of fully expanded leaves, and roots were collected 
5 cm from the root apex. Botanical material was fixed in 
FAA 70 for 24 h and then dehydrated in a series of ethanol 
and butanol before being embedded in histological paraffin 
(Johansen 1940). Transverse sections were prepared accord-
ing to the procedures described by Maia et al. (2018). For 
stomatal characterization, the epidermal impression method 
was used as described by Segatto et al. (2004). The slides 
were observed and photographed under an optical micro-
scope (Motic BA 310; Motic Group Co. LTD.) equipped 
with a digital camera (Motic 2500; Motic Group Co., LTD.). 
The images were analysed using Moticplus 2.0 software. In 
both leaf faces, the stomatal density (SD) was calculated as 
the number of stomata per unit area, and the stomatal func-
tionality (SF) was calculated as the ratio PDS/EDS accord-
ing to Castro et al. (2009). The stomatal index (SI %) was 
calculated as the percentage of stomata in relation to the 
total number of epidermal cells in a given area.

Determination of the Antioxidant Enzymes, 
Superoxide and Soluble Proteins

Antioxidant enzymes (SOD, CAT, APX, and POX), super-
oxide, and soluble proteins were extracted from leaf tissues 
according to the method of Badawi et al. (2004). The total 
soluble proteins were quantified using the methodology 
described by Bradford (1976). The SOD assay was meas-
ured at 560 nm (Giannopolitis and Ries 1977), and the SOD 
activity was expressed in  mg−1 protein. The CAT assay 
was detected at 240 nm (Havir and McHale 1987), and the 
CAT activity was expressed in μmol  H2O2  mg−1 protein 
 min−1. The APX assay was measured at 290 nm (Nakano 
and Asada 1981), and the APX activity was expressed in 
μmol AsA  mg−1 protein  min−1. The POX assay was detected 

at 470 nm (Cakmak and Marschner 1992), and the activity 
was expressed in μmol tetraguaiacol  mg−1 protein  min−1. 
 O2

− was measured at 530 nm (Elstner and Heupel 1976).

Quantification of Hydrogen Peroxide, 
Malondialdehyde and Electrolyte Leakage

Stress indicators  (H2O2 and MDA) were extracted using 
the methodology described by Wu et  al. (2006).  H2O2 
was measured using the procedures described by Velik-
ova et al. (2000). MDA was determined by the method of 
Cakmak and Horst (1991) using an extinction coefficient 
of 155  mM−1  cm−1. EL was measured according to Gong 
et al. (1998) and calculated by the formula EL (%) =  (EC1/
EC2) × 100.

Determination of  Na+ Content, Photosynthetic 
Pigments and Biomass

Na+ contents were determined using flame photometry 
(model 910; Analyser) based on procedures described by 
Carmo et al. (2000). Chlorophyll and carotenoid determi-
nations were performed using a spectrophotometer (model 
UV-M51; Bel Photonics) according to the methodology 
of Lichtenthaler and Buschmann (2001). The biomass of 
roots, stems, and leaves was measured based on constant 
dry weights (g) after drying in a forced-air ventilation oven 
at 65 °C.

Data Analysis

Data were subjected to normality of residuals using Sha-
piro–Wilk test and data applied to one-way ANOVA. Sig-
nificant differences between the means were determined 
using the Scott-Knott test at a probability level of 5% (Steel 
et al. 2006). Standard deviations were calculated for each 
treatment.

Results

EBR Reduced  Na+ Contents and Protected Tissue 
Structures in Salt‑Stressed Plants

Tomato plants under salinity (150 mM NaCl) presented 
significant increases in  Na+ contents (Table 1). However, 
EBR application induced reductions in roots (39%) and 
leaves (60%) compared to the treatment without EBR. For 
root structures, plants subjected to NaCl toxicity suffered 
reductions (Table 2 and Fig.  1). However, the applica-
tion of 100 nM EBR in plants submitted to 150 mM NaCl 
promoted increases of 12%, 10%, 9%, 66%, and 119% in 
RET, RDT, RCD, VCD, and RMD, respectively, compared 
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to comparable treatment without EBR. On leaf structures, 
salinity provoked negative interferences (Table 2 and Fig. 2). 
However, plants under the combined actions of NaCl and 
EBR had ETAd, ETAb, PPT, and SPT values that increased 
by 6%, 11%, 10%, and 14%, respectively, and the PPT/SPT 
ratio was reduced by 3% compared to similar treatments 
without EBR. Plants without NaCl and sprayed with EBR 
also exhibited increases in ETAd, ETAb, PPT, and SPT of 
5%, 10%, 6%, and 13% and a reduction of 6% in PPT/SPT 
compared to treatment without NaCl and without EBR.

Steroid Alleviated the Damage Provoked by Salinity 
on the Photosynthetic Machinery

Na+ toxicity induced decreases in chloroplastic pigments 
(Table 3). Samples exposed to  Na+ and EBR exhibited 
increases of 39%, 45%, 65%, and 40% in the variables Chl 
a, Chl b, Car, and Total Chl, respectively, but reductions 
of 3% and 12% in the ratios Chl a/Chl b and Chl total/Car, 
respectively, when compared to equal treatment (150 mM 

NaCl) without EBR. Regarding chlorophyll fluorescence, 
plants exposed to NaCl toxicity were negatively affected 
(Table 3 and Fig. 3). Plants under NaCl and EBR exhib-
ited decreases of 10% and 1% in F0 and Fm, respectively. 
However, these plants presented increases of 2% and 4% in 
Fv and Fv/Fm, respectively, compared to the same param-
eters in plants exposed to a similar treatment without EBR. 
Plants under the combined effects of  Na+ and EBR exhib-
ited increases in ΦPSII (17%) and ETR (16%) and qp (2%) 
and reductions in NPQ (19%), EXC (8%), and ETR/PN 
(6%) compared with the same parameters in plants that 
received an equivalent treatment without EBR. Regard-
ing gas exchange,  Na+-induced toxicity provoked negative 
repercussions (Table 3). The spray with EBR in plants 
under salt stress promoted increases in PN, E, gs, WUE, 
and PN/Ci values by 15%, 6%, 22%, 11%, and 28%, respec-
tively. However, a decrease of 1% in Ci occurred compared 
to plants exposed to  Na+ without EBR.

EBR Spray‑induced Beneficial Effects on Stomatal 
Characteristics in Plants Under  Na+ Stress

Salinity promoted negative effects on stomatal character-
istics (Table 4). On the adaxial surface, plants exposed to 
NaCl and EBR had increases of 7%, 4%, and 14% in SD, 
SF, and SI, respectively, showing decreases of 3% in PDS 
and 7% for EDS. On the abaxial face, EBR promoted 7%, 
6%, and 12% increases in SD, SF, and SI variables, as well 
as reductions of 2% and 7% in PDS and EDS variables, 
respectively, when compared to the respective parameters 
in plants that received similar treatments without EBR.

Table 1  Na+ contents in tomato plants sprayed with EBR and 
exposed to  Na+ stress

Na+  = Sodium. Columns with different letters indicate significant dif-
ferences from the Scott-Knott test (P < 0.05). Values described cor-
responding to means from three repetitions and standard deviations

Na+ EBR Na+ in root (mg g  DM−1) Na+ in leaf 
(mg g  DM−1)

− − 0.09 ± 0.01c 0.04 ± 0.01c

−  + 0.03 ± 0.01d 0.01 ± 0.01d

 + − 16.83 ± 0.49a 7.75 ± 0.04a

 +  + 10.31 ± 0.39b 3.12 ± 0.02b

Table 2  Root and leaf structures in tomato plants sprayed with EBR and exposed to  Na+ stress

RET root epidermis thickness, RDT root endodermis thickness, RCD root cortex diameter, VCD vascular cylinder diameter, RMD root metax-
ylem diameter, ETAd  epidermis thickness from adaxial leaf side, ETAb epidermis thickness from abaxial leaf side, PPT palisade parenchyma 
thickness, SPT spongy parenchyma thickness. Columns with different letters indicate significant differences from the Scott-Knott test (P < 0.05). 
Values described corresponding to means from six repetitions and standard deviations

Na+ EBR RET (µm) RDT (µm) RCD (µm) VCD (µm) RMD (µm)

Root structures
 − − 28.09 ± 0.38a 23.06 ± 1.41a 180.29 ± 17.52a 287.49 ± 7.42b 78.20 ± 5.54a

 −  + 29.38 ± 0.98a 24.05 ± 0.87a 192.20 ± 5.37a 308.34 ± 25.82a 84.28 ± 7.30a

  + − 22.56 ± 0.45c 20.50 ± 0.61b 157.98 ± 14.90b 156.19 ± 13.81d 29.38 ± 0.96c

  +  + 25.20 ± 1.84b 22.60 ± 0.36a 172.13 ± 13.05b 259.96 ± 2.39c 64.34 ± 3.18b

Na+ EBR ETAd (µm) ETAb (µm) PPT (µm) SPT (µm) Ratio PPT/SPT

Leaf structures
 − − 31.93 ± 1.74a 20.82 ± 1.89a 134.89 ± 4.64a 125.52 ± 3.47c 1.08 ± 0.04a

 −  + 33.38 ± 3.08a 22.82 ± 1.70a 142.84 ± 11.77a 141.28 ± 5.69a 1.01 ± 0.07a

  + − 30.51 ± 2.75a 19.41 ± 1.67a 124.46 ± 6.08b 117.16 ± 1.72d 1.06 ± 0.06a

  +  + 32.31 ± 2.82a 21.51 ± 1.69a 136.56 ± 6.91a 133.05 ± 5.75b 1.03 ± 0.03a
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Redox Metabolism was Upregulated in Plants 
Sprayed with EBR and Subjected to Salt Toxicity

The high  Na+ in the solution applied to plants caused 
increases in antioxidant enzyme activities (Fig. 4). Plants 
under the combined effects of  Na+ and EBR exhibited 
increases of 5%, 22%, 24%, and 31% in SOD, CAT, APX, 
and POX, respectively, compared to the same parameters 
in plants that received the same treatment without EBR. 
Regarding stress indicators, salinity promoted increases 
(Fig. 5) but plants treated with  Na+ and EBR presented 
reductions in  O2

−,  H2O2, EL, and MDA values by 16%, 26%, 
19%, and 24%, respectively, compared to the same param-
eters in plants that received similar treatments without EBR.

Pretreatment with EBR Mitigated the Negative 
Impacts Associated with  Na+ on Biomass

Plants treated with  Na+ exhibited significant decreases in 
biomass (Figs. 6, 7). EBR spray on plants exposed to NaCl 
induced increases in LDM, RDM, SDM, and TDM of 24%, 
159%, 20%, and 61%, respectively, compared with the same 
parameters in plants that received equal treatment without 
EBR.

Fig. 1  Root cross sections in tomato plants sprayed with EBR and exposed to salt stress. –Na± EBR (a), –Na+/ + EBR (b), +  Na± EBR (c) 
and +  Na+/ + EBR (d). RE root epidermis, RC root cortex, RD root endodermis, VC vascular cylinder, RM root metaxylem. Bars: 200 µm
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Discussion

Treatment with 100 nM EBR reduced the  Na+ contents in 
leaf and root tissues of tomato plants exposed to 150 mM 
NaCl for 15 days. EBR minimized  Na+ contents, probably 
due to its beneficial action on cation transporters because 
under salt stress,  K+ transporters are often blocked, result-
ing in  Na+ uptake and causing reductions in  K+/Na+ ratios 
in plants (Sarabi et al. 2017; Alam et al. 2019; Debnath 
et al. 2019).  Na+ can accumulate in all plant tissues (leaves, 
stems, and roots); in other words, these ions can accumulate 
in the cytoplasm and/or vacuole (Hasegawa 2013) and con-
sequently cause damage to root anatomical structures and 
photosynthetic machinery (Farooq et al. 2015). Dong et al. 

(2017) studied the effect of EBR spray on Triticum aestivum 
plants under salinity (120 mM NaCl) and reported that EBR 
(10 nM) significantly reduced  Na+ contents in the roots.

EBR promoted increases in structures related to root 
anatomy (RET, RDT, RCD, VCD, and RMD). This steroid 
acts on several genes, such as the ERF2 and ERF5 genes, 
which are involved in ethylene biosynthesis and often have 
effects on the growth and division of meristematic tissues of 
the root, such as RET, RDT, and RCD (Mussig et al. 2003; 
Hacham et al. 2011). On the other hand, the plants subjected 
to 150 mM NaCl presented a reduction in all the anatomi-
cal parameters analysed, demonstrating the susceptibility of 
Lycopersicon esculentum roots to salt stress (Hameed et al. 
2009; Céccoli et al. 2011). EBR spray induced increases 

Fig. 2  Leaf cross sections in tomato plants sprayed with EBR and exposed to salt stress. –Na± EBR (a), –Na+/ + EBR (b), +  Na± EBR (c) 
and +  Na+/ + EBR (d). EAd adaxial epidermis, EAb adaxial epidermis, PP palisade parenchyma, SP spongy parenchyma. Bars: 200 µm
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in the RET, RDT, and RCD tissues, mitigating the adverse 
effects of NaCl because these structures are intrinsically 
involved in protection under abiotic stress conditions, such 
as saline stress (Cui 2016). Ribeiro et al. (2019) analysed 
Glycine max seedlings under conditions of water deficiency 
and reported that EBR had positive effects on RMD, which 
is an intensely vascularized tissue that contributes to the 
absorption of water and nutrients; they also verified the posi-
tive effects of EBR on RET, RDT, and VCD, indicating that 
EBR stimulated cell division and root growth.

Plants treated with NaCl and sprayed with EBR had 
positive outcomes in regard to leaf anatomy variables, such 
as ETAd, ETAb, PPT, SPT, and PPT/SPT ratio. Increases 
in PPT and SPT clearly contributed to increases verified 
in PN/Ci and PN, reflecting ETAd and ETAb (Abbruzzese 
et al. 2009). PPT and SPT are tissues with large amounts 
of chloroplasts and intracellular spaces and are both effi-
cient channels for  CO2 capture (Pereira et al. 2016; Maia 
et al. 2018). Salinity promotes negative interferences on 
gas exchange, as well as it lowers rates of expansion and 
cell division (Hu and Schmidhalter 2005). However, this 

steroid probably improved  Ca+ 2 uptake, affecting cell 
expansion and division (Hayat et al. 2012), with a sub-
sequent increase in the ETAd and ETAb values observed 
in our study. Oliveira et al. (2018) studied the deleterious 
effects of saline stress (0 and 250 mM NaCl) and the con-
sequences of EBR administration (0 and 50 nM EBR) on 
young Eucalyptus urophylla plants and found increases in 
ETAd (7%), ETAb (22%), PPT (14%), and SPT (25%) after 
the application of EBR.

Plants subjected to  Na+ and EBR presented increases in 
photosynthetic pigments, and this result was related to the 
role of EBR in mitigating the degradation of chlorophylls 
occasioned by photoinhibition. Photoinhibition is a phenom-
enon that occurs when photosynthetic pigments absorb light 
excessively, which leads to damage at the reaction centres 
of PSII, suggesting that EBR improves heat dissipation and 
electron transfer (Munns and Tester 2008b; Pereira et al. 
2019). Alzahrani et al. (2019) evaluated the physiological, 
biochemical, and antioxidant responses of two Vicia faba 
genotypes subjected to three concentrations of NaCl (50, 
100, and 150 mM) and found significant reductions of 54%, 

Table 3  Chloroplastic pigments, chlorophyll fluorescence, and gas exchange in tomato plants sprayed with EBR and exposed to  Na+ stress

Chl a  chlorophyll a; Chl b chlorophyll b; Total chl  total chlorophyll, Car  carotenoids; ΦPSII  effective quantum yield of PSII photochemistry, 
qP  photochemical quenching coefficient, NPQ  nonphotochemical quenching, ETR  electron transport rate, EXC  relative energy excess at the PSII 
level, ETR/PN  ratio between the electron transport rate and net photosynthetic rate, PN  net photosynthetic rate, E  transpiration rate, gs  stomatal 
conductance, Ci  intercellular  CO2 concentration, WUE  water-use efficiency, PN/Ci  carboxylation instantaneous efficiency. Columns with differ-
ent letters indicate significant differences from the Scott-Knott test (P < 0.05). Values described corresponding to means from six repetitions and 
standard deviations

Na+ EBR Chl a (mg  g−1 
FM)

Chl b (mg  g−1 
FM)

Total Chl (mg  g−1 
FM)

Car (mg  g−1 FM) Ratio Chl a/Chl b Ratio Total Chl/Car

Chloroplastic 
pigments

 − − 4.11 ± 0.27b 1.37 ± 0.08a 5.48 ± 0.28b 0.63 ± 0.03b 3.02 ± 0.26a 8.77 ± 0.77a

 −  + 4.62 ± 0.26a 1.42 ± 0.13a 6.04 ± 0.22a 0.81 ± 0.05a 3.27 ± 0.32a 7.46 ± 0.64b

  + − 2.82 ± 0.17c 0.78 ± 0.03c 3.60 ± 0.17d 0.37 ± 0.01d 3.63 ± 0.25a 9.47 ± 0.73a

  +  + 3.92 ± 0.25b 1.13 ± 0.13b 5.04 ± 0.22c 0.61 ± 0.06c 3.53 ± 0.31a 8.36 ± 0.26a

Na+ EBR ΦPSII qP NPQ ETR (µmol 
 m−2  s−1)

EXC (µmol 
 m−2  s−1)

ETR/PN

Chlorophyll 
fluorescence

 − − 0.27 ± 0.03b 0.75 ± 0.05a 0.22 ± 0.02b 39.16 ± 3.84b 0.65 ± 0.43a 3.28 ± 1.16b

 −  + 0.31 ± 0.01a 0.78 ± 0.07a 0.19 ± 0.01b 44.96 ± 1.62a 0.61 ± 0.01b 2.68 ± 0.23c

  + − 0.24 ± 0.02b 0.65 ± 0.06b 0.37 ± 0.03a 35.85 ± 3.13b 0.66 ± 0.03a 5.31 ± 0.49a

  +  + 0.28 ± 0.01a 0.66 ± 0.06b 0.30 ± 0.02a 41.50 ± 1.65a 0.61 ± 0.04b 5.01 ± 0.21a

Na+ EBR PN (µmol  m−2  s−1) E (mmol  m−2  s−1) gs (mol  m−2  s−1) Ci (µmol  mol−1) WUE (µmol 
 mmol−1)

PN/Ci (µmol 
 m−2  s−1  Pa−1)

Gas exchange
 − − 12.74 ± 1.47b 2.59 ± 0.10b 0.24 ± 0.02b 252.00 ± 7.67b 6.60 ± 0.19a 0.049 ± 0.003b

 −  + 16.64 ± 1.12a 2.96 ± 0.16a 0.35 ± 0.02a 243.33 ± 7.55b 6.92 ± 0.43a 0.068 ± 0.003a

  + − 6.83 ± 0.64c 1.52 ± 0.12c 0.09 ± 0.01c 265.17 ± 10.17a 2.88 ± 0.24b 0.025 ± 0.001d

  +  + 7.87 ± 1.01c 1.61 ± 0.13c 0.11 ± 0.01c 261.50 ± 18.38a 3.20 ± 0.24b 0.032 ± 0.002c
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Fig. 3  Minimal fluorescence yield of the dark-adapted state (F0), 
maximal fluorescence yield of the dark-adapted state (Fm), variable 
fluorescence (Fv), and maximal quantum yield of PSII photochemis-
try (Fv/Fm) in tomato plants sprayed with EBR and exposed to salt 

stress. Columns with different letters indicate significant differences 
from the Scott-Knott test (P < 0.05). Columns corresponding to 
means from six repetitions and standard deviations

Table 4  Stomatal characteristics in tomato plants sprayed with EBR and exposed to  Na+ stress

SD  stomatal density, PDS  polar diameter of the stomata, EDS  equatorial diameter of the stomata, SF  stomatal functionality, SI  stomatal index. 
Columns with different letters indicate significant differences from the Scott-Knott test (P < 0.05). Values described corresponding to means 
from six repetitions and standard deviations

Na+ EBR SD (stomata per  mm2) PDS (µm) EDS (µm) SF SI (%)

Adaxial face
 − − 137.14 ± 12.05b 18.38 ± 1.03a 25.52 ± 1.51c 0.72 ± 0.06a 12.11 ± 1.03b

 −  + 142.86 ± 0.00a 16.24 ± 0.98b 22.62 ± 2.24d 0.72 ± 0.07a 13.69 ± 1.01a

  + − 107.14 ± 2.37d 19.58 ± 1.34a 29.26 ± 1.67a 0.67 ± 0.05a 9.44 ± 0.65d

  +  + 114.19 ± 1.81c 18.95 ± 1.62a 27.34 ± 1.72b 0.70 ± 0.07a 10.76 ± 0.75c

Abaxial face

 − − 175.57 ± 11.78a 18.81 ± 0.67b 25.91 ± 2.39b 0.73 ± 0.08a 13.40 ± 0.76a

 −  + 181.43 ± 6.32a 17.62 ± 1.47b 24.91 ± 2.31b 0.71 ± 0.09a 14.02 ± 0.95a

  + − 154.14 ± 10.11c 20.11 ± 1.83a 28.83 ± 0.91a 0.70 ± 0.06a 11.09 ± 0.87c

  +  + 164.29 ± 6.51b 19.74 ± 1.59a 26.94 ± 2.17b 0.74 ± 0.07a 12.47 ± 0.78b
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51%, and 51% for Chl a, Chl b, and Car, respectively, when 
compared to the control in the Hassawi-3 genotype.

Steroids increased Fm, Fv, and Fv/Fm values and decreased 
 F0, alleviating the damage provoked by salinity on PSII reac-
tion centres. The low Fv/Fm values in plants under salin-
ity are clear indicators of injury to thylakoid membranes 
due to negative interferences promoted by  O2

− in PSII, 
with subsequent inhibition of the photosynthesis process 
(Hussain and Reigosa 2011). In contrast, steroid protects 
the photosynthetic apparatus from ROS and attenuates the 
photoinhibition induced by excess NaCl in PSII reaction 
centres (Ahammed et al. 2012). In other words, steroid used 
probably interfered on translation of the psbA gene, which 
is required for transcription of pre-D1, a precursor of D1 
protein in PSII. Salinity often inhibits the degradation of D1 
protein during photoinhibition by blocking the interaction 

between FtsH, DegP2 proteases, and D1 protein (Ohnishi 
and Murata 2006). In addition, this study described that 
EBR caused increases in ΦPSII, ETR, and qp, while NPQ, 
EXC, and ETR/PN declined in plants pretreated with EBR 
and exposed to  Na+. There results demonstrate the positive 
effects of this steroid on ETR and better utilization of light 
energy via qp, improving ΦPSII (Qin et al. 2011; Qiu et al. 
2013; Kahlaoui et al. 2014). Wang et al. (2015) investigated 
chlorophyll fluorescence, leaf surface morphology, and cell 
ultrastructure in Vitis vinifera plants treated with EBR and 
exposed to water deficit and detected beneficial outcomes on 
Fv/Fm and ΦPSII, similar to the results found in this research.

Gas exchange was maximized, with increases in PN, E, 
gs, WUE, and PN/Ci and a decrease in Ci; these results indi-
cate positive effects associated with exogenous application 
of EBR. Plants treated with EBR and  Na+ had increases 

Fig. 4  Activities of superoxide dismutase (SOD), catalase (CAT), 
ascorbate peroxidase (APX), and peroxidase (POX) in tomato plants 
sprayed with EBR and exposed to salt stress. Columns with differ-

ent letters indicate significant differences from the Scott-Knott test 
(P < 0.05). Columns corresponding to means from six repetitions and 
standard deviations
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in SD and SI as previously reported, suggesting beneficial 
effects of EBR on the stomatal mechanism (Chaves et al. 
2009). This led to an increase in the gs values, verified in 
this study in plants under the effect of 100 nM EBR and 
150 mM NaCl, which led to higher  CO2 absorption (PN/Ci) 
and a probable increase in the activity of RuBisCo, an 
enzyme responsible for  CO2 fixation in the Calvin Cycle, 
and an ensuing increase in PN (Karlidag et al. 2011; Allel 
et al. 2018). The increase observed in WUE indicates a bet-
ter utilization of the water resource, a part of the adaptive 
mechanisms against the deleterious effects caused by the 
high concentration of  Na+ in the cells of the roots and leaves. 
In addition, the increase observed in E is intrinsically linked 
to gs, suggesting that EBR improves water inflow through 
stomatal adaptations, modulating tolerance to the osmotic 
and ionic imbalance induced by NaCl (Gupta et al. 2016; 

Hasanuzzaman et al. 2018). Our research corroborates the 
results of Shahbaz et al. (2008), who found increases in PN, 
E, and gs of two Triticum aestivum genotypes treated with 
EBR (0, 0.0125, 0.025, and 0.0375 mg  L−1) and exposed to 
NaCl (0 and 150 mM).

Functional and anatomical characteristics of the sto-
mata were improved upon treatment with EBR, resulting 
in increases in SD, SF, and SI values and decreases in PDS 
and EDS. It is conceivable that EBR stimulated transporters 
with a high affinity to  K+, therefore, enhancing the absorp-
tion of this ion and attenuating the imbalance in the  K+/
Na+ ratio, which is important for the osmoregulation of cells 
and stomatal functioning (Chen et al. 2005). A consequent 
increase in SF may have improved the efficiency of the gas 
exchange process, as previously verified in this study. The 
absorption and assimilation of  Na+ ions directly interfere 

Fig. 5  Superoxide  (O2
−), hydrogen peroxide  (H2O2), malondialde-

hyde (MDA), and electrolyte leakage (EL) in tomato plants sprayed 
with EBR and exposed to salt stress. Columns with different letters 

indicate significant differences from the Scott-Knott test (P < 0.05). 
Columns corresponding to means from six repetitions and standard 
deviations
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with the functionality and anatomy of the stomata, resulting 
in reduction of SD and SF. However, plants sprayed with 
EBR had decreases in PDS and EDS, resulting in higher SD 
and SI. Khan et al. (2003) reported that smaller and ellipti-
cal stomata present higher density and greater functional-
ity compared to large and cylindrical stomata, which has 
positive effects on WUE,  CO2 absorption, and gas exchange 
(Souza et al. 2018). Our results confirm the study conducted 
by Maia et al. (2018) working with two Lycopersicon escu-
lentum genotypes (BR-efficient and BR-deficient) sprayed 
with two EBR concentrations (0 and 100 nM) that showed 
that EBR increased SD, SF, and SI and decreased PDS and 
EDS values.

Plants treated with EBR and exposed to  Na+ increased 
the activities of the SOD, CAT, APX, and POX enzymes, 
demonstrating the action of EBR in the cellular homeostatic 

processes linked to the reduced production of oxygen reac-
tive species (ROS). Salinity frequently induces cellular redox 
imbalance, resulting in the accelerated accumulation of ROS 
(Parihar et al. 2015); however, our results revealed that EBR 
positively modulated the activity of enzymes responsible 
for the elimination of ROS through the antioxidant system 
(Fita et al. 2015). This system is composed of reactions that 
promote the detoxification of toxic radicals, such as  O2

− and 
 H2O2, with the enzyme SOD being the first defence line by 
dismutation of  O2

− to  H2O2 (Apel and Hirt 2004). Dong 
et al. (2017) studied EBR functions in relation to salt toler-
ance in Triticum aestivum seedlings subjected to three NaCl 
concentrations (0, 100, and 120 nM) and sprayed with 1, 
10, and 100 nM EBR and found increases in the enzymatic 
activities of SOD and POX after spraying with 10 nM EBR 
when compared to the same treatment without EBR.

Fig. 6  Leaf dry matter (LDM), root dry matter (RDM), stem dry 
matter (SDM), and total dry matter (TDM) in tomato plants sprayed 
with EBR and exposed to salt stress. Columns with different letters 

indicate significant differences from the Scott-Knott test (P < 0.05). 
Columns corresponding to means from six repetitions and standard 
deviations
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Steroid induced reductions in  O2
−,  H2O2, MDA, and EL 

levels in plants under 150 mM NaCl and maximized the 
activities of the antioxidant enzymes intrinsically related to 
ROS removal previously described in this study. Paralelly, 
Oliveira et al. (2018) found that EBR application improves 
 K+ uptake, which implies a reduction in the  K+/Na+ ratio. 
 K+ ions are responsible for cell osmoregulation, contributing 
among others to mitigate the production of ROS in chloro-
plasts in adverse conditions (Pang and Wang 2008; Kho-
shbakht et al. 2018). Our research corroborates the results 
described by Sun et al. (2015) investigating the application 
of EBR in Lolium perene plants under salt stress, observing 
reductions of 29% and 21% for  H2O2 and MDA, respectively, 
when sprayed with 10 nM EBR.

Treatment with exogenous EBR attenuated the impacts 
on biomass in plants exposed to 150 mM NaCl, increasing 
LDM, RDM, SDM, and TDM. This may be directly related 
to the improvement promoted by EBR on photosynthetic 
pigments, PSII efficiency, stomatal characteristics, and anti-
oxidant enzymes. Under salt stress, reduced rates of light 
absorption (Latrach et al. 2014), insufficient function of 
the photosynthetic machinery (Forieri et al. 2016a), cellu-
lar damage (Hu et al. 2016), and negative reflexes on leaf 
anatomy (Oliveira et al. 2018) are normally detected, and 
they result in lower biomass (Sharma et al. 2013). Interest-
ingly, our study discovered multiple positive effects of this 
steroid; it mitigated the degradation of photosynthetic pig-
ments via cell osmoregulation due to the reduced produc-
tion of ROS and photochemical dissipation as demonstrated 
by reductions in NPQ, EXC, and ETR/PN. In addition, it 
favoured cell division and expansion, as verified in the 

anatomical variables PPT and SPT, resulting in increase in 
growth. Fariduddin et al. (2014) studied the physiological, 
biochemical, and morphological responses in Cucumis sati-
vus plants under salt stress and observed an increase of 47% 
in TDM after spraying with  10−8 M EBR. Lima and Lobato 
(2017) studied Vigna unguiculata plants under water deficit 
combined with the application of EBR (0, 50, and 100 nM) 
and reported benefits on biomass, obtaining increases of 
11%, 7%, 10%, and 10% for LDM, SDM, RDM, and TDM, 
respectively.

Conclusions

This research confirmed that pretreatment with EBR in 
tomato plants attenuated the deleterious effects associated 
with  Na+ stress. EBR modulated protection and vasculariza-
tion to root structures, demonstrated by the increases in epi-
dermis thickness and metaxilem diameter, respectively. Con-
comitantly, this steroid relieved oxidative damage, which 
was clearly associated with elevation of the activities of anti-
oxidant enzymes, such as superoxide ascorbate peroxidase 
and guaiacol peroxidase. EBR also had beneficial effects on 
photosynthetic pigments, alleviating the degradation of chlo-
rophylls, concomitant with reductions in malondialdehyde 
and electrolyte leakage. In addition, pretreatment with EBR 
favoured higher biomass accumulation due to positive effects 
on leaf and root tissues, including improved performance of 
the photosynthetic apparatus. Therefore, these results sug-
gest that pretreatment with 100 nM EBR clearly provided 
protection in tomato plants under salt stress.

Fig. 7  Upper and side views of 
tomato plants sprayed with EBR 
and exposed to salt stress
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