Journal of Plant Growth Regulation (2022) 41:2846-2868
https://doi.org/10.1007/500344-021-10480-6

=

Check for
updates

Proline Exogenously Supplied or Endogenously Overproduced
Induces Different Nutritional, Metabolic, and Antioxidative Responses
in Transgenic Tobacco Exposed to Cadmium

Lucélia Borgo'%*38® . Flavio Henrique Silveira Rabélo'> - llara Gabriela Frasson Budzinski* - Thais Regiani Cataldi’ -

Thiago Gentil Ramires’ - Patricia Dayane Carvalho Schaker® - Alessandra Ferreira Ribas’ - Carlos Alberto Labate' -
José Lavres? - Ann Cuypers® - Ricardo Antunes Azevedo'

Received: 1 June 2021 / Accepted: 26 August 2021/ Published online: 3 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Proline plays adaptive roles in plant tolerance to cadmium (Cd)-induced stress, but many gaps remain to be elucidated as
the responses triggered by exogenously supplied proline or endogenously overproduction are not well known. Thus, we
assayed the nutritional status, metabolite profiling, and antioxidative responses in wild type and transgenic tobacco (Nico-
tiana tabacum L.) containing the P5SCSF129A gene under control of the cauliflower mosaic virus (CaMV35S) or stress
inducible rd29A promoters. The plants were exposed or unexposed to Cd (0 and 50 pmol L~ CdCl,-H,0) for 24 and 72 h.
The wild type plants were also treated with or without exogenous proline (1 mmol L™"). Plants supplied with exogenous
proline exhibited lower Cd translocation from roots to leaves than plants overproducing proline, avoiding oxidative dam-
ages in the leaves of these plants. Meanwhile, tobacco overproducing proline was less susceptible to Cd-induced nutritional
changes than wild type plants and presented better metabolic adjustment under Cd exposure compared to plants supplied
with exogenous proline. Plants overproducing proline increased the synthesis of sugars and organic acids under Cd expo-
sure, which contributed to absence of oxidative stress, since both superoxide dismutase and catalase were not active against
Cd-induced oxidative stress in these genotypes. Plants overproducing proline under the control of rd29A presented higher
proline concentration in comparison to the CaM V35S promoter. With exception of rd29A plants that presented high proline
and reduced glutathione (GSH) concentrations, the other plants presented an inverse correlation between proline and GSH
synthesis after 72 h of Cd exposure.
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Introduction

Cadmium (Cd) can induce several damages to plants, such
as nutritional imbalance, photosynthesis impairment, and
oxidative stress (Gallego et al. 2012; Lavres et al. 2019;
Carvalho et al. 2020). Oxidative stress has been discussed
as a primary effect of Cd exposure (Clemens 2006). Once
formed, reactive oxygen species (ROS) must be detoxi-
fied as efficiently as possible by enzymatic and non-
enzymatic antioxidants to minimize eventual damages in
plants (Soares et al. 2019). Superoxide dismutase (SOD,
EC 1.15.1.1) which dismutates superoxide (O, ") into
hydrogen peroxide (H,0,) and H,O, and catalase (CAT,
EC 1.11.1.6) that reduces H,0O, into H,O are between the
most important enzymes involved in antioxidative defense
(Gratao et al. 2005). However, lannone et al. (2015) sug-
gested that CAT did not play a crucial role in protection
against Cd toxicity in tobacco (Nicotiana tabacum L.)
plants, since this species is able to activate alternative
defense mechanisms such as ameliorated synthesis of pro-
line and glutathione.

The importance of proline for tobacco tolerance to
Cd was displayed by Islam et al. (2009), who described
that exogenous proline supply decreased lipid peroxida-
tion in tobacco cells exposed to Cd. Exogenous proline
supply also contributed to adjusting the nutritional status
of olive (Olea europaea L.) under Cd exposure (Zouari
et al. 2016). Nevertheless, the role of proline in modulat-
ing these responses is unknown. Also endogenous pro-
line accumulation is believed to play adaptive roles in
plant tolerance against Cd-induced toxicity (Islam et al.
2009; Zouari et al. 2016). Under Cd exposure, proline is
synthesized mainly from glutamate that is converted to
proline by two successive reductions catalyzed by A'-pyr-
roline-5-carboxylate synthetase (P5CS, EC 2.7.2.11) and
pyrroline-5-carboxylate reductase (PSCR, EC 1.5.1.2),
respectively (Verbruggen and Hermans 2008; Repkina
et al. 2019). However, proline synthesis can be limited by
P5CS activity that is subject to feedback inhibition by the
product proline (Hong et al. 2000). Thus, the use of trans-
genic plants containing the mutated enzyme PSCSF129A
(EC 2.7.2.11/1.2.1.41) that presents twice more proline
accumulation than wild type plants containing the enzyme
P5CS can be an alternative to understand the role of pro-
line in tolerance mechanisms against abiotic stress (Hong
et al. 2000).

Siripornadulsil et al. (2002) pointed out that micro-
alga Chlamydomonas reinhardtii P. A. Dang mutated to
express free proline was more tolerant to Cd than the wild
type. However, this increased tolerance was attributed
to a higher proline-induced glutathione synthesis. Glu-
tathione (GSH, y-Glu-Cys-Gly) can be oxidized to GSSG

during ROS scavenging, which contributes to preventing
the oxidative damages in cells (Yadav 2010). Once oxi-
dized, glutathione reductase (GR, EC 1.6.4.2) catalyzes
the reduction of GSSG into GSH (Gratio et al. 2005).
Clemens (2006) stated that in plants exposed to Cd, symp-
toms of oxidative stress such as lipid peroxidation often
are a consequence of GSH depletion due to the binding of
Cd** to GSH and/or its use as substrate for the synthesis
of phytochelatins [PCs, (y-Glu-Cys),-Gly, with n=2-11].
Phytochelatins are involved in Cd chelation and its trans-
port from the cytosol to the vacuole (Yadav 2010). It is
known that GSH and PCs synthesis are strongly induced
by Cd, but there is no available information about the
synthesis of these thiol compounds under Cd exposure in
plants overproducing proline. Therefore, we do not know
if there could be competition between proline and GSH,
since both need glutamate to be synthesized (Verbruggen
and Hermans 2008; Yadav 2010).

The action of enzymatic and non-enzymatic antioxidants
in ROS scavenging depends on the plant’s ability to recon-
figure its metabolic network to allow both the maintenance
of metabolic homeostasis and the production of compounds
that ameliorate the stress (Obata and Fernie 2012). Sun et al.
(2010) reported that the concentrations of proline, serine,
sucrose, and other metabolites with compatible properties
to these increased in Arabdopsis thaliana L. exposed to
50 umol L™' Cd compared to control, attenuating the Cd-
induced stress. Like proline and GSH, organic acids, amino
acids, sugars, and other related metabolites also can attenu-
ate the Cd-induced oxidative stress by acting as chelators,
antioxidants, and osmoprotectants (Sharma and Dietz 2006).
However, there is no information on metabolic adjustment
under Cd-induced stress in plants overexpressing proline or
plants supplied with exogenous proline. Thus, our aim with
this study was to better understand how exogenous proline
supply or proline overproduction could affect the nutritional
status, metabolite profile, activity of antioxidant enzymes,
concentrations of proline and glutathione, and transcript
levels of genes related to the metabolism of proline and glu-
tathione and contribute to attenuate the Cd-induced stress in
tobacco (notably in the leaves).

Materials and Methods
Plant Material and Experimental Design

The study was conducted in a greenhouse with controlled
conditions: 12 h/22 °C and 12 h/18 °C, 12/12 h light/dark,
photosynthetic active radiation of 170 pmol m~2 s~! at
the leaf level delivered by a combination of blue and red
Philips® Green-Power LED modules, and 65% relative
humidity. Seeds of wild type (Petite Havana SR1) and
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transgenic (T3) tobacco (N. tabacum L.) containing the
P5CSF129A mutated gene under control of the cauliflower
mosaic virus (CaMV35S; (called 35S from this point)) or
stress inducible rd29A promoters were sown in trays con-
taining vermiculite as substrate, with a daily supply of deion-
ized water. Eleven days after sowing, the nutrient solution
of Hoagland and Arnon (1950) at 15% of the ionic strength
was supplied, for 14 days. Then, the seedlings were placed
in a styrofoam support and transferred to hydroponics com-
posed of plastic trays containing 12 L of nutrient solution
of Hoagland and Arnon (1950) at 30% of the ionic strength.
From this point, the ionic strength of the solution was gradu-
ally increased until it reached 100% at 43 days after sowing.
The undiluted nutrient solution was composed of 6 mmol
L' Ca(NO;),-4H,0, 6 mmol L™! KNO,, 2.5 mmol L'
MgSO0,-7H,0, 1 mmol L~! KH,PO,, 100 pmol L~! H;BO;,
100 pmol L~! MnSO,-4H,0, 30 umol L~! ZnSO,-7H,0,
0.1 pmol L~! CuS0O,-5H,0, 1 pmol L~! Na,Mo0,-4H,0,
and 75 pmol L™! FeNa-EDTA. Solutions were replaced
weekly and remained constantly aerated throughout the
entire experiment through plastic tubes connected to an air
COMPpIessor.

Wild type (WT) and transgenic tobacco plants (35S or
rd29A) were either unexposed or exposed to Cd (50 pmol
L~! CdCl,-H,0), for 24 and 72 h. In addition, we evalu-
ated the effect of exogenous proline supply (1 mmol L)
on WT plants either unexposed or exposed to 50 pmol L~!
CdCl,-H,0, for 24 and 72 h. The exposure times were cho-
sen considering the fact that processes like gene expression
involved on plant adjustment to stress Cd-induced tends
to occur more often in short-term (Hendrix et al. 2020b;
Zdunek-Zastocka et al. 2021). On the 44th day after sowing
proline was added to the nutrient solution of WT plants,
and on the 45th day after sowing Cd was added to the nutri-
ent solution of all genotypes assayed. Moreover, WT, WT
receiving exogenous proline (WT + Pro), and transgenic
tobacco (35S and rd29A) collected before Cd supply (time
0 h) were used as control treatments. The trays used to grow
the tobacco plants were distributed in completely rand-
omized design with four replicates per condition, and ten
plants by replicate. At the moment of the harvest, plants
were separated into shoot and roots. The plant material col-
lected to determine the biomass production, nutrients and
Cd concentrations was dried in a forced ventilation oven
at 60 °C for 72 h, whereas the plant material collected to
perform the other analyses was snap frozen in liquid N and
stored at — 80 °C until the analyses were carried out.

Determination of Nutrients and Cd Concentrations
in Roots and Leaves

After drying in an oven at 60 °C for 72 h, the plant mate-
rial was ground in a Wiley type mill (Model 4, Thomas
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Scientific, Swedesboro, USA) and digested with 70-71%
HNOs; in a heat block (Cuypers et al. 2002). The concen-
trations of P, K, Ca, Mg, S, Cu, Fe, Mn, Zn, and Cd were
determined by inductively coupled plasma optical emission
spectrometry (ICP-OES, Agilent Technologies, 700 Series,
Belgium). Blank reagent samples were used in the diges-
tion for quality control. Standard reference material (NIST
1570a—spinach) was also used to assure the accuracy and
precision of the analytical methods. From Cd concentrations,
we calculated the Cd translocation factor by dividing the
Cd concentration in the leaves by the Cd concentration in
the roots.

Determination of Metabolite Profiling in the Leaves

Metabolites were extracted from 100 mg of frozen leaves
tissue in 0.5 mL of cold extraction solution [isopropanol/
acetonitrile/water (3:2:2, v/v/v)] containing succinic acid as
internal standard (1 mg mL™'), as described by Zhao et al.
(2015, 2016). Tungsten magnetic beads were added to the
mixture, and then, the samples were subjected to agitation
in a Vibration Mill (Retsch GmbH & Co., KG, Haan, Ger-
many) for 30 s and 20 Hz. Beads were removed and samples
centrifuged for 16,000xg for 10 min at 4 °C. The superna-
tant was filtered (Millex 0.22 uM filter, Millipore) and stored
at — 80 °C.

For derivatization of the samples, 30 pL of methoxy-
amine (15 pg pL~! in pyridine) were added to 100 pL of
the filtered extract previously lyophilized. The samples were
vortex-mixed for 1 min and incubated at room temperature
in dark for 16 h. After this step, 30 pL of N-methyl-N-tri-
methylsilyltrifluoroacetamide (MSTFA) with 1% of trimeth-
ylchlorosilane (TMCS) were added and the samples were
incubated in the dark for 1 h. Then, 30 pL of heptane were
added to the samples, vortex-mixed, and injected in a gas
chromatography mass spectrometer (GC-MS) (Pegasus 4D
GCxGC-TOFMS, Leco Corporation, St. Joseph, USA). At
this stage, control samples (blanks) and a series of alkanes
(C,—C,) were used, which it made possible to calculate the
retention indices (Schauer et al. 2005). After derivatization,
the samples were injected into the 7890A gas chromato-
graph (Agilent Technologies, Santa Clara, USA) coupled to
a Comb-xt automatic processor (Leap Technologies, Carr-
boro, USA).

The temperature of sample injection was 280 °C and
the septum purge flow was 20 mL min~' for 60 s. Helium
gas flow was constant through the column with a flow
rate of 1 mL min~'. The column temperature was main-
tained at 80 °C for 2 min and then increased by 15 °C
every minute until reaching 305 °C for 10 min. The col-
umn effluent was inserted into GCxGC-TOFMS ioni-
zation source (Pegasus 4D, Leco Corp.) equipped with
two fused silica columns: the first-dimension column



Journal of Plant Growth Regulation (2022) 41:2846-2868

2849

(Agilent DB-5) with 20 m length (0.18 mm inner diam-
eter X 0.18 pm film) and the second-dimension column
of 0.96 m (RXT-170.10 mm inner diameter X 0.10 pm
film). The transfer line and ion source temperatures were
280 and 250 °C, respectively. The ions were generated
by an electron beam of 70 eV in an ionization flow of
2.0 mA, and 10 spectra s~! in a mass range of m/z 45-800.
ChromaTOF v. 4.51 software (Leco Corp.) was used to
perform baseline correction and export all MS files in
NetCDF. Peak detection, retention time alignment, and
library matching were carried out using the TargetSearch
package (Cuadros-Inostroza et al. 2009). For the identifi-
cation of the metabolites, retention indices, spectra with
similarity (score) > 600, and metabolites with at least 3
fragments (mass count) were compared with data stored
in the database Golm-Metabolome—GMD—(available
at http://gmd.mpimp-golm.mpg.de/) (Kopka et al. 2005).
The intensity of each metabolite was normalized by the
fresh weight (mg) of the corresponding sample and the
total ion current (TIC) of each sample.

Determination of H,0, Concentration and Lipid
Peroxidation in the Leaves

Concentrations of H,0, were determined as described
by Alexieva et al. (2001), with modifications. Firstly,
0.2 g of frozen samples were macerated in 2 mL of 0.1%
(w/v) trichloroacetic acid (TCA) in the presence of 20%
(w/w) of polyvinyl polypyrrolidone (PVPP). After com-
plete homogenization, 2 mL of extract was centrifuged at
10,000xg for 10 min at 4 °C. An aliquot of 0.2 mL was
taken from the supernatant and then an aliquot of 0.2 mL.
of 100 mmol L~! potassium phosphate buffer (pH 7.0)
and 0.8 mL of 1 mol L~! potassium iodide was added to
the mixture. The solution was left for 1 h on ice in dark-
ness to stabilize the reaction. The readings were made in
a spectrophotometer at 390 nm (Genesys 10S UV-VIS,
Thermo Fisher Scientific, Waltham, USA).

The lipid peroxidation was determined estimating the
malondialdehyde (MDA) concentration from 2-thiobarbi-
turic acid (TBA) reactive compounds (Heath and Packer
1968). The initial procedures for MDA measurements
were the same as described for H,0,. Following cen-
trifugation, 0.25 mL of sample supernatant was added
to 1 mL of 20% (w/v) TCA containing 0.5% TBA. The
samples were incubated for 60 min at 95 °C, and then,
cooled in an ice bath for 1 min to stop the reaction. Sub-
sequently, the samples were centrifuged at 10,000xg for
10 min to separate the residues formed during heating and
to clarify the samples. The absorbance was measured at
535 and 600 nm by using a spectrophotometer (Genesys
10S UV-VIS).

Protein Extraction and Enzymatic Activities
Determination in the Leaves

Proteins were extracted from 250 mg of leaves samples that
were homogenized with a mortar and pestle in 100 mmol L™
potassium phosphate buffer (pH 7.5) containing 1 mmol L™
ethylenediaminetetraacetic acid (EDTA), 3 mmol L~! dithi-
othreitol (DTT), and 4% (w/v) PVPP (Azevedo et al. 1998).
The resulting homogenate was centrifuged at 10,000xg for
30 min at 4 °C, and the supernatant was stored at — 80 °C for
determination of the activities of antioxidative enzymes. Total
soluble protein concentrations were determined by the method
of Bradford (1976), using bovine serum albumin—BSA (Pro-
tein Standard, Sigma-Aldrich) as standard.

Total SOD activity was determined using a spectropho-
tometer (Giannopolitis and Ries 1977). The assays contained
1.79 mL of 50 mmol L™! sodium phosphate (pH 7.8), 225
uL of 1 mmol L™! p-nitro blue tetrazolium chloride (NBT),
780 uL of 50 mmol L~! methionine, 30 uL of 10 mmol L™
EDTA, 150 pL of 0.1 mmol L=! riboflavin, and 25 uL of pro-
tein extract. The reaction mixture was exposed to light for
5 min and measured at 560 nm.

Total CAT activity was determined using a spectrophotom-
eter following the method described by Kraus et al. (1995),
with modifications by Azevedo et al. (1998). The reaction
medium was composed of 1 mL of 100 mmol L' potassium
phosphate buffer (pH 7.5) and 25 pL of 0.25% H,0, solution.
The reaction started after adding 25 pL of plant extract, and
CAT activity was determined following the decomposition of
H,0, at 10 s intervals for 1 min at 240 nm.

Total GR activity was determined following the method
described by Smith et al. (1988), with modifications by
Azevedo et al. (1998). The reaction medium (1 mL) was
composed of 100 mmol L=! potassium phosphate buffer (pH
7.5), 100 uL of 1 mmol L~! GSSG, 100 uL of 0.1 mmol L'
NADPH, 500 puL of 1 mmol L! 5,5'-dithio-bis-(2-nitroben-
zoic acid) (DTNB), and 35 pL of protein extract. The activity
was estimated by GSSG reduction accompanied by monitoring
the change in absorbance at 412 nm for 1 min.

Determination of Proline Concentration
in the Leaves

The determination of proline concentration was performed by
using 100 mg of leaf tissue homogenized in 3% sulfosalicylic
acid. After centrifugation, the supernatant was taken for deter-
mination of the proline concentration at 520 nm, according to
Bates et al. (1973).
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Determination of GSH and GSSG Concentrations
in the Leaves

The concentrations of GSH and GSSG were determined
using spectrophotometry as described by Anderson (1985),
with modifications by Borges et al. (2018). Fresh leaves tis-
sue (200 mg) was homogenized in 1 mL of 50 mmol L
sulfosalicylic acid and centrifuged at 10,000xg for 20 min at
4 °C. Then, 0.2 mL of supernatant were added to 1.8 mL of
100 mmol L~! potassium phosphate buffer (pH 7.0) contain-
ing 0.5 mmol L™! EDTA and 100 pL of DTNB. The mixture
was kept in the dark for 5 min and then taken to spectro-
photometer (Genesys 10S UV-VIS) at 412 nm to measure
GSH concentration. Then, 100 pL of 0.4 mmol L~ NADPH
and 2 pL of GR (1 U/reaction) were added to the mixture,
which was kept in the dark for 20 min and read again in
the spectrophotometer at 412 nm to measure the concentra-
tions of GSH + GSSG. The concentrations of GSSG were
obtained by the difference between the concentrations of
GSH + GSSG and GSH. The redox state of glutathione was
also calculated as GSH/GSSG (Jozefczak et al. 2015).

Gene Expression Analysis in the Leaves

The expression of genes related to the synthesis and deg-
radation of proline (P5CSF129A, P5CS-1, P5CS-2, P5CR,
PDHI, and P5CDH), glutathione (GSH, GSH2, and GRI),
phytochelatins (PCS1), and metal transporters (MRP3 and
PDRS) plants was measured in the leaves of tobacco by real-
time reverse transcription PCR (RT-qPCR), as described
by Keunen et al. (2015). Total RNA was extracted using
the RNAqueous® Total RNA Isolation Kit (Ambion, Life
Technologies, Merelbeke, Belgium), followed by a DNAse
treatment (DNAse I Kit, Invitrogen, Thermo Fisher Scien-
tific). Then, extracted RNA was quantified in RNAse-free
PCR tubes using the QuantiFluor RNA System (Promega
Corp., Madison, USA) and 1 pL of RNA samples using a
portable fluorometer (Quantus Fluorometer, Promega Corp.,
Madison, USA). Random primers and SuperScript III RT
Kit (Invitrogen) were used to convert RNA (1 pg) into cDNA
according to the manufacturer. After this step, cDNA was
diluted 10 times in 1/10 diluted Tris—EDTA (TE) buffer
(Tris=HCI 1 mmol L™}, Na,-EDTA 0.1 mmol L™, pH 8.0)
and subsequently stored at 20 °C.

Real-time PCR quantification was performed in 96-well
optical plates using the 7500 Fast Real-Time PCR System
(Applied Biosystems, Life Technologies, Gent, Belgium)
and the Fast SYBR Green Master Mix (Applied Biosys-
tems). Amplification occurred under universal cycling
conditions (20 s at 95 °C, 40 cycles of 3 s at 95 °C, and
30 s at 60 °C), followed by the generation of a dissocia-
tion curve to verify amplification specificity. Forward and
reverse primers (300 nmol L™!) were manually designed
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using tobacco sequences deposited in GenBank (Table 1),
and quality verified using NetPrimer (http://www.premi
erbiosoft.com/netprimer/) software. Gene expression
was calculated using the 272C4 method in relation to WT
expression at the time O h (control). All data were normal-
ized by using the expression of two stable reference genes:
EFI-a (Elongation Factor 1-alpha) (Ye et al. 2016) and
NtEFa (Elongation Factor a) (Fassler et al. 2011). Primer
efficiencies were determined using a standard curve of a
two-fold dilution series generated from a pooled sample.

Statistical Analysis

To perform statistical analysis, each combination of geno-
type (WT, WT + Pro, 35S, and rd29A) and Cd rate (0 and
50 umol L~! CdCl,-H,0) was considered as a treatment,
totalling eight treatments. For the longitudinal analysis,
the times O (control treatments), 24 and 72 h have been
considered as factors (except for metabolite profiling that
was only determined at the 24 h and analyzed as described
below). Thus, for each treatment, a normal regression
model was built to test a possible difference in the mean
of the response variable between the different Cd exposure
times within the same treatment. To compare the means
between genotypes within each Cd rate in a fixed time and
to compare the means between Cd rate within each geno-
type in a fixed time, an analysis of variance (ANOVA) was
performed. When the F test was significant in the ANOVA,
we applied the post hoc tests (Tukey test) to provide spe-
cific information on which means differed from each other.
For all tests mentioned above, the p-value was fixed in 5%.
All statistical analyses were performed using R software
v. 3.0.2 (R Core Team 2019). Graphs were created and
plotted with SigmaPlot v. 10.0 (SIGMAPLOT 2006), and
the results are expressed as means + standard error of the
mean.

Multivariate (Partial least square discriminant analy-
sis—PLS-DA) and univariate (ANOVA) analyses were
performed on the entire metabolomics data set using the
MetaboAnalyst 4.0 (Chong et al. 2018). Data were nor-
malized by the median, log-transformed, and scaled by
Auto scaling prior to data analysis. Differentially abun-
dant metabolites were identified based on the variable
importance in projection (VIP > 1), followed by one-way
ANOVA (FDR, adjusted p <0.05).
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Table 1 Forward and reverse primers (300 nmol L™!) designed and optimized for Nicotiana tabacum L.

Group Gene Gene description Primers  Sequence (5'-3") PCR efficiency References
Reference genes EFl-a Elongation Factor 1-alpha F ATGATGACGACGATG 0917 Ye et al. (2016)
ATGATA
R GTAAGCCCTTCTTGC
TGAACAC
NtEFa Elongation Factor a F TTGGAAATGGATATG 0.885 Fissler et al. (2011)
CTCCAG
R CACCAACAGCAACAG
TTTGAC
Proline synthesis and P5CSFI29A  Mutated P5CS F TCTCGGGGGTTCATG  1.015 Primer designed for this
degradation AAGGA study
R AGCTCCCAATCTTCC
AACCG
P5CS-1* A'-Pyrroline-5-carboxylate F CTGGAGGCTCGAGTG  0.822 Dobri et al. (2011)
TAAATG
synthetase R TAGTTGTCCTGCCCT
TGTCC
P5CS-2* A'-Pyrroline-5-carboxylate F GTGCAGAGGTTGGGA  0.885 Dobra et al. (2011)
TTAGC
synthetase R TCACCGTCAACAATT
TGTCC
P5CR* Pyrroline-5-carboxylate F GGGAGCTTGCACTTG  1.025 Primer designed for this
GACTA study
reductase R CAGCCTTCTCCAACT
CGTGA
PDHI Proline dehydrogenase F CGTGGCAGAAATGAT  1.032 Dobra et al. (2011)
CTTGA
R ATTCCCCGAGTATGC
TCCTT
P5CDH Pyrroline-5-carboxylate F CAACAGGGGCTCCAC  1.004 Primer designed for this
dehydrogenase AGAAT study
R GGCACGGGACCAACA
TCATA
Glutathione synthesis and ~ GSH/ y-Glutamylcysteine syn- F GAGGATAGGCACTGA  0.988 Ye et al. (2016)
recovery thetase ACATGAA
R TCGCTCGGCAATACC
ATTTAG
GSH2 Glutathione synthetase F GCAGGTCAGAGATAC  1.015 Primer designed for this
AGAAAGG study
R ATTGCTGAAATACAT
TGCCCTG
GRI Glutathione reductase F CAACTGGTAGTAGGG  1.018 Primer designed for this
CTCATC study
R TTGCACCCATTCCTC
GCC
PCs synthesis PCS1 Phytochelatin synthase F GCTATCAAGGAAGAG  0.927 Primer designed for this
GTATTG study
R AACTGCTGTCTGATG
CTGCT
Metal transporters PDRS Pleiotropic drug resist- F GGGATCAATGTATGC 1.148 Fissler et al. (2011)
ance 8 TGCTG
(metal transporter) R TTCAAATCCAATCAT
AGCATAGACA
MRP3 Multidrug resistance- F GAGGATGTTCCTCAG  0.796 Fissler et al. (2011)
associated CTTCA
Protein 3 (metal trans- R AGGTACGGGCCAACA
porter) AAAG

Bold values refer to PCR efficiency

PCs phytochelatins

#Two copies in the tobacco genome
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Fig.1 Biomass production (A, B), Cd concentrations (C, D) in the
leaves (A, C) and roots (B, D), and Cd translocation factor (Cd TF,
E) in wild type (WT), WT supplied with 1 mmol L=! of exogenous
proline 24 h before Cd exposure (WT +Pro), and transgenic tobacco
(Nicotiana tabacum L.) plants containing the mutated PSCSFI129A
gene under control of the caulifiower mosaic virus CaMV35S (35S)
or stress inducible rd29A (rd29A) promoters, exposed to Cd (0
and 50 pmol L~! CdCl,-H,0) for 0 (control), 24 and 72 h. Distinct

@ Springer

upper case letters on the bars indicate difference between Cd rate (0
vs 50 pmol L™! CdCl,-H,0) within each genotype (WT, WT +Pro,
35S, and rd29A) over the time, and distinct lower case letters indicate
difference between genotypes within each Cd rate for each exposure
time (Tukey test, n=4, p <0.05). p-values in bold in the tables within
each figure indicate difference between exposure times within each
genotype and Cd rate (p <0.05). ND non-detected
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Results

Proline Overproduction Allowed Continuous Root
Biomass Production Even Under Cd Exposure

and Exogenous Proline Supply Decreased
Root-to-Shoot Cd Translocation in WT Plants

The biomass production of tobacco supplied with exoge-
nous proline or overproducing proline (35S and rd29A) did
not differ from that of WT, regardless of Cd rate (Figs. 1A,
B). However, all tobacco plants after 72 h exposed to Cd
exhibited lower biomass compared to unexposed plants.
Analyzing the data over the time, we observed that shoot
biomass of all plants continued increasing after 24 or 72 h
in both unexposed and Cd exposed conditions (Fig. 1A).
However, only the roots biomass of 35S and rd29A plants
continued increasing after 24 or 72 h of Cd exposure
(Fig. 1B).

Cadmium concentration in the leaves of WT did not dif-
fer from that of tobacco supplied with exogenous proline
or overproducing proline, regardless of Cd exposure time
(Fig. 1C). Meanwhile, Cd concentration in the roots of
35S and WT supplied with exogenous proline was higher
compared to the other plants after 72 h of Cd exposure
(Fig. 1D). Cadmium concentrations in the leaves and
roots of all plants increased over time due to Cd exposure
(Figs. 1C, D). Interestingly, Cd translocation from roots to
shoots in WT supplied with exogenous proline was lower
compared to WT grown without exogenous proline sup-
ply and to 35S and rd29A after 24 or 72 h of Cd expo-
sure (Fig. 1E). Cadmium translocation presented a tend to
increase over the time in all genotypes (Fig. 1E).

Cadmium Exposure and Exogenous Proline Supply
or Proline Overproduction Induced Changes

in Nutrients Concentrations in the Leaves and Roots
of Tobacco Plants

The concentrations of P, K, Mg, S, Cu, Fe, Mn, and Zn in the
leaves of plants supplied with exogenous proline or overpro-
ducing proline did not differ from WT collected before Cd
supply (control) (Tables 2 and 3). Meanwhile, both plants
overproducing proline tended to present higher K concentra-
tions in their roots in relation to WT (Table 2), while WT
supplied with exogenous proline tended to present lower
Mn and Zn concentrations in their roots compared to other
plants (Table 3). 24 h after the beginning of the study, rd29A
contained the highest P and Cu concentrations in the leaves
under Cd exposure. There was no difference in nutrient con-
centrations in the leaves and roots between the genotypes
after 72 h, regardless of Cd rate (Tables 2 and 3).

Cadmium exposure after 24 h increased P concentration
in the leaves of rd29A (Table 2) and decreased Mn and Zn
concentrations in the leaves of WT grown without or with
exogenous proline supply (Table 3). In general, there was
no effect of Cd exposure on nutrient concentrations in the
leaves of plants after 72 h, as well as there was no effect
of Cd exposure after 24 or 72 h on macronutrient con-
centrations in the roots of plants (Table 2), regardless of
exogenous proline supply or proline overproduction. Nev-
ertheless, 24 h of Cd exposure decreased Fe concentrations
in the roots of 35S, whereas 72 h of Cd exposure decreased
Mn concentrations in the roots of genotypes overproduc-
ing proline (Table 3). Iron concentrations increased after
72 h of Cd exposure in the roots of WT supplied with
exogenous proline (Table 3).

Analyzing the nutrient concentrations over the time,
we observed that Mg concentration in the leaves of plants
tended to decrease, especially under Cd exposure. For the
other nutrients there was no pattern as a result of exogenous
proline supply, proline overproduction, or Cd exposure
(Tables 2 and 3). Nutrient concentrations in the roots of
plants were less affected over time than nutrient concentra-
tions in the leaves, with exception of Fe concentration that
decreased over time, especially in plants unexposed to Cd
(Tables 2 and 3). There was no significant effect of geno-
types, Cd rate or exposure time on Ca concentrations (results
not shown), which ranged from 19.35 t0 29.61 g kg™' DW in
the leaves and from 13.12 to 22.68 g kg~! DW in the roots.

The Metabolite Profiling of Plants Overproducing
Proline Was Much More Differentiated Than in WT
Plants Receiving Exogenous Proline Supply in Order
to Adjust to Cd-Induced Stress

To assay the response of plants to Cd exposure we com-
pared WT with WT that received exogenous proline sup-
ply and with plants overproducing proline, in the absence
and presence of Cd. In total, 163 metabolites with known
structures were identified by GC-TOFMS and classified
as sugars and sugar acids (21.5%), amino acids and their
analogues (12.9%), lipids (12.3%), organic acids (12.3%),
steroids (6.7%), alkanes (4.3%), alkaloids (3%), nucleic
acids (2.4%), benzenoids (1.8%), and others (19.1%) (Sup-
plementary Table 1). To reduce the data dimensionality and
visualize the response of tobacco to Cd, we performed a
supervised PLS-DA obtaining score plots (Fig. 2A-C).
In the models obtained for WT supplied with exogenous
proline and for rd29A (Fig. 2A and C), the samples com-
ing from plants exposed to Cd were not grouped with the
correspondent ones unexposed to Cd, which indicates that
the metabolites’ response under Cd exposure can be distin-
guished from the other ones. Based on the parameter VIP
(=1) and ANOVA (FDR, adjusted p <0.05), 3, 18 , and
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Table 2 (continued)

S concentration in the roots (g kg™! DW)

S concentration in the leaves (g kg~ DW)

0.423

0.210

5.80+0.88 Aa 0.724
532+0.57 Aa 4.25+0.44 Aa 0.875

4.86+0.65 Aa

4.51+041a

0.049
0.384
0.164
0.081

0.071

0.667

3.14+0.30Aa
1.85+0.11 Aa 2.17+0.33 Ba 0.962

1.99+0.36 Aa

2.19+0.32a

35S

0.191

0.184
0.124
0.277

5.39+0.08 Aa

0.295

2.70+0.01 Aa 0.512

50

0.013

0.369
0.480

4.87+0.35 Aa

+ 4.13+0.35 Aa

5.17+0.28 Aa

494+046a

0.143
0.012

322+0.19 Aa 0.202

2.54+0.27 Aa

234+024a 249+0.13 Aa

0

50
Means + SEM followed by distinct upper case letters indicate difference between Cd rate (0 vs 50 pmol L™! CdCl,-H,0) within each genotype (WT, WT+ Pro, 35S, and rd29A) over the time,

and distinct lower case letters indicate difference between genotypes within each Cd rate for each exposure time (Tukey test, n

rd29A

0.536

4, p<0.05)

p-values in bold indicate difference between Cd exposure times within each genotype and Cd exposure condition (p <0.05)

34 responsive metabolites were identified in WT supplied
with exogenous proline and in 35S and rd29A, respectively.
Responsive metabolites were composed mainly of amino
acids and derivatives, organic acids, and sugars (Supplemen-
tary Table 2). The differentially abundant metabolites for
each comparison were plotted as heatmaps with hierarchical
clustering (Fig. 2D-F).

From the heatmaps we observed that each genotype
adjusted to Cd exposure using different metabolic strate-
gies. Only 3 metabolites were significantly abundant in WT
supplied with exogenous proline (Fig. 2D). Ornithine was
up-regulated in WT, while erythronic acid was up-regulated
in WT supplied with exogenous proline and threonine was
up-regulated after Cd exposure in WT supplied with exoge-
nous proline (Fig. 2D). Hierarchical clustering distinguished
5 and 6 groups of metabolites for the comparisons related
to 35S and rd29A, respectively (Figs. 2E, F). Metabolites
such as galactose-6-phosphate, N-tetradecanoyl-homoserine
lactone, and erythronic acid were down-regulated in 35S
compared to WT unexposed to Cd, but other metabolites
such as lactulose and hydroquinone were up-regulated in
35S compared to WT exposed to Cd (Fig. 2E). Cadmium
exposure led to accumulation of N-tetradecanoyl-homoser-
ine lactone and N-(3-oxohexanoyl)-homoserine lactone
in WT, and lactulose, hydroquinone, and glyceric acid in
35S (Fig. 2E). Comparing WT and rd29A we observed that
metabolites such as sucrose and galactose-6-phosphate were
more accumulated in rd29A compared to WT unexposed
and exposed to Cd (Fig. 2F). Cadmium exposure induced
the accumulation of several metabolites in WT (e.g., raf-
finose and mannitol) and rd29A (e.g., sucrose and cysteine)
(Fig. 2F).

There Was No Lipid Peroxidation and Reduction

on Protein Concentration Cd-Induced in the Leaves
of Tobacco Plants, Despite Decreased SOD Activity
Over Time in WT Plants Exposed to Cd

The H,0, concentration in the leaves of tobacco supplied
with exogenous proline or tobacco overproducing proline
did not differ from WT, regardless of Cd rate (Fig. 3A).
Only the 35S presented higher H,0, concentration in their
leaves after Cd exposure for 24 h compared to unexposed
plants. From the analysis of the data over time, we can see
that there were only small variations on H,0, concentra-
tions in the leaves of plants, regardless of genotypes or Cd
rate (Fig. 3A).

In general, there was no relation between the concen-
trations of H,O,, MDA, and soluble protein (Fig. 3A-C).
The MDA concentrations in the leaves were very similar
to each other in the control treatments and after 24 h, but
after 72 h, plants unexposed to Cd that received exoge-
nous proline supply presented higher MDA concentrations
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Fig.2 Partial least squares discriminant analysis (PLS-DA) of the
metabolites identified by GC-TOFMS (A—C) and hierarchical cluster-
ing with heatmap showing the relative abundance of the metabolites
(D, F) in the leaves of wild type (WT), WT supplied with 1 mmol
L~! of exogenous proline 24 h before Cd exposure (WT + Pro), and
transgenic tobacco (Nicotiana tabacum L.) plants containing the
mutated P5SCSFI129A gene under control of the cauliflower mosaic
virus CaMV35S (35S) or stress inducible rd29A (rd29A) promot-
ers, exposed to Cd (0 and 50 pmol L™! CdCl,-H,0) after 24 h. Score
plot model (A) and hierarchical clustering (D) for WT +Pro — Cd,
WT+Pro+Cd, WT — Cd, and WT +Cd; score plot model (B) and

compared to the other plants. Cadmium exposure did not
increase MDA concentrations in the leaves, regardless of
the genotypes or exposure time. There was also no effect
of genotypes nor Cd rate on soluble protein concentrations

@ Springer

hierarchical clustering (E) for 35S — Cd, 355+Cd, WT — Cd, and
WT+Cd; score plot model (C) and hierarchical clustering (F)
for rd29A — Cd, rd29A+Cd, WT — Cd, and WT+Cd. Outliers
(WT +Pro+Cd) were removed from the models (A). PLS-DA cross
validation parameters: R? (correlation analysis: 0.99, 0.99, 0.99), and
Q? (predictive capability: 0.84, 0.83, 0.84) for the three first princi-
pal components from the models A, B and C, respectively. The rela-
tive metabolite level is depicted by the color scale (D-F): red indi-
cates up-regulation and blue indicates down-regulation (Color figure
online)

in the leaves of plants (Fig. 3C). However, we can see
that Cd exposure decreased the soluble protein concentra-
tion in the leaves of WT over time, differently from which
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Fig.3 Concentrations of hydrogen peroxide (H,0,, A), malondial-
dehyde (B) and soluble protein (C) and activities of superoxide dis-
mutase (SOD, D) and catalase (CAT, E) in the leaves of wild type
(WT), WT supplied with 1 mmol L™' of exogenous proline 24 h
before Cd exposure (WT+Pro), and transgenic tobacco (Nicotiana
tabacum L.) plants containing the mutated P5SCSFI29A gene under
control of the caulifiower mosaic virus CaMV35S (35S) or stress
inducible rd29A (rd29A) promoters, exposed to Cd (0 and 50 pmol

CdCl.H20 (umol L-1)

L! CdCl,-H,0) for 0 (control), 24 and 72 h. Distinct upper case let-
ters on the bars indicate difference between Cd rate (0 vs 50 pmol L™
CdCl,-H,0) within each genotype (WT, WT +Pro, 35S, and rd29A)
over the time, and distinct lower case letters indicate difference
between genotypes within each Cd rate for each exposure time (Tukey
test, n=3, p<0.05). p-values in bold in the tables inside each figure
indicate difference between exposure times within each genotype and
Cd rate (p <0.05)
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occurred with plants supplied with exogenous proline or
overproducing proline after 72 h of Cd exposure (Fig. 3C).

The activities of the enzymes SOD and CAT of plants
supplied with exogenous proline or overproducing proline
did not differ from WT, regardless of Cd rate (Fig. 3D, E).
There was also no effect of Cd exposure on SOD and CAT
activities, regardless of genotypes. Over the time, we can
observe that tobacco grown without exogenous proline sup-
ply or proline overproduction tended to present lower SOD
activity due to Cd exposure for 72 h (Fig. 3D). Meanwhile,
WT supplied or not with exogenous proline presented an
increase on CAT activities in their leaves after 72 h com-
pared to WT of the control, regardless of Cd rate (0 vs 72 h;
Fig. 3E).

Plants Overproducing Proline Under the Control
of the rd29A Promoter Presented Higher Proline
Accumulation, Which Correlated with Genes
Controlling the Metabolism of Proline

In the absence of Cd, rd29A presented higher proline con-
centrations compared to other plants at the times O and 24 h

60

Genoypes 0T palis - [TJWT [JWT+Pro
(unolL ) 0s 24h 05 T2h 24 s 72h _
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Fig.4 Proline concentration in the leaves of wild type (WT), WT
supplied with 1 mmol L™! of exogenous proline 24 h before Cd expo-
sure (WT+Pro), and transgenic tobacco (Nicotiana tabacum L.)
plants containing the mutated P5CSF129A gene under control of the
cauliflower mosaic virus CaM V35S (35S) or stress inducible rd29A
(rd29A) promoters, exposed to Cd (0 and 50 pmol L™ CdCl,-H,0)
for O (control), 24 and 72 h. Distinct upper case letters on the bars
indicate difference between Cd rate (0 vs 50 pmol L~! CdCl,-H,0)
within each genotype (WT, WT+Pro, 35S, and rd29A) over the
time, and distinct lower case letters indicate difference between geno-
types within each Cd rate for each exposure time (Tukey test, n=3,
p<0.05). p-values in bold in the tables inside each figure indicate
difference between exposure times within each genotype and Cd rate
(p<0.05)
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(Fig. 4). Differently from the results observed in Cd absence,
both transgenic tobacco lines presented similar proline con-
centrations to WT after 24 h of Cd exposure, regardless of
exogenous proline supply. 72 h after, rd29A presented higher
proline concentration in relation to other plants, regardless
of Cd rate. Proline concentration was not affected by Cd
exposure in the leaves of WT and 35S. On the other hand,
proline concentrations in the leaves of rd29A exposed to Cd
was 90% lower compared to plants unexposed to Cd after
24 h, but after 72 h, proline concentrations in the leaves of
rd29A exposed to Cd was 97% higher compared to rd29A
unexposed to Cd. The analysis of the data over the time
showed that proline concentrations in the leaves of rd29A
exposed to Cd after 72 h were 63% higher in relation to
control (Fig. 4).

The higher proline concentration observed in rd29A col-
lected at the times O and 24 h, in the absence of Cd (Fig. 4),
probably occurred due to a higher PSCSF129A expression
(Fig. 5A), since there was no significant difference in the
expression of P5CS-1, P5CS-2, and P5CR (Fig. 5B-D) as
compared to the other plants. Although unexposed rd29A
presented the highest expression of PDHI compared to the
other plants (Fig. 5E), proline was highly accumulated in
these conditions (Fig. 4). There was no variation between
genotypes unexposed to Cd concerning the expression of
P5CDH (Fig. 5F). On the other hand, 24 h after Cd exposure
plants overproducing proline presented similar proline con-
centrations to WT, regardless of exogenous proline supply
(Fig. 4), even the transgenic plants presenting lower PSCDH
expression compared to WT (Fig. 5F). This result probably
is related to the low expression of PSCSF129A and P5CR
under Cd exposure after 24 h (Fig. 5A and D).

The Synthesis of GSH and the Capacity to Keep
Glutathione in Its Reduced Form Was Limited
in Tobacco Plants Overproducing Proline Under
Control of 35S Promoter

The concentrations of GSH and GSH + GSSG, and the
redox state of GSH in tobacco supplied with exogenous
proline or overproducing proline did not differ from that
of WT collected immediately before Cd supply, differently
from the concentration of GSSG that was lower in 35S
(Fig. 6A-D). 24 and 72 h after the beginning of the study,
there was no difference in the concentrations of GSH,
GSSG, and GSH + GSSG (Fig. 6A-C), and in the redox
state of GSH (Fig. 6D) between the genotypes unexposed
to Cd. On the other hand, when the tobacco lines were
exposed to Cd for 72 h, 35S presented lower concentra-
tions of GSH and GSH + GSSG and a lower redox state
of GSH (Fig. 6A and C, D). Cadmium exposure induced
higher GSH accumulation in WT (regardless of exogenous
proline supply) and rd29A compared to the same plants
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Fig.5 Relative expression (fold change) of the genes P5CSF129A
(A), P5CS-1 (B), P5CS-2 (C), P5CR (D), PDHI (E), P5CDH (F),
GSHI (G), GSH2 (H), GRI (I), PCSI (J), MRP3 (K), and PDRS
(L) in the leaves of wild type (WT), WT supplied with 1 mmol L~!
of exogenous proline 24 h before Cd exposure (WT+Pro), and
transgenic tobacco (Nicotiana tabacum L.) plants containing the
mutated P5SCSFI129A gene under control of the cauliflower mosaic
virus CaM V35S (35S) or stress inducible rd29A (rd29A) promoters,
exposed to Cd (0 and 50 pmol L CdCl,-H,0) for 0 (control), 24

and 72 h. Distinct upper case letters on the bars indicate difference

unexposed to Cd after 72 h (Fig. 6A). The concentration
of GSH + GSSG was higher in WT exposed to Cd com-
pared to WT unexposed to Cd after 72 h, regardless of
exogenous proline supply (Fig. 6C). The redox state of
GSH in WT and rd29A exposed to Cd was higher than
in the same plants unexposed to Cd after 72 h (Fig. 6D).
Analyzing these results over the time, 35S have low capac-
ity to keep glutathione in its reduced form (GSH) under
Cd exposure (Fig. 6A-D), even when presenting similar
GR activities as in other plants after 24 and 72 h of Cd

exposure (Fig. 6E).

There was no difference in the expression of the genes
GSH1 and GSH?2 in the leaves of unexposed plants (Fig. 5G,
H), but after 24 h of Cd exposure the expression of GSH]
and GSH2 in rd29A was lower than WT. The low expres-
sion of GSHI and GSH2 did not limit the synthesis of GSH
in rd29A in relation to other plants exposed to Cd for 24 h
(Fig. 6A). Although the expression of GR! (encoding for

between Cd rate (0 vs 50 pmol L™! CdCl,-H,0) within each geno-
type (WT, WT +Pro, 35S, and rd29A) after 24 h, and distinct lower
case letters indicate difference between genotypes within each Cd rate
for each exposure time (Tukey test, n=3, p <0.05). Asterisks (¥) over
the letters on the bars inside each figure indicate difference between
exposure times within each genotype and Cd rate (p <0.05). **Rela-
tive expression levels to transgenic tobacco overexpressing proline
under control of constitutive promoter CaMV35S (35S) unexposed to
Cd at the time O h (control)

after 24 h of Cd exposure (Fig. 5I), this genotype presented
similar GR activity as the other plants (Fig. 6E).

There was no difference in PCS] expression between
the plants after 24 h, regardless of Cd rate. Taking together
the results of PCSI expression (Fig. 5J) and GSH con-
centration (Fig. 6A) we can conclude that PCs concentra-
tions in the genotypes assayed should be similar to each
other after 24 h. Nevertheless, the higher expression of
the gene MRP3 that encodes for the ABCC3 transport-
ers (vacuolar membrane-localized protein involved in the

vacuolar transport of PC—Cd complexes) (Brunetti et al.

GR) was lower in the leaves of 35S compared to other plants

2015) in the leaves of WT supplied with exogenous proline
compared to 35S and rd29A after 24 h of Cd exposure
(Fig. 5K) suggests that PCs synthesis was possibly higher
when there was exogenous proline supply. There was no
effect of genotypes nor Cd rate on the expression of PDRS
(pleiotropic drug resistance) that is involved in Cd cel-
lular efflux (Kim et al. 2007). However, PDRS expression

@ Springer
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Fig.6 Concentrations of reduced glutathione (GSH, A), oxidized glu-
tathione (GSSG, B) and total glutathione (GSH+ GSSG, C), redox
state of glutathione (GSH/GSSG, D) and activity of glutathione
reductase (GR, E) in the leaves of wild type (WT), WT supplied
with 1 mmol L™ of exogenous proline 24 h before Cd exposure
(WT+Pro), and transgenic tobacco (Nicotiana tabacum L.) plants
containing the mutated PSCSFI29A gene under control of the cau-
liflower mosaic virus CaMV35S (35S) or stress inducible rd29A
(rd29A) promoters, exposed to Cd (0 and 50 pmol L! CdCl,-H,0)

@ Springer

for O (control), 24 and 72 h. Distinct upper case letters on the bars
indicate difference between Cd rate (0 vs 50 pmol L~ CdCl,-H,0)
within each genotype (WT, WT+Pro, 35S, and rd29A) over the
time, and distinct lower case letters indicate difference between geno-
types within each Cd rate for each exposure time (Tukey test, n=3,
p<0.05). p-values in bold in the tables inside each figure indicate
difference between exposure times within each genotype and Cd rate
(r<0.05)
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in the leaves of WT and rd29A exposed to Cd after 24 h
decreased over the time (Fig. SL).

Discussion

Although it is believed that proline accumulation plays an
adaptive role in plant tolerance against Cd-induced toxicity
(Islam et al. 2009; Zouari et al. 2016; Repkina et al. 2019),
this process is not completely known. In this study we
assayed the effect of exogenous proline supply and proline
overproduction on tolerance mechanisms of tobacco plants
exposed to Cd in order to better understand the role of pro-
line in mitigating Cd-induced toxicity. It is known that Cd
exposure can change a series of physiological, biochemi-
cal, and molecular events in plants that leads to inhibi-
tion of biomass production (Clemens 2006; Gallego et al.
2012), as occurred with all tobacco plants after 72 h of Cd
exposure (Fig. 1A, B). The biomass production of plants
supplied with exogenous proline or overproducing proline
under control of 35S and rd29A promoters did not differ
from that of the WT, under Cd exposure (Fig. 1A, B). Dif-
ferently from our results, Zouari et al. (2016) described
that olive plants exposed to Cd produced more biomass
when it received exogenous proline supply, and attributed
this result to a differentiated proline-induced distribution
of Cd between roots and leaves. In our study, only WT
plants grown with exogenous proline supply exhibited Cd
concentration in their leaves below 100 mg kg~! DW after
72 h of Cd exposure (Fig. 1C), which can be attributed
to a higher Cd accumulation in the roots (Fig. 1D) and
a lower root-to-shoot Cd translocation (Fig. 1E) in this
treatment. It is known that Cd accumulation in the roots is
strongly related to PCs synthesis in this tissue (Clemens
2006). Therefore, it is possible that exogenously applied
proline allowed high proline accumulation in the roots of
tobacco exposed to Cd helping to reduce oxidative damage
and contributing to a more reducing cellular environment,
which may then have increased GSH concentration, allow-
ing higher PCs synthesis (Siripornadulsil et al. 2002).
Some studies have also pointed out beneficial effects of
proline on maintaining the nutritional plant status (Islam
et al. 2009; Zouari et al. 2016), which is desirable since
the modulation of nutritional status is involved in plant
tolerance against Cd-induced stress (Carvalho et al. 2020).
Indeed, in general tobacco lines overproducing proline
were less susceptible to Cd-induced nutritional changes
compared to WT (Tables 2 and 3). However, Cd expo-
sure increased P concentrations in the leaves of rd29A and
decreased Mn and Zn concentrations in the leaves of WT
plants, regardless of exogenous proline supply, 24 h after
the beginning of the study (Tables 2 and 3). Interestingly,
when P concentration in the leaves of rd29A increased due

Cd to exposure (Table 2), there was a decrease in proline
concentration (Fig. 4). Aleksza et al. (2017) mentioned
that phosphate starvation led to gradual increase in proline
concentration in A. thaliana as well as in transcriptional
activation of P5CS-1. In fact, the expression of P5CS-1 in
our study was higher in tobacco plants which presented
lower P concentrations after 24 h of Cd exposure (Fig. 5A;
Table 2). However, there is no relationship between P con-
centration and P5CSF129A expression (Table 2; Fig. 5A).
Bertoli et al. (2012) evaluated the effect of Cd on uptake
and translocation of nutrients in tomato (Solanum lycoper-
sicum L.) and also found lower Mn and Zn concentrations
in the leaves of plants exposed to Cd, which was attributed
to the antagonistic competition between Cd and Mn/Zn. In
our study, Cd exposure also decreased S concentration in
the leaves of 35S plants after 72 h (Table 2), which pos-
sibly contributed to the lower concentrations of GSH and
GSH + GSSG in 35S compared to other plants after 72 h
(Fig. 6A and C), since S is a component of cysteine that is
used for GSH synthesis (Yadav 2010).

Tobacco 35S also presented lower Fe concentrations in
their roots after 24 h of Cd exposure, which was different
from WT plants supplied with exogenous proline that pre-
sented higher Fe concentration after 72 h of Cd exposure
(Table 3). Sharmila et al. (2017) suggested that proline
accumulation in leaves of Indian mustard exposed to Cd
was coupled to Fe depletion. If we consider that the same
could occurs in the roots, our results make sense since 35S
plants should synthesize more proline and WT plants do
not need to synthesize proline due to exogenous supply.
Furthermore, both transgenic plants overproducing pro-
line presented decreased Mn concentrations in their roots
after 72 h of Cd exposure (Table 3). The lower concentra-
tions of cationic micronutrients, such as Mn, in the roots
of plants have been often attributed to competition of Cd**
for the same nutrient transporters (Bertoli et al. 2012), but
lower Mn concentrations in the roots can indicate protective
mechanisms to counteract the entrance of positive charges
originating from Cd accumulation in roots (Carvalho et al.
2020). Changes on nutrient concentrations are often coupled
to negative outcomes on plant development under Cd expo-
sure, but the degree of plant tolerance to short Cd exposure
is related to its capacity to adjust the nutritional status in
order to improve its performance under Cd-induced stress
(Carvalho et al. 2020). Manganese deficiency can increase
root endodermal suberization (Chen et al. 2019), which is an
important mechanism to immobilize Cd in cell walls (Gal-
lego et al. 2012). Dicotyledonous species such as tobacco
present several proline- or hydroxyproline-rich glycoprotein
constituents in the cell wall (Stiefel et al. 1988). Thereby,
it is probable that there is some link between proline, Mn
status, and root suberization, but this assumption needs to
be carefully investigated. Cd-induced changes on nutrient
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homeostasis can also affect the metabolic network of plants
that must be reconfigured under stress conditions to allow
the maintenance of metabolic homeostasis and the produc-
tion of compounds that ameliorate the stress (Obata and
Fernie 2012). Thus, the ameliorated capacity of tobacco
plants overproducing proline to cope with nutritional altera-
tions (Tables 2 and 3) could facilitate metabolic adjustments
under Cd-induced stress (Fig. 2).

Only 3 metabolites were significantly different in WT
plants grown with exogenous proline supply (Fig. 2A and
D), but 18 and 34 responsive metabolites were identified
in plants overproducing proline under control of 35S and
rd29A promoters, respectively (Fig. 2E, F), indicating us
that proline is involved in metabolic network adjustments,
especially under stress conditions. In 35S plants, Cd expo-
sure induced the accumulation of sugars (lactulose and
similar to glycerolaldopyranosid) and organic acids (glyc-
eric and galactaric acids) (Fig. 2E). Karalija and Selovi¢
(2018) related proline seed priming with an increased sugar
content in maize (Zea mays L.), indicating an interaction of
increased proline and soluble sugars on antioxidant plant
protection. Sugars are involved in direct ROS quenching in
different organelles and act in an integrated cellular redox
network (for a comprehensive review see Keunen et al.
2013). Like sugars, organic acids are important metabo-
lites to decrease the Cd-induced stress in plants (Sun et al.
2010). Sun et al. (2006) pointed out that organic acids are
related to Cd hyperaccumulation in the leaves of Solanum
nigrum L. due to their roles in Cd complexation, transporta-
tion and storage, mainly in the vacuoles. Similarly to what
was observed in 35S plants, proline overproduction under
control of rd29A promoter allowed accumulation of sug-
ars (sucrose, galactose-6-phosphate, and mannitol), organic
acids (erythronic acid), and amino acids (cysteine and glu-
tamic acid) after 24 h of Cd exposure (Fig. 2F). The interac-
tion between proline and sugars (Karalija and Selovi¢ 2018),
such as sucrose that acts on hydroxyl (°OH) scavenging (Van
den Ende and Valluru 2009), is important to reduce oxida-
tive damage and contribute to a more reducing cellular envi-
ronment (Siripornadulsil et al. 2002). Thus, as speculated
by Siripornadulsil et al. (2002), a more reducing cellular
environment probably contributed for the increased cysteine
concentration in rd29A plants after Cd exposure (Fig. 2F),
which is essential for both GSH and PCs synthesis (Yadav
2010). The synthesis of antioxidants like sugars and GSH is
indispensable to avoid the Cd-induced oxidative damages.

Cd-induced oxidative damage leads to a vast number of
responses in plants depending on both, the Cd concentra-
tion and the exposure time (Gallego et al. 2012). These trig-
gered responses are particularly important to be understood
in leaves, since ROS production can impair photosynthesis
that in turn is one of the main causes of Cd-induced growth
inhibition (Zouari et al. 2016). Whereas oxidative stress has
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often been discussed as a primary effect of Cd** exposure
(Clemens 2006), only the plants overproducing proline
under the control of the 35S promoter presented higher H,0,
concentrations in their leaves after 24 h of Cd exposure com-
pared to unexposed plants (Fig. 3A). However, Cd exposure
did not induce lipid peroxidation (Fig. 3B) in all tobacco
genotypes assayed, regardless of exposure time. Our results
are similar to those described by Repkina et al. (2019) who
also did not observe any symptom of Cd-induced oxidative
stress in wheat leaves in the first 48 h of Cd exposure and
attributed this result to an efficient action of non-enzymatic
antioxidants and Cd-chelators (e.g., sugars, GSH, and PCs).
In our study, the activities of SOD and CAT also did not
increase due to Cd exposure, regardless of exogenous pro-
line supply or proline overproduction (Fig. 3D, E). Plants
not supplied with exogenous proline or overproducing pro-
line tended to present lower SOD activity over time after
Cd exposure (Fig. 3D). Perhaps SOD and CAT are not the
main line of defense against Cd-induced oxidative stress in
tobacco plants, as previously speculated in other studies.
Martins et al. (2014) pointed out that SOD was not heavily
involved in antioxidative responses of tobacco exposed to
Cd. Iannone et al. (2015) stated that CAT did not play a cru-
cial role in tobacco protection against Cd toxicity, since this
species is able to activate alternative defense mechanisms
such as ameliorated synthesis of proline and GSH.

Proline accumulation is a common physiological response
in many plant species under biotic and abiotic stresses (Hong
et al. 2000; Sharma and Dietz 2006), such as Cd exposure
(Islam et al. 2009; Sun et al. 2010; Iannone et al. 2015;
Zouari et al. 2016; Repkina et al. 2019), since this amino
acid has protective functions such as osmotic adjustment,
stabilization of cellular structures, and ROS scavenging
(Verbruggen and Hermans 2008; Borgo et al. 2015). How-
ever, in our study Cd exposure only led to proline accu-
mulation in tobacco plants overproducing proline under the
control of the rd29A promoter, after 72 h (Fig. 4). This result
is probably related to the expression of the genes linked to
proline synthesis, since the results measured in the first
24 h of study indicate that the expression of P5SCSFI129A
in transgenic tobacco was higher in rd29A than 35S plants
(Fig. 5A). The first glutamate reduction in tobacco overpro-
ducing proline is regulated by PSCSFI129A. Kumar et al.
(2010) reported that proline accumulation in salt-stressed
rice (Oryza sativa L.) was closely correlated with the expres-
sion of the P5CSF129A gene. Moreover, the 35S promoter is
presumed to be a constitutive promoter, but it contains sev-
eral domains and subdomains that can confer different devel-
opmental and tissue-specific expression patterns in different
species (Borgo et al. 2015). These same authors reported
that tobacco overproducing proline under control of 35S pro-
moter presented higher proline concentrations in the roots
than in leaves. Despite the fact that tobacco overproducing
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proline under control of the 35S promoter, they did not pre-
sent higher proline concentrations in their leaves after Cd
exposure (Fig. 4). Nevertheless, the concentration of this
amino acid was two-fold higher compared to WT plants after
24 and 72 h of Cd exposure, which is in agreement with the
results described by Hong et al. (2000) for this genotype.
In non-transgenic plants, the levels of both P5CS and
P5CR transcripts were correlated with proline concentra-
tion in A. thaliana leaves (Verbruggen and Hermans 2008).
In the case of WT plants supplied with exogenous proline
that presented Cd-induced expression of P5CS-1 (Fig. 5B)
and low proline concentration (Fig. 4) after 24 h, it is pos-
sible that post-transcriptional changes took place, which lim-
ited proline synthesis. The low proline concentration in the
leaves of WT that received exogenous proline supply (Fig. 4)
can also be associated to low proline exportation via xylem
from roots to leaves due to the local proline storage in root
cells, in the absence and presence of Cd. This assumption
makes sense considering that PDH1 expression is strongly
induced by exogenous proline addition (Verbruggen and
Hermans 2008), but PDH1 expression in the leaves of WT
plants grown with or without exogenous proline addition
was similar to each other (Fig. SE). Gagneul et al. (2007)
reported that excessive proline was sequestered into the
vacuoles in the roots of non-stressed Limonium latifolium
L., whereas high proline concentrations were detected in
the cytosol of plants under salt-stress. Therefore, proline
coming from exogenous supply could be stored in the roots
and used when necessary in plants under Cd-induced stress.
Zouari et al. (2016) determined proline concentrations in the
roots and leaves of olive plants exposed to Cd in response
to exogenous proline supply and observed higher proline
concentrations in the roots (low exportation to leaves), which
was the tissue more damaged by the Cd-induced oxidative
stress. Although proline can also accumulate due to a low
degradation rate in reactions catalyzed by proline dehydro-
genase (PDH, EC 1.5.99.8) and pyrroline-5-carboxylate
dehydrogenase (PSCDH, EC 1.2.1.88) (Verbruggen and
Hermans 2008), there was no clear correlation between
proline concentration and the expression of the PDHI and
P5CDH genes in rd29A plants (Figs. 4 and 5E, F). With the
exception of rd29A that presented high proline concentra-
tion, there was no clear action of proline on the absence of
Cd-induced oxidative stress in the leaves of the other plants,
which can be associated with changes in Cd translocation
from roots to shoots and with the synthesis of non-enzymatic
antioxidants, such as sugars, organic acids, and GSH.
Glutathione is the most important non-enzymatic anti-
oxidant in plants exposed to Cd (Gratdo et al. 2005; Yadav
2010; Hendrix et al. 2020a). However, GSHI and GSH2
genes that encode for enzymes controlling GSH synthe-
sis (y-glutamylcysteine synthetase—GSHI1, EC 6.3.2.2;
and glutathione synthetase—GSH2, EC 6.3.2.3) were not

induced upon Cd exposure in the first 24 h (Fig. 5G, H), as
well as the GSH concentration in the leaves remained the
same in all genotypes (Fig. 6A). Vogeli-Lange and Wagner
(1996) proposed that leaf cells of tobacco have a respon-
sive ‘sensing system’ to keep GSH concentration at a fixed
level even under stress conditions. On the other hand, some
studies have shown that GSH induction by Cd in the leaves
of plants occurs more often under prolonged Cd exposure
and depends on signaling and substrates for GSH synthe-
sis, PCs synthesis from GSH, action of other antioxidants
over ROS, and Cd concentrations in this tissue (Clemens
2006; Mendoza-Cdzatl and Moreno-Sanchez 2006). Thus,
it is probable that the higher Cd concentration detected in
the leaves of the plants after 72 h of Cd exposure compared
to 24 h of Cd exposure (Fig. 1C) contributed to the higher
GSH concentration observed in the leaves of WT, regardless
of exogenous proline supply, and rd29A plants at the end
of the study (Fig. 6A). Hendrix et al. (2020a) reported that
GSH concentrations in the leaves of A. thaliana exposed
to Cd also did not differ from the control in the first 24 h,
but its concentration increased in relation to control plants
after 72 h of Cd exposure. Mendoza-Cdzatl and Moreno-
Séanchez (2006) suggested that plants exposed to Cd rates up
to 50 umol L~! can present an increase in GSH concentra-
tion, but high Cd concentrations often lead to GSH depletion
due its use as a substrate for PCs synthesis. In our study, the
higher Cd-induced PCSI expression (Fig. 5J) and the higher
MRP3 expression in the leaves of WT that received exog-
enous proline supply compared to the other tobacco plants
after 24 h of Cd exposure (Fig. 5K) suggest a possible higher
PCs synthesis in this treatment. PCS/ encodes for phytochel-
atin synthase (PCS, EC 2.3.2.15) (Wojas et al. 2008). So, the
lower concentrations of GSH and GSH + GSSG observed
in the leaves of 35S plant in comparison to the other plants
after 72 h of Cd exposure (Fig. 6A and C) possibly is related
to lower Cd-induced S concentrations (Table 2) or some Cd-
induced limitation on GSH synthesis or both. Wojas et al.
(2008) reported that Cd-induced y-glutamylcysteine (y-EC)
accumulation in tobacco leaves that resulted in lower GSH
concentrations in this tissue. As GSH2 expression (GSH2
ligates a glycine residue with y-EC to form GSH) in 35S
did not decrease after 24 h of Cd exposure (Fig. SH), it is
more likely that y-EC has been used to bind Cd, as related
by Wojas et al. (2008) in tobacco overexpressing PCS under
control of a 35S promoter.

The transgenic tobacco 35S also presented a lower redox
state of GSH after 72 h of Cd exposure (Fig. 6D), and a lower
capacity to keep glutathione in its reduced form (GSH) over
time under Cd exposure (Fig. 6A-D), even when presenting
similar GR activities as the other plants (Fig. 6E). These
results could indicate a relationship between proline and
GSH, but in our study there was no significative correlation
between proline and GSH concentrations for all genotypes
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assessed (data not shown). Thus, besides the possible limi-
tation in GSH synthesis due to the use of y-EC to bind Cd,
the lower redox state of GSH in 35S plants after 72 h of
Cd exposure can also be associated to the presence of glu-
tathione in its oxidized form due to an inefficient action of
CAT on H,0, scavenging in tobacco (Iannone et al. 2015).
Queval et al. (2011) observed that under limited CAT activ-
ity in the leaves of A. thaliana plants in response to increased
H,0, availability, glutathione metabolism was changed and
there was predominance of GSSG. This fact helps to explain
the higher GSSG concentration in relation to GSH in all
plants, even those unexposed to Cd (Fig. 6A, B). Noctor
et al. (2012) pointed out that there is a close relationship
between H,0, concentration and GSH status, and at moder-
ate rates of endogenous H,0O, production a decrease in the
leaf GSH/GSSG ratio is common. Although the low redox
state of GSH can limit the action of ascorbate—glutathione
cycle on ROS scavenging (Gratdo et al. 2005), Jozefczak
et al. (2015) described that in GSH-deficient mutants of
A. thaliana exposed to Cd, the more oxidized environment
contributed to the activation of alternative pathways using
both O, and H,0O, scavengers. Thus, it is possible that the
Cd-induced increase in sugars such as lactulose and organic
acids such as glyceric and galactaric acids in the leaves of
35S plants after 24 h of Cd exposure (Fig. 2E) may also
have occurred after 72 h of Cd exposure, contributing for
ROS scavenging. As mentioned before, both sugars and
organic acids play important roles on Cd-tolerance (Sharma
and Dietz 2006; Sun et al. 2006, 2010; Keunen et al. 2013;
Soares et al. 2019).

Conclusion

Exogenous proline supply induced different responses
compared to endogenous proline overproduction in tobacco
exposed to Cd. Plants supplied with exogenous proline pre-
sented lower Cd translocation from roots to leaves compared
to plants overproducing proline, which certainly contributed
to attenuate oxidative damages in the leaves of plants. On the
other hand, tobacco overproducing proline was less suscep-
tible to Cd-induced nutritional changes as compared to wild
type and showed better metabolic adjustment under stress
conditions than plants grown with exogenous proline supply.
In this sense, the absence of Cd-induced oxidative stress in
the leaves of plants overproducing proline is associated with
an enhanced proline-induced synthesis of metabolites such
as sugars and organic acids, since both SOD and CAT were
not the main line of defense against Cd-induced oxidative
stress in tobacco. Moreover, the absence of Cd-induced oxi-
dative stress in tobacco overproducing proline under control
of the stress inducible rd29A promoter can be attributed to a
higher proline and GSH concentrations. Transgenic tobacco
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under the control of the stress inducible rd29A promoter
exhibited higher proline concentrations than plants over-
producing proline under the control of the constitutive 35S
promoter. With exception of rd29A plants that presented
high proline and GSH concentrations, the others presented
an inverse correlation between proline and GSH synthesis
after 72 h of Cd exposure, suggesting a signaling network
between proline and GSH. However, new studies are neces-
sary to elucidate this assumption and to assay the action of
exogenous proline supply and proline overproduction under
prolonged Cd exposure, in roots and leaves.
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