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Abstract
Nitric oxide (NO) is a free-radical gasotransmitter signaling molecule associated with a varied spectrum of signal trans-
duction pathways linked to inducing cross-adaptation against abiotic stresses. It has crucial roles from seed germination to 
plant maturity, depending upon its cellular concentration. The functional cross-talk of NO among different stress signaling 
cascades leads to alteration in the expression of developmental genes that regulate biosynthesis and function of plant growth 
regulators (PGRs). NO-PGRs and secondary signaling compounds cross-talk trigger reprogramming of stress-responsive gene 
expressions, transcriptional gene modulations, redox regulating machinery, oxidative metabolisms, and multiple regulatory 
pathways under plant abiotic stress. Recent findings suggest NO as critical components of numerous plant signaling network 
that interplays with auxin, gibberellins (GA), abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), brassinosteroids (BRs), 
 H2O2, melatonin, hydrogen sulfide  (H2S), salicylic acid (SA), and other PGRs to modulate growth and development under 
multiple stresses. Considering the importance of NO signaling crosstalk under stress adaptation, in this review, we point out 
the biosynthesis and metabolism of NO and its crosstalk with numerous other signaling compounds. Further, recent cellular 
and molecular advances in NO signaling cross-talk under abiotic stress adaptations also have been discussed.
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Introduction

Nitric oxide (NO) is an essential gasotransmitter, which 
acts as a signaling molecule during plant stress. NO cross-
talk with other signaling molecules to transduce stress sig-
nals between the cells. These signaling molecules include 
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reactive oxygen species (ROS), phytohormones [Auxin 
(Aux), gibberellin (GA), cytokinin (CK), ethylene (ET), 
and abscisic acid (ABA), jasmonic acid (JA)], plant growth 
regulators’ melatonin (MT), and other signaling molecules. 
This suggests that two or more biosynthesis pathways share 
some common path to regulate signals in better ways, also 
known as crosstalk. Several endogenous growth regulators 
such as ABA and GA are reported previously for breaking of 
seed dormancy/inducing seed germination. In recent years, 
nitrate, nitrite, hydroxylamine, azide, NO, and sodium nitro-
prusside (SNP) compounds were also identified to regulate 
seed dormancy and germination processes through phyto-
hormonal cross-talk (Krasuska et al. 2017).

For instance, ET and NO crosstalk with ABA during seed 
germination and dormancy period counteract the action of 
ABA (Arc et al. 2013). Similarly, in canola and maize, exog-
enous application of NO enhances seed germination in a 
dose-dependent manner (Fan et al. 2013a, b). Nevertheless, 
different mechanisms stimulate seed germination by light 
and NO reported (Beligni et al. 2000; Poor et al. 2019). It 
remains unclear whether the GA- and NO-promoting ger-
mination mechanism acts synergistically or antagonistically. 
CK and NO crosstalk were also reported to regulate the 
photo-morphogenesis process observed in Arabidopsis, pars-
ley, or tobacco cell (Tun et al. 2001). Exogenous application 
of NO and CKs inhibit hypocotyl elongation in Arabidop-
sis and lettuce dark-grown seedlings (Beligni et al. 2000). 
Recently, Wu et al. (2016b) reported that hydrogen peroxide, 
NO, and UVR 8 interact with each other and are subjected 
to anthocyanin accumulation in reddish sprouts. Likewise, 
NO plays a crucial role in inhibiting primary root growth in 
Arabidopsis by regulating PHYTOCHROME INTERACT-
ING FACTOR 3 (PIF 3) under light conditions (Bai et al. 
2014). There is evidence that IAA and NO regulate the same 
responses in plants due to sharing some common steps dur-
ing the signal transduction pathway. For example, growth of 
maize root segment influenced by NO in a dose-dependent 
manner similar to indole acetic acid (IAA) (Gouvea et al. 
1997).

Studies suggested that NO plays a crucial role in stomatal 
movement, together with  H2O2, abscisic acid (ABA) under 
water stress (Garcia-Mata et al. 2002; Desikan et al. 2002; 
Garcia-Mata et al. 2003; Desikan et al. 2004). NO regulate 
stomatal closure through  Ca2 þ–dependent stomatal closure 
mechanism (Desikan et al. 2001). Synergistic effects of ABA 
and NO on stomatal closure were observed in Pisum sati-
vum and Vicia faba plants (Neill et al. 2003). Some research 
also confirmed NO in guard cells (Garcia-Mata et al. 2002), 
leading to stomata closure through NR activity. Recently, it 
is suggested that UVR8,  H2O2, and NO interact with each 
other under UV light and close the stomata by regulating 
the UVR8 pathway (Tossi et al. 2014). NO also increases 
the chlorophyll content in potato, lettuce, and Arabidopsis 

(Beligni et al. 2000). NO preserves and increases chlorophyll 
content similarly to CKs “chlorophyll retention effect” in pea 
and potato (Leshem and Wills 1998).

Rapid synthesis of NO and a parallel accumulation of 
ROS are typically observed under biotic and abiotic stresses. 
Consequently, these adverse responses activate the senes-
cence process, ultimately leading to the death of plant cells. 
Earlier studies suggest that both NO and ROS play impor-
tant roles in regulating programmed cell death (PCD) either 
independently or synergistically (Wang et al. 2013). There-
fore, NO plays crucial functions in nutrient homeostasis, ion 
transport, plastid development, and alleviation of antioxidant 
genes during normal and unfavorable conditions as signaling 
compounds. Some of the pivotal roles of NO in plant growth 
and development are highlighted in Fig. 1.

Abiotic (drought, salinity, heavy metals, extreme temper-
ature, etc.) stresses are a significant concern for low agricul-
tural production worldwide. They are steadily increasing due 
to uninvited anthropogenic activities in the natural environ-
ment (Asgher et al. 2017). These stresses adversely affect 
plant growth and development (Khan et al. 2015a; Fancy 
et al. 2017) by producing ROS (singlet oxygen, hydrogen 
peroxide, hydroxyl radicals, superoxide radicals, etc.). These 
are needed for the proper functioning of cells under normal 
conditions but adversely affect the cell programming sys-
tem under stressful environments (Gupta et al. 2016; Asgher 
et al. 2017). The multiple stresses induce modulation of phy-
tohormonal regulation, metabolism, and signaling in plants, 
which affects the plant defense system through metabolic 
adjustment, stomatal regulation, and behavioral changes in 
plant growth and development (Zhang et al. 2006a). The NO 
has been considered either a protective mediator or stress-
inducing agent and plays a crucial role in intracellular redox 
signaling, ion homeostasis, and activation of antioxidant 
defense mechanisms (Asgher et al. 2017). Several studies 
suggested NOs’ role in maintaining pigment composition, 
stomatal movements, root growth and development, water 
relations, membrane stability, hormonal balance, osmotic 
adjustments, and ion channels’ activities in plants under dif-
ferent circumstances through cross-talk with other signaling 
compounds (Li et al. 2015; Shan et al. 2015; Kaya et al. 
2020a, b; Wu et al. 2020; Santos et al. 2020).

On recognizing the importance of NO crosstalk in plants 
under multiple abiotic stresses, in this review, we have 
explored biosynthesis and metabolism pathways of NO in 
different cellular sites and their regulating factors. Then, we 
have discussed the NO cross-talk with other signaling com-
pounds, their regulatory roles, and crucial molecular mecha-
nisms of NO crosstalk under multiple abiotic stresses. This 
information will help us understand the role of NO crosstalk 
as a central hub in regulating plant processes under different 
environmental stresses.
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NO Biosynthesis and Metabolism

Nitric Oxide (NO) has multifaceted physiological role in 
plants as a bioactive gasotransmitter. Eight different enzy-
matic and non-enzymatic processes that can produce NO in 
plants have been identified to date. Nitrite  (NO2

−) or more 
reduced compounds (L-arginine or hydroxylamine) are pro-
duced due to NO generation through oxidation (Mur et al. 
2013). Cytoplasm, mitochondria, chloroplast, peroxisome, 
and apoplast are the major cellular sites for  NO2−reduction 
(Roszer 2012a,b). Reduced NO can be generated through 
nitrate reductase activity (NR; EC 1.6.6.1 to EC 171) via 
mitochondrial electron transport chain (mETC) or heme-
containing proteins. The oxidative NO can be synthesized 
through L-arginine and other compounds. In the acidic 
compartments of plant tissues, non-enzymatic reduction 
of  NO2

−/NO can also happen (Roszer 2012a, b; León and 
Costa‐Broseta 2020). Mechanism of production or synthesis 
of oxidized and reduced, enzymatic, and non-enzymatic NO 
are discussed in this section and highlighted in Fig. 2.

Mechanisms of Reductive Synthesis

By Nitrate Reductase (NR)

Nitrate reductase can reduce  NO2
− to NO with low efficacy 

through primary nitrate  (NO3
−) oxidoreductase activities 

(Rockel et al. 2002). In cyanobacterium (Anabaena doli-
olum), green algae, and vascular plants, NR catalytic reduc-
tions from  NO2

− to NO have a crucial role during stress 
response (Mur et  al. 2013; Floryszak-Wieczorek et  al. 
2016). It indicates one of the oldest forms of NO produc-
tion mechanisms in plants (Astier et al. 2018). Cytoplasm 
and chloroplast association are the main pool of NR activity 
(Kolbert et al. 2019). However, using a reduced cytochrome 
c  as an electron donor,  NO2

−/NO-reductase (NI-NOR) 
reduces  NO2

− to NO. NO NI-NOR generation is similar to 
 NO3

−-reduced root-specific NR activity, but NO-NOR may 
act as a separate protein and needs to be regarded as NR-
generated NO (Mohn et al. 2019).

By Mitochondrial ETC (Electron Transport Chain)

Mitochondria can use  NO2
− as an alternate electron accep-

tor for ATP synthesis; reduction of  NO2
− to NO takes place 

Fig. 1  Schematic illustration of nitric oxide (NO) pools in the cells 
triggered under stress and their subsequent metabolism. The possi-
ble different pathways can lead to the generation of NO pool in the 
cytosol (enzymatic and non-enzymatic pathways) and apoplast (non-
enzymatic pathway). Cytoplasmic organelles such as peroxisome, 
mitochondria, chloroplast, and acidic vacuoles are the prime com-
partments for NO biosynthesis. Various effectors regulating (up- or 

down-regulation) NO pools are phytohormones (ABA, cytokinin, 
GA, auxin, brassinosteroids), ambient light, transition metals, phe-
nolics, abiotic stressors, and feedback inhibition (NO pool-mediated 
reduction of  NO2

− to NO). Solid lines ( ) and dotted lines (
) are used to avoid the overcrowding and clarity of the figure; (  ) 
depicts inhibition/inhibitory effect
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inside complex III (cytochrome bc1) and IV (cytochrome-c 
oxidase, CCO) (Gupta and Igamberdiev 2011a; Kolbert et al. 
2019). The mechanism creates hypoxia in plant cells which 
results in mitochondrial NO generation. Hypoxia increases 
NR transcription activities, which converts  NO3

− to 
 NO2

− and results in a cytoplasmic accumulation of  NO2
−. 

 NO2
− reduction is limited in the hypoxic cell, and a contin-

ued supply of  NO2
− for reduced NO synthesis is permitted 

(Roszer 2012a, b). Therefore, a specific system of  O2 trans-
port in plants reduces NO synthesis/mitochondrial  NO2

− or 
NO. The NO generated within the mitochondria inhibits the 
germination of CCO (Gniazdowska et al. 2010a, b), which 
enhances the energy status of  O2-limited cells (Gupta and 
Igamberdiev 2011b). The reduced mitochondrial NO gen-
eration inhibits the photo-respiratory cycle and fermentative 
metabolism (Oliveira et al. 2013). NO released from mito-
chondria into the cytosol is oxidized by plant hemoglobin 
 (NO3

−) due to hypoxia (Igamberdiev and Hill 2004). This 
leads to NO/NO2

− exchange of mitochondria in the cyto-
plasm, maintaining a continuous supply of  NO2 for ATP 
synthesis under hypoxia (Gupta and Igamberdiev 2011b). 
The cytoplasmic conversion NO/  NO3

−/NO2 ensures that the 
low redox level helps adapt to the hypoxic NADH/NADP+ 
and NADPH/NADP+ ratios (Igamberdiev et al. 2010).

By Heme‑Containing Proteins

Plant peroxisomes can produce NO under hypoxic or anoxic 
conditions by reducing  NO2

− (Igamberdiev et al. 2010). 

 NO2
−/NO may reduce the capacity of deoxygenated heme-

containing proteins in the peroxisome matrix, which is the 
primary production mechanism (Igamberdiev et al. 2010; 
Sturms et al. 2011). The plant plasma membrane, cytosol, 
and endoplasmic reticulum have shown a similar reductional 
NO generation (Igamberdiev et al. 2010). Cyanobacteria 
(Sturms et al. 2011) and mammalian tissues have also been 
affected by a reduction in the use of heme-proteins from 
 NO2

− to NO (e.g., hemoglobin’s) (Tiso et al. 2011).

Mechanisms of Oxidative NO Synthesis

NOS (EC 1.14.23.29) proteins and NOS encoding genes 
(Roszer 2010) have been identified in prokaryotes, unicel-
lular eukaryotes, invertebrates, non-mammalian vertebrates, 
and mammals. However, higher plants lack homologous 
sequences for known NOS encoding genes (Mur et al. 2013). 
Oxidative L-arginine synthesis is also present in plants’ 
cells, but the responsible enzyme NO synthase (NOS) has 
not yet been found. Some of the pathways.

From L‑arginine

The chloroplasts and leaf peroxisomes of the vascular 
plants and the green algae have been identified as a site for 
enzymatic oxidation of L-arginine to NO and L-citruline 
(Roszer 2012b). The chloroplastic oxidation of L-arginine 
to NO requires NADPH and in the absence of  Ca2+ (Jasid 
et al. 2006). In the peroxisomes of leaves,  Ca2+, calmodulin, 
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tion from germination to post-harvesting and regulates critical processes (physiological, biochemical, and molecular) during multiple stresses
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FAD, FMN, and NADPH are required for L-arginine/L-cit-
rulline conversion (del Rio et al. 2003; del Río 2011). It has 
been recently found that L-arginine-oxylated NO synthesis 
requires both  Ca2+ and NADPH, with tetrahydrobiopterin 
 (BH4) in Ostreococcus green algae species (Foresi et al. 
2010). Plant mitochondria also oxidize L-arginine to NO 
with the help of enzymes available in the matrix or inter-
membrane space (Guo and Crawford 2005). It is debatable 
whether plant mitochondria contain a specific NO oxidative 
synthesis enzyme (Barroso et al. 1999).

Other Forms of Oxidative NO Synthesis

Polyamines and hydroxylamine have recently been shown 
to increase the synthesis of oxidative NO in plant cells 
(Wimalasekera et al. 2011). The exact mechanism of poly-
amines in increasing NO synthesis remains uncertain (Fröh-
lich and Durner 2011). However, NO cannot mediate the 
effect of polyamines on plants. Pathways possibly respon-
sible include an interaction between polyamines and NR-
catalyzed NO (Rosales et al. 2012) and the indirect impact of 
polyamine synthesis on L-arginine metabolism (Zhang et al. 
2011). Hydroxylamine is an intermediate in the nitrification 
process and can be oxidized to NO in tobacco cell cultures 
(Rumer et al. 2009). This mechanism could be a substi-
tute for oxidative NO synthesis via L-arginine. However, 
the underlying molecular mechanism is still unknown for 
hydroxylamine’s role in NO synthesis (Rumer et al. 2009). 
The possible contribution to NO plant synthesis for other 
enzymes needs to be explored.

Non‑enzymatic NO Generation

Non-enzymatic NO generation includes release from nitrous 
acid  (HNO2) after protonation. Acidic environments such 
as apoplast of germinating and hypoxic seeds favor this 
type of chemical NO release (Yamasaki 2000; Bethke 
et al. 2004). Consequently, in the aleuronic layer of bar-
ley, the NO release from  NO2

− has been shown (Bethke 
et al. 2004). Phenolic compounds found in aleuron apoplast 
and on seed coat increase this non-enzymatic NO release. 
The NO release in germinating seeds may protect them 
from soil microorganisms (Bethke et al. 2004). In addition, 
seed dormancy is interrupted by NO, which suggests that 
proper germination requires  NO2

− together with an enzy-
matic NO synthesis (Roszer 2012b). Together, NO release 
can synergize with the reduction of the enzyme  NO2

−/NO 
to invoke germination NO burst. During germination, NO-
mediated programmed cell death occurs when aleuron cells 
are removed (Lombardi et al. 2010). However, the release 
of NO from S-nitrosoglutathione (GSNO) (del Río 2011) is 
another possible, unexplored mechanism for non-enzymatic 
NO generation. This compound is formed in the oxidative 

environment of peroxisomes, which allows both GSNO and 
GSNO to react with glutathione (Barroso et al. 2006). The 
GSNO is a compound NO-donor and could carry reserve NO 
distributed in the plant’s tissues. GSNO genesis is facilitated 
by environmentally friendly light and metal transition (Flo-
ryszak-Wieczorek et al. 2006). Hydroxylamine is another 
possible non-synthesis substrate (Rumer et al. 2009), but 
GSNOR would not support hydroxylamine production.

NO Metabolism

NO metabolism includes a redox range, which displays dis-
tinctive properties and reactivity such as nitrosonium  (NO+), 
NO radical  (NO*), and nitroxyl anion  (NO−) (Gisone et al. 
2004). Nitrosation in aqueous phases in organic molecules 
in –S, –N, –O, and –C centers results in  NO+. The biological 
relevance of  NO+ was disputed under slightly acidic or phys-
iologic conditions, but a variety of nitroso-compounds form-
ing effectively under neutral physiological conditions could 
be interpreted as  NO+ reactions (Stamler et al. 1992). These 
compounds include metal-nitrosyl-complexes, thionitrites 
(RS-NO), nitrosamines (RNH–NO), alkyl- and aryl-nitrites 
(RO–NO), and tri- and tetra-oxides  (N2O3 and  N2O4) of 
dinitrogen. Numerous nuclear centers in biological systems 
whose potential nitrosative vulnerability were demonstrated 
in in vitro studies (Stamler et al. 1992). Dimerization and 
dehydration quickly convert  NO− to the  N2O (Basylinski and 
Hollocher 1985) and reacts with Fe (III) heme (Goretski and 
Hollocher 1988).

NO* is also reversible in sulfhydryl oxidation, leading 
to low molecular weight and protein-associated thiols. The 
transmission of electrons and collisions is standard and 
generally results in NO radical  (NO*) as the main product. 
S-nitrosothiols are thought to be a (minor) product of the NO 
disulfide reaction (Stamler et al. 1992). The significant NO 
reactions are those with O2 and its different redox and transi-
tion ions in biological terms. When discussing the chemical 
and physiological effects, NO is a highly diffused second-
ary messenger that may generate relative effects far from 
its production site in plants. Hence, the concentration and 
the source of NO are the main determinants of its biologi-
cal effects (Wink and Mitchell 1998). The direct effects of 
NO are the result of the interaction between NO and metal 
complexes. NO form complexes, including those found reg-
ularly in metalloproteins, of transition metal ions. Heme-
containing protein reactions have been studied extensively 
for NO-complexes.

NO also forms non-heme transition metal complexes, 
and biochemical focus was given to its responses to the 
Fe–S center of the proteins, including several mitochon-
drial electron transportations and enzyme proteins (Henry 
et al. 1991). NO’s reaction to heme-containing proteins 
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includes cytochrome P450 interactions with more consider-
able physiological consequences (Wink et al. 1993). Tyros-
ine nitration is also a directly established effect of NO on 
proteins. Tyrosine nitration is selective and reversible and 
 ONOO− dependent. In vivo nitration pathways were shown 
to be  ONOO− independent (Davis et al. 2001). NO can also 
stop lipid peroxidation (Rubbo et al. 1995). Nitrosating oxi-
dation or nitration is the indirect effect of NO, generated 
by the interaction of the NO and  O2

− (Wink et al. 1993). 
None of these substances can undergo autoxidation (i.e., 
reactions to  O2) to produce  N2O3 in aquatic solutions (Ford 
et al. 1993). Since NO and  O2 are 6–20 times more soluble 
in lipid layers, the auto-oxidation rate in a lipid phase (Ford 
et al. 1993) dramatically increases. The primary  N2O3 reac-
tions are thought to occur in the membrane fraction.

In its response to  O2, NO generates ONOO at a rate near 
diffusion, which acts as a nitrating agent as well as a pow-
erful oxidant to modify the proteins (nitrotyrosine forma-
tion), lipids (lipid oxidation, lipid nitration), and nucleic 
acids (DNA oxidation and DNA nitration). In short, there are 
numerous potential reactions of NO depending on the cell 
milieu facilitating biochemical modifications. The produc-
tion site, source, and NO concentration collectively deter-
mine its effects. In addition, a relative equilibrium exists 
between oxidative and nitrosating stress. The mechanism 
of NO biosynthesis and its metabolism are highlighted in 
Fig. 1.

NO: Plant Signaling Component Hub

Perceiving the cues within cells and outside the environ-
ment is vital for the plant life cycle. This perception is 
accomplished by plant signaling. Plant signaling involves 
an exchange of information between plant cells from recep-
tors to effector through signaling molecules. Discoveries of 
molecular components related to signaling provided evi-
dence about the signal response as a cumulative effect of 
cross-talk between different signaling pathways (Taylor et al. 
2004). This cross-talk generally results from pathway inte-
gration with the unique signal response as a combination. 
Such cross-talk involved in physiological processes ranged 
from development to stress responses (Peck and Mittler 
2020). Some of the critical signaling compounds are ROS, 
PGRs, and signaling peptides discussed in this section in NO 
as a central signaling molecule. NO orchestrate a plethora of 
signaling responses in plants. These responses act at inter- 
and intra-cellular levels to modulate plant growth and devel-
opment. NO-mediated transcriptional changes or secondary 
messenger activation regulates these processes (Falak et al. 
2021). These processes include photosynthesis, organelles 
motility, hypersensitive response, programmed cell death, 
seed germination, cell wall lignification, flowering, pollen 

tube growth, fruit ripening as well as legume–rhizobium 
symbiosis, and biotic and abiotic stress (Turkan 2017; Sami 
et al. 2018; Inmaculada Sánchez-Vicente et al. 2019).

NO signaling operates at various levels, specifically with 
ROS of the anti-oxidant system (Ma et al. 2016) and affects 
seed dormancy, plant reproduction mechanisms (Jiménez-
Quesada et al. 2016), plant–rhizobia interaction (Damiani 
et al. 2016), and plant–pathogen interactions (Thalineau 
et al. 2016). Moreover, higher NO/ROS content correlates 
with the compromised antioxidant system in plants (Gaupels 
et al. 2016). This interplay of NO/ROS homeostasis is also 
vital for N nutrition and plant immunity. These processes are 
mainly governed by NR activity, which is an essential part 
of NO signaling after stress induction. Hormonal control on 
NO/ROS homeostasis is a crucial factor in plant develop-
ment and stress response, as reported by Sivakumaran et al. 
(2016). Also, mitochondria play a vital role in the modu-
lation of NO and ROS signaling by changing hypoxic or 
anoxic conditions (Gupta and Igamberdiev 2016). Other than 
the direct involvement of NO in ROS production, post-trans-
lational modification of NO enzymes is essential for NO/
ROS homeostasis, emphasizing the ascorbate–glutathione 
cycle (Begara-Morales et al. 2016). NO self-regulation also 
affects ROS levels (Romero-Puertas and Sandalio 2016). 
This regulation indicates the fine-tuning of NO and ROS as 
signaling components.

Another facet of NO signaling operates as a secondary 
messenger in conjugation with other signaling molecules as 
cytosolic  Ca2+ levels, cyclic guanosine 5′-monophosphate 
(cGMP), cyclic adenosine diphosphate ribose (cADPR), 
phosphatidic acid,  H2O2, JA and SA, and Mitogen-Associ-
ated Protein kinases (Santner and Estelle 2009; Foyer and 
Noctor 2015; Duszyn et al. 2019; Yang et al. 2019). NO- 
cGMP-dependent pathway in plants opens avenues of NO 
crosstalk with cGMP signaling (Gross and Durner 2016). 
While NO-mediated cGMP signaling is well known in mam-
mals, this system is not well defined in plants. However, the 
identification of enzymes of the cGMP pathway in higher 
plants supports this hypothesis. This crosstalk provides 
the molecular basis of physiological and developmental 
responses generated through NO signaling.

Further, downstream target protein studies give cues 
about the indirect effect of NO signaling (Simon and Dres-
selhaus 2015). Other than cross-talk in conventional path-
way, NO directly interacts with other molecules to affect 
the biological processes in the plant, for example, NO–sul-
fur (Fatma et al. 2016), NO–inositol (Lytvyn et al. 2016), 
NO–heme oxidase 1 (Wu et  al. 2016a), and NO-H2O2 
interactions (Molassiotis et al. 2016). Understanding this 
cross-talk in light of NO response and signaling will provide 
insights into its mechanism. The NO crosstalk with other 
crucial signaling compounds is highlighted in Fig. 3 and 
discussed in this section.
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Molecular Understanding of NO Crosstalk 
with Crucial Signaling Compounds

In the signaling cascade, phytohormones are instrumental 
for orchestrating plant growth, development, and stress 
responses (Santner and Estelle 2009). NO is an essential cue 
in signaling cascade interactions with all major hormones 
and other endogenous molecules (Freschi 2013). Here, NO 
acts as a secondary messenger for plant hormones involved 
in stress responses (Saito et al. 2009; Liu et al. 2010). The 
subsequent section will discuss the NO accumulation in spe-
cific tissues to perform particular functions in routes with 
hormonal regulation.

NO–ABA Crosstalk

Abscisic acid (ABA) is referred to as stress hormone cross-
talk with NO during various environmental challenges and 
activates the antioxidant system (Hancock et al., 2011; Fre-
schi 2013). The ABA-induced response was reduced after 
the decrease in NO synthesis, which suggests that it is acting 
downstream of ABA under stress treatments (Tossi et al. 
2012; Zhang et al. 2009). On contrary to this, NO coun-
teracts the ABA (Lozano-Juste and Leon 2010a, 2010b). 

This mechanism operates at cell, tissue, and organ level 
and indicates the specificity of NO–ABA signaling under 
specific physiological events. The role of NO–ABA cross-
talk was reported in different physiological processes, for 
example, during germination (Liu et al. 2009) as transcrip-
tional inducer and in the maintenance of seed dormancy 
(Bethke et al. 2006). Under stress conditions, ROS gen-
eration induces the ABA–NO crosstalk by activating anti-
oxidants and transcription factors (Lu et al. 2009; Zhang 
et al. 2007a). Other signaling molecules such as cGMP 
MAPK and type 2C protein phosphatases act downstream 
of NO–ABA interplay and antioxidant system to modulate 
plant stress response (Desikan et al. 2002; Dubovskaya et al. 
2011; Mioto et al. 2013). Mutant studies suggested the role 
of this cross-talk for salinity stress (Lu et al. 2009; Kong 
et al. 2016), heat and drought stress (Zandalinas et al. 2016), 
and thermotolerance of plant calluses (Song et al. 2008).

NO–GA Cross‑Talk

Gibberellic acid is a crucial phytohormone associated with 
seed germination and plant growth. In the signaling cas-
cade, NO promotes the biosynthesis of GA by transcriptional 
regulation of GA biosynthesis genes (Bethke et al. 2007). 

NO
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Cd toxicity
Cu toxicity, salt 
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Fig. 3  Model highlights the NO crosstalk with PGRs and other sign-
aling compounds in plant growth regulation and stress conditions. 
NO crosstalk is very complex in nature; it crosstalk with numerous 

signaling compounds such as  H2S,  H2O2, Ca, melatonin, ethylene, 
abscisic acid, and salicylic acid to regulate various homeostasis pro-
cesses under normal and stress conditions
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NO acts as a balance center for ABA-induced dormancy 
and GA-stimulated germination. The molecular basis of 
this balance lies in the activation of the anti-oxidant system 
along with post-translational modification of other enzymes 
involved in ethylene synthesis (Gniazdowska et al. 2010a, 
b; Hebelstrup et al. 2012). GAs have been reported to con-
trol hypocotyl growth in coordination with DELLA protein 
degradation (de Lucas et al. 2008). Interestingly enough, 
higher NO levels antagonize hypocotyl growth (Beligni 
and Lamattina 2000). Moreover, NO was also reported in 
the repression of PIF genes and augmenting DELLA pro-
tein content (Lozano-Juste and León 2011). That led to the 
possibility of NO–GAs–light interplay in the regulation of 
seed germination events. NO–GAs module also operates at 
various stress conditions, for example, aluminum toxicity 
in wheat (He et al. 2012), cadmium toxicity in Arabidop-
sis (Zhu et al. 2012), and deprived phosphorous condition 
(Asgher et al. 2017).

NO–Auxins Crosstalk

Auxin is an essential phytohormone associated with cell 
elongation. NO as a signaling molecule in NO–Auxin cross-
talk modulates auxin degradation enzyme activity (Xu et al. 
2010), interferes with auxin transport through PIN1 efflux 
carrier (Fernández-Marcos et al. 2011), and activates auxin 
signaling by S-nitrosylation of the auxin receptor protein 
(Terrile et al. 2012). The role of auxin in plant root archi-
tecture, lateral root growth, and root hairs is well docu-
mented (Overvoorde et al. 2010). Interestingly, most root 
architecture phenotypes are also influenced by NO as signal 
molecules (Fernández-Marcos et al. 2011). In vitro cultures 
suggest that auxin application does not affect NO release 
(Tun et al. 2001). This advises downstream action of NO 
in auxin signaling response (Chen et al. 2010). NO–Auxin 
crosstalk operates from synthesis to perception in response 
to environmental and developmental cues. This crosstalk 
was also reported in plant stress responses, for example, 
iron deficiency (Chen et al. 2010), drought and water stress 
conditions (Pagnussat et al. 2002; Liao et al. 2012) due to 
extensive involvement with root architecture regulation, and 
cadmium toxicity (Yuan et al. 2016; Xu et al. 2010).

NO–Melatonin Crosstalk

Melatonin is the novel amine-derivative hormone class 
involved in plant growth, development, aging, and stress 
response. Interaction of NO with melatonin regulates the 
melatonin synthesis genes and changes the phytohormone 
level (Zhu et al. 2019). Further, downstream action of NO 
activates MAPK-associated defense responses. Exogenous 
application of melatonin induces glycerol, sugar produc-
tion, ultimately increasing NO and salicylic acid levels. 

NO–melatonin crosstalk affects several physiological pro-
cesses like root growth, aging, and iron deficiency allevia-
tion (Zhu et al. 2019; Kaya et al. 2020a).

NO–JA Crosstalk

Jasmonic acid is a fatty acid-derivative phytohormone 
mainly associated with herbivory and pathogen response. 
Abiotic stress, such as drought stress, affects the JA-asso-
ciated signaling genes (Huang et al. 2008). NO treatment 
induces JA-biosynthesis genes that indicate interplay of 
NO–JA module (Palmieri et al. 2008). CDPKs are induced 
by JA, starting the ABA-induced stomatal closure (Mune-
masa et al. 2007). External treatment with MeJA and ABA 
increases NO and ROS content in guard cells (Munemasa 
et al. 2007). Evidence suggests calcium signaling acting 
downstream of NO–ROS crosstalk. Apart from that, JA asso-
ciated with NO synthesis increases ROS scavenging enzyme 
as reported for chilling stress tolerance in Cucumis sativus 
(Liu et al. 2016).

NO–CK Crosstalk

Cytokinins are a class of phytohormones associated with 
plant cell division in plant shoot and root. CK–NO module 
of signaling affects the biosynthesis of nitric oxide; how-
ever, peroxynitrite (NO-derived) binds with zeatin to reduce 
its activity (Liu et al. 2013). Type-A response regulators 
are a crucial component of CK signaling regulated by NO-
mediated S-nitrosylation (Feng et al. 2013). NO–CK cross-
talk also operates in different stress responses, such as water 
stress conditions (Shao et al. 2010) and salt stress conditions. 
Antagonistic relation of CK on NO levels was also reported 
in Vicia faba seedlings grown under dark (Song et al. 2011) 
and leaf development in aging leaves. The molecular basis 
of this regulation is supposed to be the limitation of phos-
phorelay activity caused due to S-nitrosylation (Fan et al. 
2013a, b).

NO–ET Crosstalk

Ethylene also known as ripening/senescence/stress hormone 
is important for plant growth regulation. Heavy metal stress 
often increases the activity of the 1-aminocyclopropane-
1-carboxylic acid (ACC) synthase (ACS) enzyme that is 
associated with ET (Khan et al. 2015b). Understanding the 
NO–ET crosstalk provides the operating mechanism of plant 
stress adaptation mechanism under these stresses. ET–NO 
crosstalk leads to activation of MAPK cascades and poly-
amine synthesis during cadmium stress in soybean and pea 
seedlings (Chmielowska-Bąk et al. 2013; Rodríguez-Serrano 
et al. 2006). Similarly, treatment of Cd and spermine leads to 
NO generation in roots in Triticum aestivum seedlings which 
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ultimately inhibits the root growth (Groppa et al. 2008). Fe-
deficiency signaling is affected by NO–ET crosstalk with the 
induction of several genes associated with the iron accumu-
lation and transport (Garcia et al. 2010). Other than heavy 
metals, NO–ET module works profoundly in salinity stress 
(Liu et al. 2015).

NO–SA Crosstalk

Salicylic acid is an important plant hormone essential for 
plant growth, development, and pathological processes. 
NO–SA interplay regulates plant stress responses; for 
example, combination of NO and SA prevents nickel tox-
icity by proline accumulation, reduced lipid peroxidation, 
and chlorophyll content enhancement in Brassica napus 
(Kazemi et al. 2010). On contrary to this, NO–SA com-
bination increases the Cd concentration in the cell wall of 
Arachis hypogaea to prevent organelles from toxic effects 
(Xu et al. 2015). In addition, ROS also participates with 
NO in SA-induced closure of stomata (Khokon et al. 2011). 
Here, SA activates peroxidase enzyme that promotes ROS 
accumulation, leading to NO generation in guard cells and 
ultimately stomata closure. Similarly, the combination of 
NO–SA acts synergistically in alleviating salt stress by 
improving divalent cations absorption (Dong et al. 2015). 
Again, pretreatment of SA in Spinacia oleracea modulates 
the NR activity for improvement in chilling tolerance (Aydin 
and Nalbantoğlu 2011). This implicates SA interplay in the 
NO generation pathway that can be used for the future gen-
eration of climate-smart crops.

NO–Sulfur Crosstalk

Sulfur (S) is a vital part of essential molecules, such as the 
thioredoxin system, reduced glutathione (GSH), methionine, 
and coenzyme A. Under salt stress conditions, NO–S cross-
talk changes the ET and ABA levels in guard cells to affect 
the photosynthetic and stomatal response. NO interacts with 
GSH and forms S-nitrosoglutathione (GSNO) to impart bet-
ter stress tolerance (Wang et al. 2015b). Further, NO–sulfur 
crosstalk is essential for S-assimilation, as shown for Cys 
synthesis modulation by ET production (Fatma et al. 2016). 
Interactions of nitro and sulfhydryl groups are crucial during 
nitration (Leterrier et al. 2011). NO also interacts with H2S 
to provide salinity stress tolerance by upregulation of salinity 
stress-induced genes like HvSOS1 and HvHA1 (Chen et al. 
2015). This process is mainly governed by transcriptional 
activation of vacuolar transport and compartmentalization 
genes where NO acts as a signaling molecule.

NO–BRs Crosstalk

Brassinosteroids (BRs) are the novel class of plant hormones 
implicated in plant growth, development, and immunity. 
Recently, reports have suggested NO–BRs interplay in 
plant root architecture as well as in root development (Tossi 
et al. 2013). In addition, alleviation of Copper toxicity was 
mediated by NO–BRs crosstalk in conjunction with ABA in 
Raphanus sativus seedlings (Choudhary et al. 2012).

These reports suggest precise NO interaction with hor-
mones and other signaling components for fine-tuning the 
plant growth, development, and stress response. Further 
experiments on targeted NO homeostasis in controlled 
induced conditions (Temporal and spatial) will shed light 
on components of these cross-talks. Direct target identifica-
tion of NO signaling in biosynthesis, perception, and signal 
transduction will be important to decipher the underlying 
regulatory mechanisms.

Molecular Understanding of NO Crosstalk During 
Plant Stress

Nitric oxide is an essential gasotransmitter with a regulatory 
role during plant growth and development. These regulatory 
roles are amplified when NO crosstalk with other signaling 
molecules or PGRs. The NO crosstalk with other compounds 
regulate various biosynthetic pathways, signaling processes, 
and metabolism and ultimately maintains plant growth and 
development under multiple stresses. Therefore, the mecha-
nism of NO crosstalk under numerous abiotic stress toler-
ance is highlighted in Fig. 4 and discussed in this section. 
The NO crosstalk with PGRs and other signaling compounds 
under multiple stresses and their improved traits for stress 
tolerance are presented in Table 1.

Drought Stress

It has been well established that NO is required for ABA-
induced stomatal closure and provides tolerance to plants 
under drought stress (Garcia-Mata and Lamattina 2002). 
Further, stomatal closure is regulated by ABA-induced NO 
production in Arabidopsis guard cells. Although, Desikan 
et al. (2002) revealed no stomatal closer in response to 
ABA in double-mutant nia1 nia2, which are associated with 
reduced NO production. This suggests the role of other inter-
mediaries in NO–ABA crosstalk. Plants accumulate more 
ABA in drought stress, leading to activation of NADPH 
oxidase enzymes such as RBOHF and RBOHD (respiratory 
burst oxidase homolog F and D), resulting in more super-
oxide accumulation. This phenomenon is needed for sto-
matal closure through NO production via NR and activates 
MAPK signaling cascade (Desikan et al. 2002; Bright et al. 
2006; Fency et al. 2017). Several studies showed that the 
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exogenous application of NO could promote the accumula-
tion of ABA in plants under drought stress, which can be 
reversed by the application of NO scavenger (Zhao et al. 
2001; Fency et al. 2017). Thus, there is ambiguity in NO’s 
function in the increased or decreased ABA signaling under 
water deficit. The NO-mediated S-nitrosylation could be 
crucial for drought tolerance, as reported in several studies. 
The central component of ABA signaling is OST1/SnRK2.6 
(open stomata 1/sucrose non-fermenting 1-related protein 
kinase 2.6) induced by the S-nitrosylation process in plants. 
The protein kinase activity of OST1/SnRK2.6 is inhibited 
by S-nitrosylation at Cys 137 position. This ABA-induced 
S-nitrosylation of SnRK2.6 acts as a negative feedback regu-
lator of ABA signaling in plants (Wang et al. 2015a).

There are reports which emphasize the role of transcrip-
tion factors from MYB family to regulate tolerance mecha-
nism in plants under abiotic stresses. Transcription factor, 
AtMYB2, is associated with salt, and drought stress tends 
to inhibit its DNA binding activity after the S-nitrosylation 
process (Serpa et al. 2007). Another transcription factor, 
AtMYBB30, has been found to lose its DNA binding activ-
ity after S-nitrosylation (Tavares et al. 2014; Fency et al. 
2017). Thus, protein kinases and transcriptions factors play 
a vital role in mitigating plant stress under water deficit. Sev-
eral recent studies suggested that NO crosstalk is a central 
player of drought stress tolerance. Wang et al. 2020 reported 

that crosstalk between NO and  H2S mediates priming-
induced drought tolerance via accumulation of osmolytes 
(proline and glycine betaine). Sami et al. (2018) found that 
NO crosstalk with phytohormones mediates the alteration in 
plant metabolism, and post-translational modification such 
as S-nitrosylation confers multiple stress tolerance includ-
ing drought. Likewise, Shan et  al. (2015) reported that 
NO induced by exogenous application of JA upregulated 
the AsA–GSH cycle activity and reduced drought stress in 
wheat crops. Moreover, recent studies suggested that NO 
crosstalk with other signaling compounds and phytohor-
mones mitigate the drought stress by improving the relative 
water contents, photosynthetic capacity, antioxidant defense, 
ionic balance, and other plant growth attributes (Shan et al. 
2015; Khan et al. 2017; Kaya et al. 2019). However, the 
exact mechanism of NO crosstalk under drought tolerance 
at the molecular level needed to be explored. These stud-
ies point out that NO crosstalk plays a crucial role dur-
ing drought stress tolerance by antioxidant and osmolytes 
regulation.

Temperature Stress

Plant growth and development are severely affected by low 
temperature (cold and freezing) and high-temperature stress. 
Plants have evolved mechanisms during evolution to combat 

Fig. 4  Illustrated the physiological, biochemical, and molecular mechanisms of NO crosstalk under stress conditions. Under abiotic stresses, 
plant faces the drastic effects on several physiological, biochemical, and molecular processes, which are balanced by NO crosstalk
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temperature stresses. NO cross-talk plays an essential role 
in a plant’s battle against temperature fluctuations (Majlath 
et al. 2012; Parankusam et al. 2017; Kolbert et al. 2019). For 
example, exogenous application of NO induces the expres-
sion of MfSAMS1 and thereby increased S-adenosylmethio-
nine (SAM), polyamines (PAs) concentration, and PA oxida-
tion under cold stress in alfalfa (Medicago sativa) (Guo et al. 
2014). In this context, SAMs are acting by up-regulating PA 
oxidation and  H2O2-induced antioxidant defense (Guo et al. 
2014). There is an antagonistic relationship between NO and 
ET during fruit ripening in cold stress. For example, Zaharah 
et al. (2011) studied the different NO levels for fumigation 
on mango fruits and observed a significant reduction in ET 
production during fruit ripening. They also found reduced 
chilling injury, softening, ripening, and delayed fruit color 
development in mango fruits under cold storage conditions. 
Thus, cross-talk between NO and ET delays fruit senescence 
and thereby fruit quality during cold fruit storage.

The crop productivity is adversely affected by heat stress 
due to adverse effects on photosynthesis, respiration, mem-
brane stability, membrane permeability, and water relations 
(Kolbert et al. 2019). Heat stress affects cytoskeleton struc-
ture, cell metabolism, and membrane fluidity by increasing 
the accumulation of proteins that affect ROS, NO, and other 
phytohormones (Wahid et al. 2007). It has been suggested 
that NO acts via reduction of ROS level through activating 
antioxidant enzymes such as catalase (CAT), superoxide dis-
mutase (SOD), ascorbate peroxidase (APX), and expression 
of heat shock factor during heat stress in plants (Neill et al. 
2002; Song et al. 2006; Wang et al. 2014; Fency et al. 2017). 
Exogenous application of NO (pre-treatment) increased 
the survival rate of maize (Zea mays) seedlings and wheat 
(Triticum aestivum) leaves and reduced heat stress-induced 
loss in rice (Oryza sativa) seedlings (Lamattina et al. 2001; 
Uchida et al. 2002). Similarly, crosstalk between NO and 
 H2S regulates the  H2O2-induced thermotolerance in maize 
seedlings. It also affects the Ca and calmodulin levels in 
tobacco seedlings (Li et al. 2015). These reports suggest 
that NO crosstalk needed to be further explored for its role 
during thermotolerance in plants.

Salinity

Soil salinity is one of the main factors for reduced crop 
production in major food and fodder crops and, by large, 
emerged due to extensive use of groundwater for irrigation 
across the world (Slinger et al. 2005). The role of NO to 
address plant salt tolerance has been extensively studied in 
various plant species (Zhang et al. 2007b; Hasanuzzaman 
et al. 2018). For example, artificial application of sodium 
nitroprusside (SNP, act as NO donor) protects plants against 
salt stress by altering growth habit and protects from oxida-
tive damage by maintaining plant ion homeostasis (Zhang Ta
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et al. 2006b). Moreau et al. (2008) studied the effect of NO 
using Atnoa1 plants (defective in GTPase activity) and con-
cluded a role of NO under salt stress. The S-nitrosylated 
proteins play an essential role under NaCl stress and nega-
tively affect salt concentration (Tanou et al. 2009). However, 
exogenous application of NO increased (pre-treatment) the 
concentration of NaCl-induced S-nitrosylated protein that 
played a protective role under stress conditions (Tanou 
et al. 2009). Arora et al. (2016) stated that NO can interact 
with different metal proteins such as zinc–sulfur clusters, 
heme–iron, copper, and iron–sulfur clusters and form a 
stable metal nitrosyl complex that can modify the protein 
structure as well as function. They also observed the binding 
of thiols to NO and their role in transporting it to the site of 
action. Camejo et al. (2013) observed decreased S-nitrosyla-
tion of proteins during short-term and long-term salt concen-
trations. A recent report suggested that pretreatments with 
 CaCl2,  H2O2, and SNP improve β-amylase activity, which 
influences starch breakdown and improved seedling estab-
lishments in Chenopodium (Hajihashemi et al. 2020).

Similarly, Singh and Bhatla (2018) reported that NO bind 
with ACC oxidase and form a ternary complex (ACC–ACC 
oxidase—NO), which lead to a reduction of ethylene biosyn-
thesis and induce LR formation in sunflower under salt stress 
conditions. Likewise, Arora and Bhatla (2017) reported that 
melatonin and NO crosstalk maintain redox homeostasis 
and differential modulations of SOD isoform in sunflower 
under salt stress. Moreover, several recent updates on NO 
crosstalk with other signaling compounds alleviate salinity 
stress (Fatma et al. 2016; Shi et al. 2017; Kaya et al. 2019). 
However, there was a significant reduction in S-nitrosylation 
under long-term salt treatment. Thus, there were inconsist-
encies between different studies due to differences in plant 
genotypes/species, tissue-examined, variable NaCl concen-
tration, and duration of time. Further, NO, S-nitrosylation, 
and associated enzyme GSNOR play an essential role in 
mitigating salt stress in plants. However, there is a need to 
focus more on proteomic approaches to identify salt stress 
signaling components directly and indirectly regulated by 
redox enzymes and GSNOR.

Heavy Metal Stress

Heavy metals (HMs) such as mercury (Hg), cadmium (Cd), 
arsenic (As), chromium (Cr), thallium (Tl), and lead (Pb) 
have an unknown biological function and are very harm-
ful for plants in higher concentrations. They tend to bio-
accumulate (accumulation in plant cell with the time) and 
non-biodegradable. Plants taking up these HMs through 
roots from the soil and hyper-accumulation of these HMs 
bring rapid cellular homeostasis changes (Ghori et al. 2019). 
Nitric oxide (NO) has a broad spectrum of regulation func-
tions with widespread inter- and intra-cellular messenger 

activities (Wei et  al. 2020). Many enzymatic reactions 
accelerated through NO, including nitrate reductase and 
L-Ar-dependent nitric oxide synthase-related reactions, an 
essential component for HMs tolerance (Wei et al. 2020). 
Like other stresses, NO also plays a vital role in enhancing 
antioxidant enzyme activities and alleviates the toxicity of 
HMs. Rodriguez-Serrano et al. (2009) studied the cadmium 
(Cd) toxicity effect on nitric oxide (NO) metabolism in pea 
(Pisum sativum), and results implicated that Cd toxicity 
inactivated the NO synthase-dependent NO production. Con-
sequently, it leads to calcium (Ca) deficiency in leaves. This 
suggests that the Cd toxicity effect can be counteracted by 
calcium (Ca). Exogenous SNP application acts as NO donor 
to the rice leaves and reduces the Cu and  NH4

+ accumulation 
(Mazid et al. 2011). Moreover, Wang et al. (2010) report that 
NO actions reduce Cu toxicity through antioxidant enzymes, 
which accelerates the metallothionein and metallothionein. 
There was an increase in total chlorophyll content and fresh 
or dry weight of leaves against Cu toxicity in tomato. Also, 
reports suggested the cross-protection role of putrescine and 
NO toward Cd toxicity in mung bean seedlings (Nahar et al. 
2016). Singh et al. (2008) also found the detoxification and 
anti-oxidative properties of NO for Cd and Cu toxicity in 
wheat. Exogenous application of SNP accelerated the ROS 
scavenging enzymes, which reduced the accumulation of 
 H2O2 and diminished the toxic effect of Cu in tomato (Cui 
et al. 2009). Similar results were observed in rice against 
Cd toxicity. The exogenous application of NO ameliorates 
the tolerance against Cd toxicity by increasing the pectin 
and hemicelluloses content in the root cell wall (Xiong et al. 
2009). In soybean seedlings, the short-term treatment with 
Cd accelerated the geneS expression of encoding the pro-
tein of NO synthesis and ET (Chmielowska-Bak et al. 2013; 
Kolbert et al. 2019). Likewise, recent studies on the role of 
NO crosstalk on HMs stress tolerance suggest that it acts via 
regulating the root growth (biomass, formation, and length), 
photosynthetic activity, antioxidant defense, accumulation of 
osmoprotectants, and inhibition of HMs transport to grain 
and above plant parts (Khan et al. 2020; Kaya et al. 2020a, 
b; Singh et al. 2020).

Other Stresses

During the stress condition, NO is generated from L-arg-
dependent NO synthase. This NO can react with superoxide 
 (O2

−) to form ONOO, a powerful oxidant that can lead to 
tyrosine nitration of proteins. Tyrosine nitration is an indica-
tor of nitrosative stress in plants which acts as the defense 
system for the plants during stress (Nabi et al. 2019). Recent 
reports have explained that a wide range of abiotic stresses 
is leading to NO synthesis and signaling. It is gaining more 
attention mainly due to its properties like small size, no 
charge, free radicals, and highly diffusible nature across 
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the cell membranes and many plant physiological functions 
like growth, development, maturation, and senescence. It 
is believed that NO signaling is involved in the respiratory 
electron transport system in mitochondria, where it confers 
the modulation of ROS and accelerates the antioxidant sign-
aling defense system in the plant, which is exposed to several 
abiotic factors (Mazid et al. 2011; Santisree et al. 2020). 
The regulatory function of NO crosstalk is not only limited 
to drought, cold, heat, cold, and HMs stress but also has a 
regulatory role during combined stress, nutrient deficiency, 
and high and low light stress. For example, some studies 
suggested the NO crosstalk role during the N, P, Mg, and 
Fe deficient soil and suggested that it regulates the nutrient 
deficiency by improving root attributes, better translocation 
of ions, and regulating phytohormones concentration (Yang 
et al. 2016; Su et al. 2016; Zhu et al. 2017).

Conclusion and Perspectives

NO has gained attention during the last few decades due to 
its substantial role as a gasotransmitter and defense mol-
ecule during numerous environmental stresses. Most of the 
NO crosstalk functions are associated with redox, oxida-
tive, ion, and hormonal homeostasis through the modu-
lations of downstream genes in the signaling pathway. 
A large body of research has addressed the elementary 
mechanism of NO crosstalk regarding plant development 
and its role as a central hub under abiotic stress tolerance. 
Broadly, these studies indicate how NO crosstalk with 
other signaling compounds regulates the cell machinery 
in optimum ways. Although the mode of NO crosstalk 
with other signaling compounds is not always synergistic, 
sometimes antagonist responses also benefit plants under 
stressful situations. Moreover, the NO crosstalk response 
under similar stress could vary plant by plant due to the 
complex nature of signaling compounds and their interact-
ing signals. Components of this crosstalk include genes, 
transcription factors, and enzymes associated with the NO 
synthesis and expression during different environmental 
signals, which need to be more elaborate to understand 
the exact mechanism of NO crosstalk. However, most 
studies have shown that the NO crosstalk regulates stress 
responses via the synthesis and expression of SOD, CAT, 
APX, MDA, GR, POX, DHAR, and other antioxidant 
defense enzymes and genes. These factors help in the 
maintenance of oxidative stress situations at the cell level. 
Likewise, stress proteins (HSP), phytochelatins, signaling 
cascades (MAPK, CDPK, GMP), osmoprotectants (sugar, 
proline), and ion proteins  (H+-ATPase) are linked with 
NO crosstalk. However, the molecular mechanism of NO 
crosstalk is still unclear and needs to explore more for 
deep understanding and development of multiple stress 

tolerance varieties. Most studies focused on single stress 
conditions, and the mechanism of NO crosstalk under 
combined and multiple stress still needs to be deciphered. 
These studies are limited to the germination and vegeta-
tive stage. However, the responses of NO crosstalk under 
the reproductive phase and yield attributing traits are still 
unclear, which need to be investigated to develop higher 
yield lines under stress situations. In recent years, integrat-
ing omics approaches (integrating genomics, proteomics, 
metabolomics, and transcriptomics) has further clues on 
understanding gene–gene, gene–protein, gene–environ-
ment interactions and can be a potential approach to under-
standing the complex NO signaling mechanisms. Further, 
the integration of omics approaches to next-generation 
techniques explores the signaling mechanism at molecular 
levels and insights into full understanding of regulatory 
pathways and crosstalk mechanism to develop climate-
resilient crops. Moreover, the engineering of NO biosyn-
thesis and crosstalk pathways will be crucial for providing 
novel insights into the crop stress improvements program.
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