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Abstract

Nitric oxide (NO) is a free-radical gasotransmitter signaling molecule associated with a varied spectrum of signal trans-
duction pathways linked to inducing cross-adaptation against abiotic stresses. It has crucial roles from seed germination to
plant maturity, depending upon its cellular concentration. The functional cross-talk of NO among different stress signaling
cascades leads to alteration in the expression of developmental genes that regulate biosynthesis and function of plant growth
regulators (PGRs). NO-PGRs and secondary signaling compounds cross-talk trigger reprogramming of stress-responsive gene
expressions, transcriptional gene modulations, redox regulating machinery, oxidative metabolisms, and multiple regulatory
pathways under plant abiotic stress. Recent findings suggest NO as critical components of numerous plant signaling network
that interplays with auxin, gibberellins (GA), abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), brassinosteroids (BRs),
H,0,, melatonin, hydrogen sulfide (H,S), salicylic acid (SA), and other PGRs to modulate growth and development under
multiple stresses. Considering the importance of NO signaling crosstalk under stress adaptation, in this review, we point out
the biosynthesis and metabolism of NO and its crosstalk with numerous other signaling compounds. Further, recent cellular
and molecular advances in NO signaling cross-talk under abiotic stress adaptations also have been discussed.
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Introduction

Nitric oxide (NO) is an essential gasotransmitter, which
acts as a signaling molecule during plant stress. NO cross-
talk with other signaling molecules to transduce stress sig-
nals between the cells. These signaling molecules include
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reactive oxygen species (ROS), phytohormones [Auxin
(Aux), gibberellin (GA), cytokinin (CK), ethylene (ET),
and abscisic acid (ABA), jasmonic acid (JA)], plant growth
regulators’ melatonin (MT), and other signaling molecules.
This suggests that two or more biosynthesis pathways share
some common path to regulate signals in better ways, also
known as crosstalk. Several endogenous growth regulators
such as ABA and GA are reported previously for breaking of
seed dormancy/inducing seed germination. In recent years,
nitrate, nitrite, hydroxylamine, azide, NO, and sodium nitro-
prusside (SNP) compounds were also identified to regulate
seed dormancy and germination processes through phyto-
hormonal cross-talk (Krasuska et al. 2017).

For instance, ET and NO crosstalk with ABA during seed
germination and dormancy period counteract the action of
ABA (Arc et al. 2013). Similarly, in canola and maize, exog-
enous application of NO enhances seed germination in a
dose-dependent manner (Fan et al. 2013a, b). Nevertheless,
different mechanisms stimulate seed germination by light
and NO reported (Beligni et al. 2000; Poor et al. 2019). It
remains unclear whether the GA- and NO-promoting ger-
mination mechanism acts synergistically or antagonistically.
CK and NO crosstalk were also reported to regulate the
photo-morphogenesis process observed in Arabidopsis, pars-
ley, or tobacco cell (Tun et al. 2001). Exogenous application
of NO and CKs inhibit hypocotyl elongation in Arabidop-
sis and lettuce dark-grown seedlings (Beligni et al. 2000).
Recently, Wu et al. (2016b) reported that hydrogen peroxide,
NO, and UVR 8 interact with each other and are subjected
to anthocyanin accumulation in reddish sprouts. Likewise,
NO plays a crucial role in inhibiting primary root growth in
Arabidopsis by regulating PHY TOCHROME INTERACT-
ING FACTOR 3 (PIF 3) under light conditions (Bai et al.
2014). There is evidence that IAA and NO regulate the same
responses in plants due to sharing some common steps dur-
ing the signal transduction pathway. For example, growth of
maize root segment influenced by NO in a dose-dependent
manner similar to indole acetic acid (IAA) (Gouvea et al.
1997).

Studies suggested that NO plays a crucial role in stomatal
movement, together with H,O,, abscisic acid (ABA) under
water stress (Garcia-Mata et al. 2002; Desikan et al. 2002;
Garcia-Mata et al. 2003; Desikan et al. 2004). NO regulate
stomatal closure through Ca, pb—dependent stomatal closure
mechanism (Desikan et al. 2001). Synergistic effects of ABA
and NO on stomatal closure were observed in Pisum sati-
vum and Vicia faba plants (Neill et al. 2003). Some research
also confirmed NO in guard cells (Garcia-Mata et al. 2002),
leading to stomata closure through NR activity. Recently, it
is suggested that UVRS, H,0,, and NO interact with each
other under UV light and close the stomata by regulating
the UVRS8 pathway (Tossi et al. 2014). NO also increases
the chlorophyll content in potato, lettuce, and Arabidopsis
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(Beligni et al. 2000). NO preserves and increases chlorophyll
content similarly to CKs “chlorophyll retention effect” in pea
and potato (Leshem and Wills 1998).

Rapid synthesis of NO and a parallel accumulation of
ROS are typically observed under biotic and abiotic stresses.
Consequently, these adverse responses activate the senes-
cence process, ultimately leading to the death of plant cells.
Earlier studies suggest that both NO and ROS play impor-
tant roles in regulating programmed cell death (PCD) either
independently or synergistically (Wang et al. 2013). There-
fore, NO plays crucial functions in nutrient homeostasis, ion
transport, plastid development, and alleviation of antioxidant
genes during normal and unfavorable conditions as signaling
compounds. Some of the pivotal roles of NO in plant growth
and development are highlighted in Fig. 1.

Abiotic (drought, salinity, heavy metals, extreme temper-
ature, etc.) stresses are a significant concern for low agricul-
tural production worldwide. They are steadily increasing due
to uninvited anthropogenic activities in the natural environ-
ment (Asgher et al. 2017). These stresses adversely affect
plant growth and development (Khan et al. 2015a; Fancy
et al. 2017) by producing ROS (singlet oxygen, hydrogen
peroxide, hydroxyl radicals, superoxide radicals, etc.). These
are needed for the proper functioning of cells under normal
conditions but adversely affect the cell programming sys-
tem under stressful environments (Gupta et al. 2016; Asgher
et al. 2017). The multiple stresses induce modulation of phy-
tohormonal regulation, metabolism, and signaling in plants,
which affects the plant defense system through metabolic
adjustment, stomatal regulation, and behavioral changes in
plant growth and development (Zhang et al. 2006a). The NO
has been considered either a protective mediator or stress-
inducing agent and plays a crucial role in intracellular redox
signaling, ion homeostasis, and activation of antioxidant
defense mechanisms (Asgher et al. 2017). Several studies
suggested NOs’ role in maintaining pigment composition,
stomatal movements, root growth and development, water
relations, membrane stability, hormonal balance, osmotic
adjustments, and ion channels’ activities in plants under dif-
ferent circumstances through cross-talk with other signaling
compounds (Li et al. 2015; Shan et al. 2015; Kaya et al.
2020a, b; Wu et al. 2020; Santos et al. 2020).

On recognizing the importance of NO crosstalk in plants
under multiple abiotic stresses, in this review, we have
explored biosynthesis and metabolism pathways of NO in
different cellular sites and their regulating factors. Then, we
have discussed the NO cross-talk with other signaling com-
pounds, their regulatory roles, and crucial molecular mecha-
nisms of NO crosstalk under multiple abiotic stresses. This
information will help us understand the role of NO crosstalk
as a central hub in regulating plant processes under different
environmental stresses.



Journal of Plant Growth Regulation (2021) 40:2303-2328

2305

. . Non-enzymatic reductive NO biosynthesis "+
Apoplastic region

HNO2 o> NO +NO2 + H20
Pl mbrane

Normoxic
condition

w =iisiea
condition

Vs
Cytosol 7N

NR

NGB xssesecsmiosin >Np~"

lmlvm.lnc ox:d.\tnc ‘IO blos\nthcsn
g S

¥ L-citrulline

NO2 to NO

Zeatin

> ‘\
reduction of

Mi (oL hondru

Fn/\maltn. rl.du«.lnc N() hm\\ ntln,\ls
N

Fig.1 Schematic illustration of nitric oxide (NO) pools in the cells
triggered under stress and their subsequent metabolism. The possi-
ble different pathways can lead to the generation of NO pool in the
cytosol (enzymatic and non-enzymatic pathways) and apoplast (non-
enzymatic pathway). Cytoplasmic organelles such as peroxisome,
mitochondria, chloroplast, and acidic vacuoles are the prime com-
partments for NO biosynthesis. Various effectors regulating (up- or

NO Biosynthesis and Metabolism

Nitric Oxide (NO) has multifaceted physiological role in
plants as a bioactive gasotransmitter. Eight different enzy-
matic and non-enzymatic processes that can produce NO in
plants have been identified to date. Nitrite (NO,™) or more
reduced compounds (L-arginine or hydroxylamine) are pro-
duced due to NO generation through oxidation (Mur et al.
2013). Cytoplasm, mitochondria, chloroplast, peroxisome,
and apoplast are the major cellular sites for NO*“reduction
(Roszer 2012a,b). Reduced NO can be generated through
nitrate reductase activity (NR; EC 1.6.6.1 to EC 171) via
mitochondrial electron transport chain (mETC) or heme-
containing proteins. The oxidative NO can be synthesized
through L-arginine and other compounds. In the acidic
compartments of plant tissues, non-enzymatic reduction
of NO,7/NO can also happen (Roszer 2012a, b; Leén and
Costa-Broseta 2020). Mechanism of production or synthesis
of oxidized and reduced, enzymatic, and non-enzymatic NO
are discussed in this section and highlighted in Fig. 2.

down-regulation) NO pools are phytohormones (ABA, cytokinin,
GA, auxin, brassinosteroids), ambient light, transition metals, phe-
nolics, abiotic stressors, and feedback inhibition (NO pool-mediated
reduction of NO,™ to NO). Solid lines (—p) and dotted lines (.-
) are used to avoid the overcrowding and clarity of the figure; (— )
depicts inhibition/inhibitory effect

Mechanisms of Reductive Synthesis
By Nitrate Reductase (NR)

Nitrate reductase can reduce NO,™ to NO with low efficacy
through primary nitrate (NO;™) oxidoreductase activities
(Rockel et al. 2002). In cyanobacterium (Anabaena doli-
olum), green algae, and vascular plants, NR catalytic reduc-
tions from NO,™ to NO have a crucial role during stress
response (Mur et al. 2013; Floryszak-Wieczorek et al.
2016). It indicates one of the oldest forms of NO produc-
tion mechanisms in plants (Astier et al. 2018). Cytoplasm
and chloroplast association are the main pool of NR activity
(Kolbert et al. 2019). However, using a reduced cytochrome
c as an electron donor, NO, /NO-reductase (NI-NOR)
reduces NO,™ to NO. NO NI-NOR generation is similar to
NO;™-reduced root-specific NR activity, but NO-NOR may
act as a separate protein and needs to be regarded as NR-
generated NO (Mohn et al. 2019).

By Mitochondrial ETC (Electron Transport Chain)

Mitochondria can use NO,™ as an alternate electron accep-
tor for ATP synthesis; reduction of NO,™ to NO takes place

@ Springer
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Fig.2 Highlights the crucial functions of NO crosstalk in plant growth developments and under stresses. Nitric oxide regulates the crucial func-
tion from germination to post-harvesting and regulates critical processes (physiological, biochemical, and molecular) during multiple stresses

inside complex III (cytochrome bcl) and IV (cytochrome-c
oxidase, CCO) (Gupta and Igamberdiev 2011a; Kolbert et al.
2019). The mechanism creates hypoxia in plant cells which
results in mitochondrial NO generation. Hypoxia increases
NR transcription activities, which converts NO;~ to
NO,™ and results in a cytoplasmic accumulation of NO,™.
NO, ™ reduction is limited in the hypoxic cell, and a contin-
ued supply of NO,™ for reduced NO synthesis is permitted
(Roszer 2012a, b). Therefore, a specific system of O, trans-
port in plants reduces NO synthesis/mitochondrial NO,™ or
NO. The NO generated within the mitochondria inhibits the
germination of CCO (Gniazdowska et al. 2010a, b), which
enhances the energy status of O,-limited cells (Gupta and
Igamberdiev 2011b). The reduced mitochondrial NO gen-
eration inhibits the photo-respiratory cycle and fermentative
metabolism (Oliveira et al. 2013). NO released from mito-
chondria into the cytosol is oxidized by plant hemoglobin
(NOj3") due to hypoxia (Igamberdiev and Hill 2004). This
leads to NO/NO, ™ exchange of mitochondria in the cyto-
plasm, maintaining a continuous supply of NO, for ATP
synthesis under hypoxia (Gupta and Igamberdiev 2011Db).
The cytoplasmic conversion NO/ NO;/NO, ensures that the
low redox level helps adapt to the hypoxic NADH/NADP*
and NADPH/NADP" ratios (Igamberdiev et al. 2010).

By Heme-Containing Proteins

Plant peroxisomes can produce NO under hypoxic or anoxic
conditions by reducing NO,~ (Igamberdiev et al. 2010).

@ Springer

NO, /NO may reduce the capacity of deoxygenated heme-
containing proteins in the peroxisome matrix, which is the
primary production mechanism (Igamberdiev et al. 2010;
Sturms et al. 2011). The plant plasma membrane, cytosol,
and endoplasmic reticulum have shown a similar reductional
NO generation (Igamberdiev et al. 2010). Cyanobacteria
(Sturms et al. 2011) and mammalian tissues have also been
affected by a reduction in the use of heme-proteins from
NO,™ to NO (e.g., hemoglobin’s) (Tiso et al. 2011).

Mechanisms of Oxidative NO Synthesis

NOS (EC 1.14.23.29) proteins and NOS encoding genes
(Roszer 2010) have been identified in prokaryotes, unicel-
lular eukaryotes, invertebrates, non-mammalian vertebrates,
and mammals. However, higher plants lack homologous
sequences for known NOS encoding genes (Mur et al. 2013).
Oxidative L-arginine synthesis is also present in plants’
cells, but the responsible enzyme NO synthase (NOS) has
not yet been found. Some of the pathways.

From L-arginine

The chloroplasts and leaf peroxisomes of the vascular
plants and the green algae have been identified as a site for
enzymatic oxidation of L-arginine to NO and L-citruline
(Roszer 2012b). The chloroplastic oxidation of L-arginine
to NO requires NADPH and in the absence of Ca** (Jasid
et al. 2006). In the peroxisomes of leaves, Ca**, calmodulin,
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FAD, FMN, and NADPH are required for L-arginine/L-cit-
rulline conversion (del Rio et al. 2003; del Rio 2011). It has
been recently found that L-arginine-oxylated NO synthesis
requires both Ca?* and NADPH, with tetrahydrobiopterin
(BH,) in Ostreococcus green algae species (Foresi et al.
2010). Plant mitochondria also oxidize L-arginine to NO
with the help of enzymes available in the matrix or inter-
membrane space (Guo and Crawford 2005). It is debatable
whether plant mitochondria contain a specific NO oxidative
synthesis enzyme (Barroso et al. 1999).

Other Forms of Oxidative NO Synthesis

Polyamines and hydroxylamine have recently been shown
to increase the synthesis of oxidative NO in plant cells
(Wimalasekera et al. 2011). The exact mechanism of poly-
amines in increasing NO synthesis remains uncertain (Froh-
lich and Durner 2011). However, NO cannot mediate the
effect of polyamines on plants. Pathways possibly respon-
sible include an interaction between polyamines and NR-
catalyzed NO (Rosales et al. 2012) and the indirect impact of
polyamine synthesis on L-arginine metabolism (Zhang et al.
2011). Hydroxylamine is an intermediate in the nitrification
process and can be oxidized to NO in tobacco cell cultures
(Rumer et al. 2009). This mechanism could be a substi-
tute for oxidative NO synthesis via L-arginine. However,
the underlying molecular mechanism is still unknown for
hydroxylamine’s role in NO synthesis (Rumer et al. 2009).
The possible contribution to NO plant synthesis for other
enzymes needs to be explored.

Non-enzymatic NO Generation

Non-enzymatic NO generation includes release from nitrous
acid (HNO,) after protonation. Acidic environments such
as apoplast of germinating and hypoxic seeds favor this
type of chemical NO release (Yamasaki 2000; Bethke
et al. 2004). Consequently, in the aleuronic layer of bar-
ley, the NO release from NO,™ has been shown (Bethke
et al. 2004). Phenolic compounds found in aleuron apoplast
and on seed coat increase this non-enzymatic NO release.
The NO release in germinating seeds may protect them
from soil microorganisms (Bethke et al. 2004). In addition,
seed dormancy is interrupted by NO, which suggests that
proper germination requires NO,™ together with an enzy-
matic NO synthesis (Roszer 2012b). Together, NO release
can synergize with the reduction of the enzyme NO,/NO
to invoke germination NO burst. During germination, NO-
mediated programmed cell death occurs when aleuron cells
are removed (Lombardi et al. 2010). However, the release
of NO from S-nitrosoglutathione (GSNO) (del Rio 2011) is
another possible, unexplored mechanism for non-enzymatic
NO generation. This compound is formed in the oxidative

environment of peroxisomes, which allows both GSNO and
GSNO to react with glutathione (Barroso et al. 2006). The
GSNO is a compound NO-donor and could carry reserve NO
distributed in the plant’s tissues. GSNO genesis is facilitated
by environmentally friendly light and metal transition (Flo-
ryszak-Wieczorek et al. 2006). Hydroxylamine is another
possible non-synthesis substrate (Rumer et al. 2009), but
GSNOR would not support hydroxylamine production.

NO Metabolism

NO metabolism includes a redox range, which displays dis-
tinctive properties and reactivity such as nitrosonium (NO*),
NO radical (NO"), and nitroxyl anion (NO™) (Gisone et al.
2004). Nitrosation in aqueous phases in organic molecules
in =S, -N, O, and —C centers results in NO™. The biological
relevance of NO™ was disputed under slightly acidic or phys-
iologic conditions, but a variety of nitroso-compounds form-
ing effectively under neutral physiological conditions could
be interpreted as NO™ reactions (Stamler et al. 1992). These
compounds include metal-nitrosyl-complexes, thionitrites
(RS-NO), nitrosamines (RNH-NO), alkyl- and aryl-nitrites
(RO-NO), and tri- and tetra-oxides (N,O; and N,0,) of
dinitrogen. Numerous nuclear centers in biological systems
whose potential nitrosative vulnerability were demonstrated
in in vitro studies (Stamler et al. 1992). Dimerization and
dehydration quickly convert NO™ to the N,O (Basylinski and
Hollocher 1985) and reacts with Fe (III) heme (Goretski and
Hollocher 1988).

NO* is also reversible in sulfhydryl oxidation, leading
to low molecular weight and protein-associated thiols. The
transmission of electrons and collisions is standard and
generally results in NO radical (NO") as the main product.
S-nitrosothiols are thought to be a (minor) product of the NO
disulfide reaction (Stamler et al. 1992). The significant NO
reactions are those with O2 and its different redox and transi-
tion ions in biological terms. When discussing the chemical
and physiological effects, NO is a highly diffused second-
ary messenger that may generate relative effects far from
its production site in plants. Hence, the concentration and
the source of NO are the main determinants of its biologi-
cal effects (Wink and Mitchell 1998). The direct effects of
NO are the result of the interaction between NO and metal
complexes. NO form complexes, including those found reg-
ularly in metalloproteins, of transition metal ions. Heme-
containing protein reactions have been studied extensively
for NO-complexes.

NO also forms non-heme transition metal complexes,
and biochemical focus was given to its responses to the
Fe-S center of the proteins, including several mitochon-
drial electron transportations and enzyme proteins (Henry
et al. 1991). NO’s reaction to heme-containing proteins

@ Springer
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includes cytochrome P450 interactions with more consider-
able physiological consequences (Wink et al. 1993). Tyros-
ine nitration is also a directly established effect of NO on
proteins. Tyrosine nitration is selective and reversible and
ONOO™ dependent. In vivo nitration pathways were shown
to be ONOO™ independent (Davis et al. 2001). NO can also
stop lipid peroxidation (Rubbo et al. 1995). Nitrosating oxi-
dation or nitration is the indirect effect of NO, generated
by the interaction of the NO and O, (Wink et al. 1993).
None of these substances can undergo autoxidation (i.e.,
reactions to O,) to produce N,0; in aquatic solutions (Ford
et al. 1993). Since NO and O, are 620 times more soluble
in lipid layers, the auto-oxidation rate in a lipid phase (Ford
et al. 1993) dramatically increases. The primary N,O; reac-
tions are thought to occur in the membrane fraction.

In its response to O,, NO generates ONOO at a rate near
diffusion, which acts as a nitrating agent as well as a pow-
erful oxidant to modify the proteins (nitrotyrosine forma-
tion), lipids (lipid oxidation, lipid nitration), and nucleic
acids (DNA oxidation and DNA nitration). In short, there are
numerous potential reactions of NO depending on the cell
milieu facilitating biochemical modifications. The produc-
tion site, source, and NO concentration collectively deter-
mine its effects. In addition, a relative equilibrium exists
between oxidative and nitrosating stress. The mechanism
of NO biosynthesis and its metabolism are highlighted in
Fig. 1.

NO: Plant Signaling Component Hub

Perceiving the cues within cells and outside the environ-
ment is vital for the plant life cycle. This perception is
accomplished by plant signaling. Plant signaling involves
an exchange of information between plant cells from recep-
tors to effector through signaling molecules. Discoveries of
molecular components related to signaling provided evi-
dence about the signal response as a cumulative effect of
cross-talk between different signaling pathways (Taylor et al.
2004). This cross-talk generally results from pathway inte-
gration with the unique signal response as a combination.
Such cross-talk involved in physiological processes ranged
from development to stress responses (Peck and Mittler
2020). Some of the critical signaling compounds are ROS,
PGRs, and signaling peptides discussed in this section in NO
as a central signaling molecule. NO orchestrate a plethora of
signaling responses in plants. These responses act at inter-
and intra-cellular levels to modulate plant growth and devel-
opment. NO-mediated transcriptional changes or secondary
messenger activation regulates these processes (Falak et al.
2021). These processes include photosynthesis, organelles
motility, hypersensitive response, programmed cell death,
seed germination, cell wall lignification, flowering, pollen
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tube growth, fruit ripening as well as legume—rhizobium
symbiosis, and biotic and abiotic stress (Turkan 2017; Sami
et al. 2018; Inmaculada Sanchez-Vicente et al. 2019).

NO signaling operates at various levels, specifically with
ROS of the anti-oxidant system (Ma et al. 2016) and affects
seed dormancy, plant reproduction mechanisms (Jiménez-
Quesada et al. 2016), plant-rhizobia interaction (Damiani
et al. 2016), and plant—pathogen interactions (Thalineau
et al. 2016). Moreover, higher NO/ROS content correlates
with the compromised antioxidant system in plants (Gaupels
et al. 2016). This interplay of NO/ROS homeostasis is also
vital for N nutrition and plant immunity. These processes are
mainly governed by NR activity, which is an essential part
of NO signaling after stress induction. Hormonal control on
NO/ROS homeostasis is a crucial factor in plant develop-
ment and stress response, as reported by Sivakumaran et al.
(2016). Also, mitochondria play a vital role in the modu-
lation of NO and ROS signaling by changing hypoxic or
anoxic conditions (Gupta and Igamberdiev 2016). Other than
the direct involvement of NO in ROS production, post-trans-
lational modification of NO enzymes is essential for NO/
ROS homeostasis, emphasizing the ascorbate—glutathione
cycle (Begara-Morales et al. 2016). NO self-regulation also
affects ROS levels (Romero-Puertas and Sandalio 2016).
This regulation indicates the fine-tuning of NO and ROS as
signaling components.

Another facet of NO signaling operates as a secondary
messenger in conjugation with other signaling molecules as
cytosolic Ca** levels, cyclic guanosine 5'-monophosphate
(cGMP), cyclic adenosine diphosphate ribose (cADPR),
phosphatidic acid, H,0,, JA and SA, and Mitogen-Associ-
ated Protein kinases (Santner and Estelle 2009; Foyer and
Noctor 2015; Duszyn et al. 2019; Yang et al. 2019). NO-
cGMP-dependent pathway in plants opens avenues of NO
crosstalk with cGMP signaling (Gross and Durner 2016).
While NO-mediated cGMP signaling is well known in mam-
mals, this system is not well defined in plants. However, the
identification of enzymes of the cGMP pathway in higher
plants supports this hypothesis. This crosstalk provides
the molecular basis of physiological and developmental
responses generated through NO signaling.

Further, downstream target protein studies give cues
about the indirect effect of NO signaling (Simon and Dres-
selhaus 2015). Other than cross-talk in conventional path-
way, NO directly interacts with other molecules to affect
the biological processes in the plant, for example, NO—sul-
fur (Fatma et al. 2016), NO—-inositol (Lytvyn et al. 2016),
NO-heme oxidase 1 (Wu et al. 2016a), and NO-H,0,
interactions (Molassiotis et al. 2016). Understanding this
cross-talk in light of NO response and signaling will provide
insights into its mechanism. The NO crosstalk with other
crucial signaling compounds is highlighted in Fig. 3 and
discussed in this section.
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Molecular Understanding of NO Crosstalk
with Crucial Signaling Compounds

In the signaling cascade, phytohormones are instrumental
for orchestrating plant growth, development, and stress
responses (Santner and Estelle 2009). NO is an essential cue
in signaling cascade interactions with all major hormones
and other endogenous molecules (Freschi 2013). Here, NO
acts as a secondary messenger for plant hormones involved
in stress responses (Saito et al. 2009; Liu et al. 2010). The
subsequent section will discuss the NO accumulation in spe-
cific tissues to perform particular functions in routes with
hormonal regulation.

NO-ABA Crosstalk

Abscisic acid (ABA) is referred to as stress hormone cross-
talk with NO during various environmental challenges and
activates the antioxidant system (Hancock et al., 2011; Fre-
schi 2013). The ABA-induced response was reduced after
the decrease in NO synthesis, which suggests that it is acting
downstream of ABA under stress treatments (Tossi et al.
2012; Zhang et al. 2009). On contrary to this, NO coun-
teracts the ABA (Lozano-Juste and Leon 2010a, 2010b).
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signaling compounds such as H,S, H,0,, Ca, melatonin, ethylene,
abscisic acid, and salicylic acid to regulate various homeostasis pro-
cesses under normal and stress conditions

This mechanism operates at cell, tissue, and organ level
and indicates the specificity of NO-ABA signaling under
specific physiological events. The role of NO-ABA cross-
talk was reported in different physiological processes, for
example, during germination (Liu et al. 2009) as transcrip-
tional inducer and in the maintenance of seed dormancy
(Bethke et al. 2006). Under stress conditions, ROS gen-
eration induces the ABA-NO crosstalk by activating anti-
oxidants and transcription factors (Lu et al. 2009; Zhang
et al. 2007a). Other signaling molecules such as cGMP
MAPK and type 2C protein phosphatases act downstream
of NO-ABA interplay and antioxidant system to modulate
plant stress response (Desikan et al. 2002; Dubovskaya et al.
2011; Mioto et al. 2013). Mutant studies suggested the role
of this cross-talk for salinity stress (Lu et al. 2009; Kong
et al. 2016), heat and drought stress (Zandalinas et al. 2016),
and thermotolerance of plant calluses (Song et al. 2008).

NO-GA Cross-Talk

Gibberellic acid is a crucial phytohormone associated with
seed germination and plant growth. In the signaling cas-
cade, NO promotes the biosynthesis of GA by transcriptional
regulation of GA biosynthesis genes (Bethke et al. 2007).
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NO acts as a balance center for ABA-induced dormancy
and GA-stimulated germination. The molecular basis of
this balance lies in the activation of the anti-oxidant system
along with post-translational modification of other enzymes
involved in ethylene synthesis (Gniazdowska et al. 2010a,
b; Hebelstrup et al. 2012). GAs have been reported to con-
trol hypocotyl growth in coordination with DELLA protein
degradation (de Lucas et al. 2008). Interestingly enough,
higher NO levels antagonize hypocotyl growth (Beligni
and Lamattina 2000). Moreover, NO was also reported in
the repression of PIF genes and augmenting DELLA pro-
tein content (Lozano-Juste and Le6n 2011). That led to the
possibility of NO-GAs-light interplay in the regulation of
seed germination events. NO-GAs module also operates at
various stress conditions, for example, aluminum toxicity
in wheat (He et al. 2012), cadmium toxicity in Arabidop-
sis (Zhu et al. 2012), and deprived phosphorous condition
(Asgher et al. 2017).

NO-Auxins Crosstalk

Auxin is an essential phytohormone associated with cell
elongation. NO as a signaling molecule in NO—Auxin cross-
talk modulates auxin degradation enzyme activity (Xu et al.
2010), interferes with auxin transport through PIN1 efflux
carrier (Fernandez-Marcos et al. 2011), and activates auxin
signaling by S-nitrosylation of the auxin receptor protein
(Terrile et al. 2012). The role of auxin in plant root archi-
tecture, lateral root growth, and root hairs is well docu-
mented (Overvoorde et al. 2010). Interestingly, most root
architecture phenotypes are also influenced by NO as signal
molecules (Ferndndez-Marcos et al. 2011). In vitro cultures
suggest that auxin application does not affect NO release
(Tun et al. 2001). This advises downstream action of NO
in auxin signaling response (Chen et al. 2010). NO-Auxin
crosstalk operates from synthesis to perception in response
to environmental and developmental cues. This crosstalk
was also reported in plant stress responses, for example,
iron deficiency (Chen et al. 2010), drought and water stress
conditions (Pagnussat et al. 2002; Liao et al. 2012) due to
extensive involvement with root architecture regulation, and
cadmium toxicity (Yuan et al. 2016; Xu et al. 2010).

NO-Melatonin Crosstalk

Melatonin is the novel amine-derivative hormone class
involved in plant growth, development, aging, and stress
response. Interaction of NO with melatonin regulates the
melatonin synthesis genes and changes the phytohormone
level (Zhu et al. 2019). Further, downstream action of NO
activates MAPK-associated defense responses. Exogenous
application of melatonin induces glycerol, sugar produc-
tion, ultimately increasing NO and salicylic acid levels.

@ Springer

NO-melatonin crosstalk affects several physiological pro-
cesses like root growth, aging, and iron deficiency allevia-
tion (Zhu et al. 2019; Kaya et al. 2020a).

NO-JA Crosstalk

Jasmonic acid is a fatty acid-derivative phytohormone
mainly associated with herbivory and pathogen response.
Abiotic stress, such as drought stress, affects the JA-asso-
ciated signaling genes (Huang et al. 2008). NO treatment
induces JA-biosynthesis genes that indicate interplay of
NO-JA module (Palmieri et al. 2008). CDPKs are induced
by JA, starting the ABA-induced stomatal closure (Mune-
masa et al. 2007). External treatment with MeJA and ABA
increases NO and ROS content in guard cells (Munemasa
et al. 2007). Evidence suggests calcium signaling acting
downstream of NO-ROS crosstalk. Apart from that, JA asso-
ciated with NO synthesis increases ROS scavenging enzyme
as reported for chilling stress tolerance in Cucumis sativus
(Liu et al. 2016).

NO-CK Crosstalk

Cytokinins are a class of phytohormones associated with
plant cell division in plant shoot and root. CK-NO module
of signaling affects the biosynthesis of nitric oxide; how-
ever, peroxynitrite (NO-derived) binds with zeatin to reduce
its activity (Liu et al. 2013). Type-A response regulators
are a crucial component of CK signaling regulated by NO-
mediated S-nitrosylation (Feng et al. 2013). NO-CK cross-
talk also operates in different stress responses, such as water
stress conditions (Shao et al. 2010) and salt stress conditions.
Antagonistic relation of CK on NO levels was also reported
in Vicia faba seedlings grown under dark (Song et al. 2011)
and leaf development in aging leaves. The molecular basis
of this regulation is supposed to be the limitation of phos-
phorelay activity caused due to S-nitrosylation (Fan et al.
2013a, b).

NO-ET Crosstalk

Ethylene also known as ripening/senescence/stress hormone
is important for plant growth regulation. Heavy metal stress
often increases the activity of the 1-aminocyclopropane-
1-carboxylic acid (ACC) synthase (ACS) enzyme that is
associated with ET (Khan et al. 2015b). Understanding the
NO-ET crosstalk provides the operating mechanism of plant
stress adaptation mechanism under these stresses. ET-NO
crosstalk leads to activation of MAPK cascades and poly-
amine synthesis during cadmium stress in soybean and pea
seedlings (Chmielowska-Bak et al. 2013; Rodriguez-Serrano
et al. 2006). Similarly, treatment of Cd and spermine leads to
NO generation in roots in Triticum aestivum seedlings which



Journal of Plant Growth Regulation (2021) 40:2303-2328

2311

ultimately inhibits the root growth (Groppa et al. 2008). Fe-
deficiency signaling is affected by NO-ET crosstalk with the
induction of several genes associated with the iron accumu-
lation and transport (Garcia et al. 2010). Other than heavy
metals, NO-ET module works profoundly in salinity stress
(Liu et al. 2015).

NO-SA Crosstalk

Salicylic acid is an important plant hormone essential for
plant growth, development, and pathological processes.
NO-SA interplay regulates plant stress responses; for
example, combination of NO and SA prevents nickel tox-
icity by proline accumulation, reduced lipid peroxidation,
and chlorophyll content enhancement in Brassica napus
(Kazemi et al. 2010). On contrary to this, NO-SA com-
bination increases the Cd concentration in the cell wall of
Arachis hypogaea to prevent organelles from toxic effects
(Xu et al. 2015). In addition, ROS also participates with
NO in SA-induced closure of stomata (Khokon et al. 2011).
Here, SA activates peroxidase enzyme that promotes ROS
accumulation, leading to NO generation in guard cells and
ultimately stomata closure. Similarly, the combination of
NO-SA acts synergistically in alleviating salt stress by
improving divalent cations absorption (Dong et al. 2015).
Again, pretreatment of SA in Spinacia oleracea modulates
the NR activity for improvement in chilling tolerance (Aydin
and Nalbantoglu 2011). This implicates SA interplay in the
NO generation pathway that can be used for the future gen-
eration of climate-smart crops.

NO-Sulfur Crosstalk

Sulfur (S) is a vital part of essential molecules, such as the
thioredoxin system, reduced glutathione (GSH), methionine,
and coenzyme A. Under salt stress conditions, NO-S cross-
talk changes the ET and ABA levels in guard cells to affect
the photosynthetic and stomatal response. NO interacts with
GSH and forms S-nitrosoglutathione (GSNO) to impart bet-
ter stress tolerance (Wang et al. 2015b). Further, NO—sulfur
crosstalk is essential for S-assimilation, as shown for Cys
synthesis modulation by ET production (Fatma et al. 2016).
Interactions of nitro and sulthydryl groups are crucial during
nitration (Leterrier et al. 2011). NO also interacts with H2S
to provide salinity stress tolerance by upregulation of salinity
stress-induced genes like HvSOS1 and HvHA1 (Chen et al.
2015). This process is mainly governed by transcriptional
activation of vacuolar transport and compartmentalization
genes where NO acts as a signaling molecule.

NO-BRs Crosstalk

Brassinosteroids (BRs) are the novel class of plant hormones
implicated in plant growth, development, and immunity.
Recently, reports have suggested NO-BRs interplay in
plant root architecture as well as in root development (Tossi
et al. 2013). In addition, alleviation of Copper toxicity was
mediated by NO-BRs crosstalk in conjunction with ABA in
Raphanus sativus seedlings (Choudhary et al. 2012).

These reports suggest precise NO interaction with hor-
mones and other signaling components for fine-tuning the
plant growth, development, and stress response. Further
experiments on targeted NO homeostasis in controlled
induced conditions (Temporal and spatial) will shed light
on components of these cross-talks. Direct target identifica-
tion of NO signaling in biosynthesis, perception, and signal
transduction will be important to decipher the underlying
regulatory mechanisms.

Molecular Understanding of NO Crosstalk During
Plant Stress

Nitric oxide is an essential gasotransmitter with a regulatory
role during plant growth and development. These regulatory
roles are amplified when NO crosstalk with other signaling
molecules or PGRs. The NO crosstalk with other compounds
regulate various biosynthetic pathways, signaling processes,
and metabolism and ultimately maintains plant growth and
development under multiple stresses. Therefore, the mecha-
nism of NO crosstalk under numerous abiotic stress toler-
ance is highlighted in Fig. 4 and discussed in this section.
The NO crosstalk with PGRs and other signaling compounds
under multiple stresses and their improved traits for stress
tolerance are presented in Table 1.

Drought Stress

It has been well established that NO is required for ABA-
induced stomatal closure and provides tolerance to plants
under drought stress (Garcia-Mata and Lamattina 2002).
Further, stomatal closure is regulated by ABA-induced NO
production in Arabidopsis guard cells. Although, Desikan
et al. (2002) revealed no stomatal closer in response to
ABA in double-mutant nial nia2, which are associated with
reduced NO production. This suggests the role of other inter-
mediaries in NO-ABA crosstalk. Plants accumulate more
ABA in drought stress, leading to activation of NADPH
oxidase enzymes such as RBOHF and RBOHD (respiratory
burst oxidase homolog F and D), resulting in more super-
oxide accumulation. This phenomenon is needed for sto-
matal closure through NO production via NR and activates
MAPK signaling cascade (Desikan et al. 2002; Bright et al.
2006; Fency et al. 2017). Several studies showed that the
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Fig.4 Illustrated the physiological, biochemical, and molecular mechanisms of NO crosstalk under stress conditions. Under abiotic stresses,
plant faces the drastic effects on several physiological, biochemical, and molecular processes, which are balanced by NO crosstalk

exogenous application of NO could promote the accumula-
tion of ABA in plants under drought stress, which can be
reversed by the application of NO scavenger (Zhao et al.
2001; Fency et al. 2017). Thus, there is ambiguity in NO’s
function in the increased or decreased ABA signaling under
water deficit. The NO-mediated S-nitrosylation could be
crucial for drought tolerance, as reported in several studies.
The central component of ABA signaling is OST1/SnRK2.6
(open stomata 1/sucrose non-fermenting 1-related protein
kinase 2.6) induced by the S-nitrosylation process in plants.
The protein kinase activity of OST1/SnRK2.6 is inhibited
by S-nitrosylation at Cys 137 position. This ABA-induced
S-nitrosylation of SnRK?2.6 acts as a negative feedback regu-
lator of ABA signaling in plants (Wang et al. 2015a).
There are reports which emphasize the role of transcrip-
tion factors from MYB family to regulate tolerance mecha-
nism in plants under abiotic stresses. Transcription factor,
AtMYB?2, is associated with salt, and drought stress tends
to inhibit its DNA binding activity after the S-nitrosylation
process (Serpa et al. 2007). Another transcription factor,
AtMYBB30, has been found to lose its DNA binding activ-
ity after S-nitrosylation (Tavares et al. 2014; Fency et al.
2017). Thus, protein kinases and transcriptions factors play
a vital role in mitigating plant stress under water deficit. Sev-
eral recent studies suggested that NO crosstalk is a central
player of drought stress tolerance. Wang et al. 2020 reported

@ Springer

that crosstalk between NO and H,S mediates priming-
induced drought tolerance via accumulation of osmolytes
(proline and glycine betaine). Sami et al. (2018) found that
NO crosstalk with phytohormones mediates the alteration in
plant metabolism, and post-translational modification such
as S-nitrosylation confers multiple stress tolerance includ-
ing drought. Likewise, Shan et al. (2015) reported that
NO induced by exogenous application of JA upregulated
the AsA—GSH cycle activity and reduced drought stress in
wheat crops. Moreover, recent studies suggested that NO
crosstalk with other signaling compounds and phytohor-
mones mitigate the drought stress by improving the relative
water contents, photosynthetic capacity, antioxidant defense,
ionic balance, and other plant growth attributes (Shan et al.
2015; Khan et al. 2017; Kaya et al. 2019). However, the
exact mechanism of NO crosstalk under drought tolerance
at the molecular level needed to be explored. These stud-
ies point out that NO crosstalk plays a crucial role dur-
ing drought stress tolerance by antioxidant and osmolytes
regulation.

Temperature Stress
Plant growth and development are severely affected by low

temperature (cold and freezing) and high-temperature stress.
Plants have evolved mechanisms during evolution to combat
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temperature stresses. NO cross-talk plays an essential role
in a plant’s battle against temperature fluctuations (Majlath
et al. 2012; Parankusam et al. 2017; Kolbert et al. 2019). For
N example, exogenous application of NO induces the expres-
= e = sion of MfSAMSI and thereby increased S-adenosylmethio-
§ § S/ nine (SAM), polyamines (PAs) concentration, and PA oxida-
§ ;_: = g tion under cold stress in alfalfa (Medicago sativa) (Guo et al.
< . . .
5| = 3 %" 2014). In this context, SAMs are acting by up-regulating PA
—
& 5 2 ] oxidation and H,0,-induced antioxidant defense (Guo et al.
. a 2014). There is an antagonistic relationship between NO and
2 5 EX, s O ET during fruit ripening in cold stress. For example, Zaharah
g5 g 88c&_“» . . ..
g8 g = e § g 5 £ et al. (2011) studied the different NO levels for fumigation
n [N = = . . . . .
2| & 8 g g @% 58 EUS on mango fruits and observed a significant reduction in ET
= = 7 . . . . .
=1 2 .f, § 3 R 2 §D g K production during fruit ripening. They also found reduced
S| 22 T SEEZLE< e . L .
=| 2o g9 s Sg23 3 chilling injury, softening, ripening, and delayed fruit color
E 223 2 g 282 2 2 £ ‘D‘i development in mango fruits under cold storage conditions.
—_— > 1 < .
2l 5= g 5 3 g = % 5o E =) S Thus, cross-talk between NO and ET delays fruit senescence
O < .= O .= - == Q . . . .
E| A = and thereby fruit quality during cold fruit storage.
o The crop productivity is adversely affected by heat stress
8 . % % k] due to adverse effects on photosynthesis, respiration, mem-
=| & g ; 2 2 brane stability, membrane permeability, and water relations
é g 8 § : 2 g (Kolbert et al. 2019). Heat stress affects cytoskeleton struc-
= = N = o . . g . .
R EE ; 55 5% ture, cell metabolism, and membrane fluidity by increasing
E g 8 § 8" § g; the accumulation of proteins that affect ROS, NO, and other
5 3 % BES E oE phytohormones (Wahid et al. 2007). It has been suggested
sl z¢s SE885 52 that NO acts via reduction of ROS level through activating
(=) = on - S s o =1 < . . . .
= «n = antioxidant enzymes such as catalase (CAT), superoxide dis-
mutase (SOD), ascorbate peroxidase (APX), and expression
of heat shock factor during heat stress in plants (Neill et al.
< s < 2002; Song et al. 2006; Wang et al. 2014; Fency et al. 2017).
= I N . . .
S S ] Exogenous application of NO (pre-treatment) increased
= = < . . .
£ 3 3 the survival rate of maize (Zea mays) seedlings and wheat
'é § § (Triticum aestivum) leaves and reduced heat stress-induced
~ S S loss in rice (Oryza sativa) seedlings (Lamattina et al. 2001;
- S = = . L
£l 2 2 Uchida et al. 2002). Similarly, crosstalk between NO and
=1 =~ = H,S regulates the H,O,-induced thermotolerance in maize
seedlings. It also affects the Ca and calmodulin levels in
' g § tobacco seedlings (Li et al. 2015). These reports suggest
e ¢ 'f.;f that NO crosstalk needed to be further explored for its role
S 8 E during thermotolerance in plants.
= E g 5 5
g SHEE = -
2 =2= % Salinity
= S ASe =
Ak SEEi s
%*3 < § A S @ g Soil salinity is one of the main factors for reduced crop
production in major food and fodder crops and, by large,
§ emerged due to extensive use of groundwater for irrigation
g across the world (Slinger et al. 2005). The role of NO to
S s address plant salt tolerance has been extensively studied in
Q =} . .
2= g various plant species (Zhang et al. 2007b; Hasanuzzaman
1|2 g ., P et al. 2018). For example, artificial application of sodium
= 5 % % 2‘3 2 nitroprusside (SNP, act as NO donor) protects plants against
% ; i) B 3 3 salt stress by altering growth habit and protects from oxida-
AN e 5~ “ tive damage by maintaining plant ion homeostasis (Zhang
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et al. 2006b). Moreau et al. (2008) studied the effect of NO
using Atnoal plants (defective in GTPase activity) and con-
cluded a role of NO under salt stress. The S-nitrosylated
proteins play an essential role under NaCl stress and nega-
tively affect salt concentration (Tanou et al. 2009). However,
exogenous application of NO increased (pre-treatment) the
concentration of NaCl-induced S-nitrosylated protein that
played a protective role under stress conditions (Tanou
et al. 2009). Arora et al. (2016) stated that NO can interact
with different metal proteins such as zinc—sulfur clusters,
heme-iron, copper, and iron—sulfur clusters and form a
stable metal nitrosyl complex that can modify the protein
structure as well as function. They also observed the binding
of thiols to NO and their role in transporting it to the site of
action. Camejo et al. (2013) observed decreased S-nitrosyla-
tion of proteins during short-term and long-term salt concen-
trations. A recent report suggested that pretreatments with
CaCl,, H,0,, and SNP improve p-amylase activity, which
influences starch breakdown and improved seedling estab-
lishments in Chenopodium (Hajihashemi et al. 2020).

Similarly, Singh and Bhatla (2018) reported that NO bind
with ACC oxidase and form a ternary complex (ACC-ACC
oxidase—NO), which lead to a reduction of ethylene biosyn-
thesis and induce LR formation in sunflower under salt stress
conditions. Likewise, Arora and Bhatla (2017) reported that
melatonin and NO crosstalk maintain redox homeostasis
and differential modulations of SOD isoform in sunflower
under salt stress. Moreover, several recent updates on NO
crosstalk with other signaling compounds alleviate salinity
stress (Fatma et al. 2016; Shi et al. 2017; Kaya et al. 2019).
However, there was a significant reduction in S-nitrosylation
under long-term salt treatment. Thus, there were inconsist-
encies between different studies due to differences in plant
genotypes/species, tissue-examined, variable NaCl concen-
tration, and duration of time. Further, NO, S-nitrosylation,
and associated enzyme GSNOR play an essential role in
mitigating salt stress in plants. However, there is a need to
focus more on proteomic approaches to identify salt stress
signaling components directly and indirectly regulated by
redox enzymes and GSNOR.

Heavy Metal Stress

Heavy metals (HMs) such as mercury (Hg), cadmium (Cd),
arsenic (As), chromium (Cr), thallium (T1), and lead (Pb)
have an unknown biological function and are very harm-
ful for plants in higher concentrations. They tend to bio-
accumulate (accumulation in plant cell with the time) and
non-biodegradable. Plants taking up these HMs through
roots from the soil and hyper-accumulation of these HMs
bring rapid cellular homeostasis changes (Ghori et al. 2019).
Nitric oxide (NO) has a broad spectrum of regulation func-
tions with widespread inter- and intra-cellular messenger

@ Springer

activities (Wei et al. 2020). Many enzymatic reactions
accelerated through NO, including nitrate reductase and
L-Ar-dependent nitric oxide synthase-related reactions, an
essential component for HMs tolerance (Wei et al. 2020).
Like other stresses, NO also plays a vital role in enhancing
antioxidant enzyme activities and alleviates the toxicity of
HMs. Rodriguez-Serrano et al. (2009) studied the cadmium
(Cd) toxicity effect on nitric oxide (NO) metabolism in pea
(Pisum sativum), and results implicated that Cd toxicity
inactivated the NO synthase-dependent NO production. Con-
sequently, it leads to calcium (Ca) deficiency in leaves. This
suggests that the Cd toxicity effect can be counteracted by
calcium (Ca). Exogenous SNP application acts as NO donor
to the rice leaves and reduces the Cu and NH,* accumulation
(Mazid et al. 2011). Moreover, Wang et al. (2010) report that
NO actions reduce Cu toxicity through antioxidant enzymes,
which accelerates the metallothionein and metallothionein.
There was an increase in total chlorophyll content and fresh
or dry weight of leaves against Cu toxicity in tomato. Also,
reports suggested the cross-protection role of putrescine and
NO toward Cd toxicity in mung bean seedlings (Nahar et al.
2016). Singh et al. (2008) also found the detoxification and
anti-oxidative properties of NO for Cd and Cu toxicity in
wheat. Exogenous application of SNP accelerated the ROS
scavenging enzymes, which reduced the accumulation of
H,0, and diminished the toxic effect of Cu in tomato (Cui
et al. 2009). Similar results were observed in rice against
Cd toxicity. The exogenous application of NO ameliorates
the tolerance against Cd toxicity by increasing the pectin
and hemicelluloses content in the root cell wall (Xiong et al.
2009). In soybean seedlings, the short-term treatment with
Cd accelerated the geneS expression of encoding the pro-
tein of NO synthesis and ET (Chmielowska-Bak et al. 2013;
Kolbert et al. 2019). Likewise, recent studies on the role of
NO crosstalk on HMs stress tolerance suggest that it acts via
regulating the root growth (biomass, formation, and length),
photosynthetic activity, antioxidant defense, accumulation of
osmoprotectants, and inhibition of HMs transport to grain
and above plant parts (Khan et al. 2020; Kaya et al. 2020a,
b; Singh et al. 2020).

Other Stresses

During the stress condition, NO is generated from L-arg-
dependent NO synthase. This NO can react with superoxide
(O,7) to form ONOO, a powerful oxidant that can lead to
tyrosine nitration of proteins. Tyrosine nitration is an indica-
tor of nitrosative stress in plants which acts as the defense
system for the plants during stress (Nabi et al. 2019). Recent
reports have explained that a wide range of abiotic stresses
is leading to NO synthesis and signaling. It is gaining more
attention mainly due to its properties like small size, no
charge, free radicals, and highly diffusible nature across
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the cell membranes and many plant physiological functions
like growth, development, maturation, and senescence. It
is believed that NO signaling is involved in the respiratory
electron transport system in mitochondria, where it confers
the modulation of ROS and accelerates the antioxidant sign-
aling defense system in the plant, which is exposed to several
abiotic factors (Mazid et al. 2011; Santisree et al. 2020).
The regulatory function of NO crosstalk is not only limited
to drought, cold, heat, cold, and HMs stress but also has a
regulatory role during combined stress, nutrient deficiency,
and high and low light stress. For example, some studies
suggested the NO crosstalk role during the N, P, Mg, and
Fe deficient soil and suggested that it regulates the nutrient
deficiency by improving root attributes, better translocation
of ions, and regulating phytohormones concentration (Yang
et al. 2016; Su et al. 2016; Zhu et al. 2017).

Conclusion and Perspectives

NO has gained attention during the last few decades due to
its substantial role as a gasotransmitter and defense mol-
ecule during numerous environmental stresses. Most of the
NO crosstalk functions are associated with redox, oxida-
tive, ion, and hormonal homeostasis through the modu-
lations of downstream genes in the signaling pathway.
A large body of research has addressed the elementary
mechanism of NO crosstalk regarding plant development
and its role as a central hub under abiotic stress tolerance.
Broadly, these studies indicate how NO crosstalk with
other signaling compounds regulates the cell machinery
in optimum ways. Although the mode of NO crosstalk
with other signaling compounds is not always synergistic,
sometimes antagonist responses also benefit plants under
stressful situations. Moreover, the NO crosstalk response
under similar stress could vary plant by plant due to the
complex nature of signaling compounds and their interact-
ing signals. Components of this crosstalk include genes,
transcription factors, and enzymes associated with the NO
synthesis and expression during different environmental
signals, which need to be more elaborate to understand
the exact mechanism of NO crosstalk. However, most
studies have shown that the NO crosstalk regulates stress
responses via the synthesis and expression of SOD, CAT,
APX, MDA, GR, POX, DHAR, and other antioxidant
defense enzymes and genes. These factors help in the
maintenance of oxidative stress situations at the cell level.
Likewise, stress proteins (HSP), phytochelatins, signaling
cascades (MAPK, CDPK, GMP), osmoprotectants (sugar,
proline), and ion proteins (H*-ATPase) are linked with
NO crosstalk. However, the molecular mechanism of NO
crosstalk is still unclear and needs to explore more for
deep understanding and development of multiple stress

tolerance varieties. Most studies focused on single stress
conditions, and the mechanism of NO crosstalk under
combined and multiple stress still needs to be deciphered.
These studies are limited to the germination and vegeta-
tive stage. However, the responses of NO crosstalk under
the reproductive phase and yield attributing traits are still
unclear, which need to be investigated to develop higher
yield lines under stress situations. In recent years, integrat-
ing omics approaches (integrating genomics, proteomics,
metabolomics, and transcriptomics) has further clues on
understanding gene—gene, gene—protein, gene—environ-
ment interactions and can be a potential approach to under-
standing the complex NO signaling mechanisms. Further,
the integration of omics approaches to next-generation
techniques explores the signaling mechanism at molecular
levels and insights into full understanding of regulatory
pathways and crosstalk mechanism to develop climate-
resilient crops. Moreover, the engineering of NO biosyn-
thesis and crosstalk pathways will be crucial for providing
novel insights into the crop stress improvements program.
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