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Abstract
Nanomaterials are practically used in every aspects of modern life, agriculture is one of them. The aim of this study was 
to evaluate the bio-effectiveness of iron oxide and EDTA functionalized iron oxide nanoparticles as a nano-micronutrient 
fertilizer to replace traditional Fe-fertilizer. The responses of these fertilizers were evaluated on growth and development of 
mulberry (Morus alba L.) plants in a pot experiment. Iron oxide nanoparticles and its EDTA functionalized form had been 
applied in two different dosage (10 and 50 mg/kg soil) by both soil application and foliar spray. Applications of these green 
synthesized nanoparticles showed an increased influence on morpho-physiochemical attributes in treated plants. Iron oxide 
nanoparticles application at a rate of 10 mg/kg in soil significantly improved morphological traits like sprouting percentage, 
number of leaves (52.73% improved over control), plant biomass (37.20% and 90.24% increase of shoot and root biomass 
over control, respectively), root attributes (34% increment for root length) and also shortened the first leaf appearance period. 
The same treatment showed an improvement of 42% and 15% over control in case of chlorophyll and sugar content, respec-
tively. Efficacy of antioxidant enzymes like CAT, POD and NOX were also found to be enhanced over control. Together, 
these results showed that our treated nanoparticles could replace traditional Fe-fertilizer in the cultivation and propagation 
of mulberry crop. To the best of our knowledge, this is the first report on the effect of iron oxide nanoparticles and EDTA 
functionalized iron oxide nanoparticles as a nano-micronutrient fertilizer on mulberry growth and yield.
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Introduction

Mulberry is a high biomass producing, fast-growing, per-
ennial, woody plant belonging to the genus Morus under 
the family Moraceae (Pan and Lou 2008; Yang et al. 2010). 
Mulberry leaves, especially those of the Morus alba L. 
(white mulberry) is agriculturally more important, serving 
as sole food for monophagous insect Bombyx mori (silk-
worm larvae), the product of which (raw silk) puts impact on 
economy of a country like India. It is estimated that almost 
90% of global raw silk production depends upon mulberry 
silk and in India mulberry silk culture was performed mainly 
by moriculture (mulberry plant culture). According to Food 
and Agriculture Organization of the United Nations (FAO), 
sericulture provides gainful employment, helping signifi-
cantly to the livelihood of many people across the globe, 
plays an important role in anti-poverty program especially 

in the rural areas. Propagation of Mulberry depends upon 
vegetative method, seed germination, grafting and rarely by 
tissue culture. Propagation through stem cutting is the most 
simplest and cost effective vegetative proliferation practice 
used for mass production. However, this propagation method 
shows major delay in appearance of first leaf and sometimes 
in root succession, which ultimately delaying the harvesting 
time. Succession and rooting of cuttings greatly depends 
upon several factors like time of preparation of cuttings, 
cultivar chosen to obtain cuttings, physiological condition 
of the cuttings, environmental condition, application of hor-
mones, fertilizers and nutritional supplement etc. (Hartmann 
et al. 2002). As suggested previously by various researchers 
for appropriate root establishment, growth and leaf produc-
tion, a proper nutrient management system is required (Lu 
et al. 2003). Though micronutrients like iron, copper, zinc, 
manganese are required in very low amount, but presence of 
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correct balance of these elements is essential for growth and 
quality leaf production as they play vital role in development 
of plants (Hänsch and Mendel 2009; Noor-Ul-Din 2012). As 
stated by Geetha et al. (2017), in case of multi micronutri-
ent deficiency in Mulberry, yield can be reduced even up to 
fifty percent. Among all these, to date, iron deficiency and 
its remediation were found to be the biggest agronomic chal-
lenges (Tagliavini et al. 2000; Li and Lan 2017). Though in 
the earth’s crust, iron is the fourth most abundant element 
but a large proportion of this remain in the insoluble  Fe+3 
form, but as plants usually absorb iron in  Fe+2 form from 
the soil, deficiency occur (Kobayashi and Nishizawa 2012; 
Mimmo et al. 2014; Bindraban et al. 2015; Ye et al. 2015). 
Its availability is also highly restricted to the plants grown in 
neutral to basic pH of aerobic soil (Straub et al. 2001). Due 
to low solubility of oxidized ferric form in aerobic atmos-
phere, iron is the third most limiting nutrient for growth and 
metabolism of a plant (Zuo and Zhang 2011; Samaranayake 
et al. 2012). However, iron is an indispensable nutrient for 
all organisms as it is the key determinant of various cellular 
metabolism such as electron transport system, biosynthesis 
of chlorophyll and cytochrome, respiration (Kim and Rees 
1992), nutrient uptake, nitrogen fixation, DNA and protein 
synthesis (Rout and Sahoo 2015). Deficiency of iron is fre-
quent in mulberry, growing in alkaline soils and exhibits 
symptoms of chlorosis. To address the deficiency, applica-
tion of chemical and chelated iron fertilizers is adopted. 
Chelated fertilizers are quite costly and often applied for 
high value crops. Besides this, over or improper application 
of fertilizers under aerobic condition can generate reactive 
oxygen species (ROS) as by-products of Fenton reaction 
that may damage vital cellular components of plants (Rout 
and Sahoo 2015). Use of chemical fertilizer is an age long 
practice leads to soil mineral imbalance, destroy soil fertil-
ity, soil texture and shows long term effect to the ecosystem 
(Elemike et al. 2019). Biofertilizers to some extend play 
potential roles in improvement of soil fertility and crop pro-
duction (Bhardwaj et al. 2014) but large-scale productions 
of biofertilizers are not easy and in some cases, they are pH 
and temperature dependent.

To deal with all the associated problems, incorporation 
of nanotechnology in agriculture arises which serves as the 
latest technology for precision agriculture. Nanomaterials 
consist of nano-scale particles having a diameter of less 
than 100 nm (Auffan et al. 2009). Because of their unique 
properties, novel features such as inherent biocompatibility, 
super-paramagnetism, enhanced surface to volume ratio, 
nanoparticles have been extensively used in many aspects 
of daily life of which agriculture holds an important posi-
tion (Rastogi et al. 2017). Several earlier reports suggested 
the ability of nanoparticles in seed germination encourage-
ment, degradation of pesticide residue and improvement of 
soil quality (Ghrair et al. 2010; El-Temsah et al. 2014). Our 

current study deals with the hypothesis that both soil and 
foliar application of iron oxide nanoparticles and EDTA 
functionalized iron oxide nanoparticles on mulberry propa-
gation will improve the overall growth parameters.

Our study mainly emphasizes on enhancing the spout-
ing percentage, decreasing the duration of leaf appearance 
and improving the overall vigour of Mulberry by applica-
tion of phyto-synthesized iron oxide nanoparticles (FeNP) 
and EDTA functionalized iron oxide nanoparticles (FeNP 
EDTA).

Materials and Methods

Collection of Plant Materials

Mature, diseases free Tea [Camellia sinensis (L.) Kuntze] 
leaves for biosynthesis of iron oxide nanoparticles were col-
lected from Tea garden, University of North Bengal, Silig-
uri, West Bengal, India (26°42′41″N, 88°20′50″E). Mulberry 
stem cuttings of S1 cultivar were procured from Matigara 
Sericulture Complex (26°72′40″N and 88°35′37″E), Siliguri, 
West Bengal, India.

Preparation and Characterization of Iron Oxide 
Nanoparticles

Iron nanoparticles were synthesized by adding mature tea 
leaves extracts (aqueous decoction prepared through reflux-
ing) to 0.01 M  FeCl3 (SRL, Batch #T/829638) with a volume 
ratio of 10:1 at room temperature with continuous uniform 
stirring for 30 min using magnetic stirrer (REMI EQUIP-
MENTS). EDTA functionalized iron oxide nanoparticles 
were prepared by the addition of 25 ml EDTA (0.02 M) with 
freshly prepared 55 ml iron oxide nanoparticles solution, fol-
lowing the method of Magdalena et al. (2018). The formed 
particles were removed from reaction medium through pre-
cipitation using a strong external magnet and were rinsed 
thrice with double distilled water and 95% ethanol. After 
washing, the particles were dehydrated using a hot air oven 
(Lab Instruments, India, Model-0949) at 65 °C until com-
plete drying.

Characterization of nanoparticles was initially done using 
UV–Vis spectrophotometer (SYSTRONICS-2201). The size 
and morphology of the synthesized iron oxide nanoparticles 
were investigated on a PHILIPS CM 200 transmission elec-
tron microscope (TEM). Hydrodynamic size was also meas-
ured using dynamic light scattering (DLS) through ZETA-
SIZER NANO ZS90 ZEN3690. The crystalline structure and 
phase purity of the biosynthesized particles were determined 
with the help of XRD analysis using a BRUKER AXS D8 
ADVANCE (BRUKER KAPPA APEX II).
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Experimental Design

The pot experiment was conducted using plastic zip-
per bag in Mulberry germplasm garden (26°42′34″N and 
88°21′06″E, altitude 400 feet) of Department of Botany, 
University of North Bengal, Siliguri, West Bengal, India in 
the period of January-June, 2019. Agro-climatic data as col-
lected in that period were average temperature range of about 
17.35 °C–23.23 °C, average precipitation of 170.33 mm, 
average moisture content of 69.16%, normal wind speed of 
7.5 Kmph and sun exposure duration of 240.75 h.

Soils after collection from mulberry germplasm garden 
were air dried and sieved through a 2 mm mesh to get soils 
of uniform size. According to soil analysis prior to plan-
tation, pH, electrical conductivity (EC), bulk density and 
moisture content of soil was measured as 4.5, 26.5 μS/cm, 
1.25 g/cm3 and 14.33%, respectively and soil texture was 

evaluated as sandy loam. Some other biochemical attributes 
of the tested soil as noted was 1.35%, 2.32%, 0.11%, 22 ppm, 
55.43 ppm and 38 ppm for organic carbon, organic matter, 
available nitrogen, available phosphorus, available potas-
sium and available sulphur, respectively.

The experiment was carried out with six treatments in 
randomized complete block design with 20 replications of 
each. Treatment plots were sufficiently spaced for minimiz-
ing adjacent influences. Among them, 10 plants were used 
for above ground growth analysis and 3 plants were sacri-
ficed at each time of evaluation for measuring underground 
root attributes, biomass analysis along with determination 
of antioxidant attributes. Treatments were control (distilled 
water, abbreviated as Con), ferrous sulphate at 10 mg/kg soil 
dose (abbreviated as FeSO4), iron oxide nanoparticles at two 
different dosage of 10 mg/kg soil (FeNP 10) and 50 mg/kg 
soil (FeNP 50) and EDTA functionalized iron oxide nano-
particles at 10 and 50 mg/kg soil dosage (symbolized as 
FeNP EDTA 10 and FeNP EDTA 50). Each pot (inside 
length: 10.5 cm, breadth: 7.5 cm and height: 19 cm) was 
filled with 1.25 kg of soil and the different treatments in 
solution form were applied to the respective pots. Mulberry 
stem cuttings after collection was obliquely cut under water 
and these obliquely cut stem cuttings of equal length (20 cm 
each) was planted inside pot. Soil application was done ini-
tially after plantation (one time) and foliar applications were 
done by spraying at 30th, 45th and 60th days after plantation 
at the rate of 5 ppm (for FeNP 10 and FeNP EDTA 10) and 
10 ppm (for FeNP 50, FeNP EDTA 50 and FeSO4).

Growth Parameters Evaluation

Best ten plants (replicates) from each treatment were 
selected to estimate growth parameters of treated mulberry 
stem cuttings. Leaf length, leaf breadth, maximum shoot 
length, root lengths were measured using a centimeter scale 
at 30, 45, 60 and 75th days after plantation. For estimation of 
shoot biomass and root growth, three plants from each treat-
ment at each time (30, 45, 60 and 75th days after plantation) 
were harvested, washed with tap water three times and again 
washed thoroughly with deionized water to remove impu-
rities absorbed on the surface of plant parts. Root growth 
was evaluated specifically in terms of maximum root length, 
root branching number and root biomass. Fresh weight of 
shoots and roots were measured using digital weight balance 
(QUINTIX 224-10 IN, Sartorius Lab Instruments GmbH & 
Co. KG). Spouting percentages were calculated using fol-
lowing formula:

Biochemical Evaluation

Leaves sample from each treatment (three replication) 
was collected at 30th, 45th, 60th and 75th after planta-
tion, crushed in cold condition according to the respective 
methodology, centrifuged and biochemical analysis were 
performed.

Estimation of Chlorophyll Content

Chlorophyll was extracted in 80% acetone and the amount 
of total chlorophyll was estimated by standard method 
described by Arnon (1949).

Estimation of Total Protein Content

Total protein content was estimated following the methodol-
ogy given by Lowry et al. (1951). The blue-colored complex 
was formed after well mixing 5 ml alkaline copper solution 
and Folin-ciocalteu reagent (FCR) with 1 ml protein sample 
and the absorbance was measured at 660 nm.

Estimation of Total Carbohydrate (Soluble Sugars) 
and Reducing Sugar Content

0.1 gm of leaf samples were crushed in 10 ml of 80% hot 
ethanol and filtered using filter paper. After evaporation of 
existing ethanol by heating the sample, final volume of fil-
trate was made up to 10 ml by adding distilled water.

Total soluble sugars content was determined by Anthrone 
method (Thimmaiah 2004). Intensity of resultant blue color 

Sprouting percentage =
[

(number of buds sprouted∕number of buds present during plantation) × 100
]

.
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mixture was measured at 620 nm. Using sucrose stand-
ard curve, total soluble sugar present in the extract was 
calculated.

DNSA method (Sadasivam and Manickam 1996) was 
used for reducing sugar estimation. To 1 ml alcohol free 
extract, 1 ml DNSA reagent was mixed and incubated in a 
water bath for 5 min. After the development of the colored 
product, 1 ml 40% Rochelle salt solution was added and 
mixed well and absorbance was read at 510 nm.

Estimation of Total Phenol Content

Method prescribed by Kadam et al. (2013) was followed 
for estimating total phenol content with slight modifica-
tions. For estimating, 95% ethanol, 5 ml distilled water, 
50% Folin–ciocalteau reagent and 5%  Na2CO3 was added to 
1 ml sample extract and incubated for 1 h. Absorbance was 
measured at 725 nm and phenol content was estimated using 
Gallic acid standard curve.

Estimation of Ortho‑Dihydric Phenol

Ortho-dihydric phenol was estimated according to the 
method prescribed by Mahadevan and Sridhar (1986). 
Arnow’s reagent (0.5 ml), 5 ml distilled water and 1 ml 1(N) 
NaOH was added to 0.5 ml methanolic extract of the sample. 
Ortho-phenol content was calculated concerning Catechol 
as standard and the absorbance of the reaction mixture was 
taken at 515 nm.

Estimation of Flavonoid Content

Flavonoid content was estimated following the method of 
Atanassova et al. (2011). To 0.5 ml extract, 4 ml distilled 
water, 5%  NaNO2, 10%  AlCl3 and 2 ml 1(M) NaOH was 
added and the absorbance was taken at 510 nm. Flavonoid 
content was estimated using standard curve prepared from 
Quercetin.

Study of Antioxidant Enzyme Activity

For estimation of antioxidant enzymes, leaf samples from 
each treatment (three replicates) were collected at 30th, 45th, 
60th and 75th days after plantation. Liquid nitrogen medi-
ated cryo-crushing was done followed by cold centrifugation 
and the supernatant was used for further analysis.

Estimation of Catalase (CAT) Activity

CAT (EC 1.11.1.5) activity was measured according to Hasa-
nuzzaman et al. (2011). To 40 µl of enzyme,  H2O2-Potassium 
phosphate buffer (1:2) combination was mixed and decom-
position of hydrogen peroxide was monitored at 240 nm. 

Enzyme activity was expressed as unit mg  protein−1 (1 
unit = mmole  H2O2 reduced per minute) using extinction 
coefficient of 39.4  M−1  cm−1.

Estimation of Peroxidase (POD) Activity

POD (EC 1.11.1.7) enzyme activity was determined using 
the method of Rani et al. (2004). To 3 ml of pyrogallol solu-
tion, 1 ml of the enzyme extract was added and the spectro-
photometer was adjusted to read 0 at 430 nm.  H2O2 (0.5 ml) 
was directly added to the test cuvette and mixed well. The 
change in absorbance was recorded every 30 s up to 3 min. 
One unit of peroxidase is defined as the change in absorb-
ance per minute at 430 nm and was expressed as U.ml−1.

Estimation of Polyphenol Oxidase (PPO) Activity

PPO (EC 1.14.18.1) was estimated according to the method 
given by da Silva and Koblitz (2010) with some modifi-
cations. The reaction mixer contains 2.5 ml of potassium 
phosphate buffer (0.1 M, pH 6.5), 0.3 ml catechol solu-
tion (0.01 M) and 0.2 ml of enzyme extract. Absorbance 
was taken at 495 nm after 5 min of reaction. Activity was 
expressed as U.ml−1, where one unit of PPO was defined as 
the amount of enzyme required for increasing unit absorp-
tion of the reaction mixture in each minute.

Estimation of Glutathione Reductase (GR) Activity

GR (EC 1.6.4.2) activity was measured by Hasanuzzaman 
et al. (2011). The reaction mixture comprising 2.7 ml potas-
sium phosphate buffer (0.1 M, pH 7.8), 1 mM EDTA (pre-
pared within buffer), 0.1 ml of NADPH solution (0.2 mM) 
and 1.0 ml of enzyme source. The reaction was initiated 
by adding 0.1 ml of GSSG (Glutathione disulphide, 1 mM) 
and decrease in absorbance due to NADPH oxidation was 
recorded at 340 nm for 1 min. Activity was expressed as unit 
(U) (1U = µmol NADPH oxidized per minute) per milligram 
protein using an extinction coefficient of 6.2  mM−1  cm−1.

Estimation of Glutathione S‑Transferase (GST) 
Activity

With slight modifications, spectrophotometric method pre-
scribed by Hasanuzzaman et al. (2011) was followed for 
determination of GST (EC 2.5.1.18) activity. The reaction 
mixer contained 2.7 ml Tris HCl buffer (100 mM, pH 6.5), 
1 mM GSH, 1 mM 1-chloro-2, 4-dinitrobenzene (CDNB) 
and 100 µl of enzyme solution. The reaction was initiated 
by the addition of CDNB and the increasing absorbance 
was recorded for 1 min at 340 nm. Extinction coefficient of 
9.6  mM−1  cm−1 was used to calculate the enzyme activity.
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Estimation of NADPH Oxidase (NOX) Activity

Determination of NOX (EC 1.6.3.1) was done by adding 
0.4 ml of enzyme extract to the 2 ml of Tris HCl buffer 
containing 0.5  mg/ml NBT and 134  mM NADPH and 
absorbance was taken at 470 nm. Extinction coefficient 
of 21.6  mM−1  cm−1 was used to calculate enzyme activity 
(Zhang et al. 2018).

Data Analysis and Program Used

Data of 10 replicates were collected for evaluation of 
morphological attributes and results were expressed as 
mean ± standard deviation (SD), however for plant biomass, 
root growth, biochemical and antioxidant enzymes param-
eters evaluation, three replicates were taken. Tests of statisti-
cal differences were carried out by Tukey’s Honestly Signifi-
cant Difference (HSD) test at p ≤ 0.05, where the treatments 
differ significantly were denoted with different letters (a, b, 
c etc.). Excel macros DSAASTAT, version 1.022 (DSAA, 
Italy) extension has been used to calculate this. Principal 
component analysis (PCA) and heat map was performed 

based on  75th day’s data different variables and treatments 
under study. PCA analysis was carried out using web ena-
bled Clustvis program (Metsalu and Vilo 2015) and to make 
biplots first two components (PC1 and PC2) were used. Heat 
map was prepared using web enabled Heatmapper (Babicki 
et al. 2016) based on Pearson distance measurement method 
by preparing percentile rank.

Results and Discussion

Characterization of Iron Oxide Nanoparticles

Color change of ferric chloride solution, from pale yellow 
to dark black, was the first and foremost indication of nano-
particles synthesis. However, formation was confirmed by 
UV–Visible spectra analysis, showed absorption maxima at 
254 nm (Fig. 1a), which is in agreement with the previ-
ous findings (Vadivel et al. 2012; Eslami et al. 2018). TEM 
images (Fig. 1b) confirmed that formed nanoparticles are 
of spherical in shape with an average size of 13.10 nm. 
However, the hydrodynamic size obtained through DLS 

20 30 40 50 60 70 80
0

20

40

60

35
.1
09In
te
ns

ity
(a
.u
.)

2θ

29
.8
10

41
.5
73

53
.1
12

56
.6
87

62
.5
71

a b

c d

Fig. 1  Characterization of biosynthesized iron oxide nanoparticles, a UV–visible spectra analysis, b transmission electron micrograph (TEM), c 
dynamic light scattering (DLS), d X-ray diffraction (XRD) analysis
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(Fig. 1c) is quite higher (59.24 nm) than the size acquired 
through TEM. XRD analysis showed prominent peaks at 
29.81°, 35.10°, 41.57°, 53.11°, 56.69°, 62.57° correspond-
ing to (hkl) values of (220), (311), (400), (422), (511), 
(440) Bragg’s reflections plane (Fig. 1d). The obtained 
peaks match with existing standard JCPDS library (card no 
39-1346), representing standard cubic structure of γ-Fe2O3 
(maghemite) nanoparticles. However, as some extra small 
peaks were also appeared in the obtained XRD spectra, it 
could be the magnetite or other form of iron oxide nanoparti-
cles or rather to say it might be the mixture of different phase 
of iron oxide nanoparticles. Average crystalline size of the 
formed nanoparticles was calculated using Debye–Scher-
rer’s equation and was found to be 11.98 nm, which was in 
close proximity with the average particle diameter obtained 
through TEM analysis.

Effect of Iron Oxide Nanoparticles on the Sprouting 
Percentage and Days to Appear First Leaf

Mulberry stem cuttings responded variably towards dif-
ferent concentrations of normal and EDTA functionalized 
iron oxide nanoparticles. As shown in Table 1, application 
of both the iron oxide nanoparticles and its chelated form 

significantly improved sprouting percentage and also helped 
to reduce the days to appear first leaf. Results of sprout-
ing percentage showed a clear statistical differentiation 
among different concentrations of iron oxide nanoparticles 
and its EDTA functionalized form. FeNP EDTA 50 showed 
almost 82% sprouting percentage which was 166% improve-
ment over control. Iron nanoparticles showed a noteworthy 
response in quick appearance of leaves. Cuttings treated with 
FeNP 10 took only twelve days to appear its first leaf in 
comparison to control which took almost twenty-seven days.

Effect of Iron Oxide Nanoparticles on the Growth 
Parameters

The phenotypic traits of plants showed dramatic effects on 
the resulting plants’ growth and development upon expo-
sure to the FeNPs treatments. The plants exposed to FeNPs-
EDTA have significantly longer shoots and bigger leaves 
in comparison to the control and plants treated with nor-
mal iron salt supplementation  (FeSO4). The morphologi-
cal appearance of the treated plants is presented in Fig. 2a. 
Results pertaining to shoot height showed that maximum 
increase in height of about 78.28% by FeNP EDTA 50 treat-
ments at  75th days after plantation against control. This result 

Table 1  Effect of iron oxide nanoparticles and EDTA functionalized iron oxide nanoparticles on the sprouting percentage and days to appear 
first leaves of Mulberry

Results are expressed as mean ± SD, n = 10. Values with different letters (a, b, c etc.) differ significantly at p ≤ 0.05 by Tukey’s Honestly Signifi-
cant Difference (HSD) test

Parameters Treatments

FeNP10 FeNP EDTA 10 FeNP 50 FeNP EDTA 50 FeSO4 Control

Sprouting per-
centage (%)

45.39 ± 1.03e 63.44 ± 1.16d 73.43 ± 0.78b 81.47 ± 1.16a 66.66 ± 1.32c 30.52 ± 0.80f

Days required for 
appearing first 
leaf

10.33 ± 1.16d 14.67 ± 1.21c 13 ± 1.09c 14.5 ± 1.04c 20.33 ± 1.03b 27.83 ± 1.16a

Fig. 2  Effect of iron oxide nanoparticles EDTA functionalized iron 
oxide nanoparticles on morphological appearance and root growth (a 
and b). For morphological appearance of the plant: (i) FeNP EDTA 

50, (ii) FeNP 10, (iii) FeNP 50, (iv) FeNP EDTA 10, (v) FeSO4, (vi) 
Control. For root appearance: (i) FeNP10, (ii) FeNP EDTA 10, (iii) 
FeNP EDTA 50, (iv) FeNP 50, (v) FeSO4, (vi) Control
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is in conformity with Ju’s study (Ju et al. 2019); where they 
showed that 20 nm size ranged iron oxide nanoparticles-
EDTA conjugate had positive growth potential in Lepidium 
sativam. Yuan et al. (2018) also reported significant influ-
ence of iron oxide nanoparticles on plant height in com-
parison to control and  Fe2+ ions treatment. From Table 2 
it was observed that both the nano-micronutrient fertilizer 
was effective in escalating the number of leaves per plants. 
After  75th days of plantation, the highest number of leaves 
belongs to the cuttings treated with FeNP 10 which showed 
an increment of 52.73% over control. Cuttings exposed to 
FeNP EDTA 50 had 53.48% larger leaf area compared to 
the non-treated groups (control). Yoon et al. (2019) reported 
similar sorts of results where they found 53% leaf area incre-
ment on application of nanoscale zero valent iron (nZVI) 
nanoparticles. No significant changes were observed in 
branching number in iron oxide nanoparticles treated cut-
tings compared to control. According to Elanchezhiana et al. 
(2017), application of  Fe3O4 nano-micronutrient in maize 
significantly improved shoot length, leaf area, root and shoot 
dry biomass and other biochemical parameters. Both maxi-
mum shoot length and average number of branching showed 
optimum value at FeNP EDTA 50 at final day of observa-
tion (75th day after plantation) shared a ratio of 4.20:1. On 

the other hand at the same dose maximum shoot length and 
number of leaves showed almost 1:1 ratio. Increment of 
growth attributes can be explained by high level of photo 
assimilates synthesis and accumulation. Photo-assimilates 
plays central role in plant growth, development (Allsopp 
1954), flowering (Kraus and Kraybill 1918) and apical 
dominance (Loeb 1924). Small sugars were considered as 
important in signaling pathway of plants (Moore et al. 2003). 
Ende (2014) speculated that, internal sugar/IAA proportion 
within the buds or within the adjoining stem may somehow 
be connected prior to initiation of bud outgrowth. Sprouting 
percentage increment, early leaf appearance and evenness in 
branching number depicted not only the accumulation but 
also the effective mobilization of photo-assimilates. Increase 
in leaf area recorded in our study in association with better 
utilization of iron oxide nanoparticles might be a kind of 
adaptation towards proficient photosynthesis as stated by 
Fernández et al. (2008).

Figure 2b represents the root appearance of treated mul-
berry cuttings after 75 days of plantation. Both FeNP and 
FeNP EDTA showed a noticeable change on the develop-
ment of roots over control and normal iron salt supplementa-
tion (Table 3). A prominent increase in root length and root 
branching number was observed in low concentration of both 

Table 2  Effect of iron oxide nanoparticles and EDTA functionalized iron oxide nanoparticles on different growth parameters of Mulberry at dif-
ferent growth stage

Results are expressed as mean ± SD, n = 10. Values with different letters (a, b, c etc.) differ significantly at p ≤ 0.05 by Tukey’s Honestly Signifi-
cant Difference (HSD) test

Attributes Days after plantation Treatments

FeNP10 FeNP EDTA 10 FeNP 50 FeNP EDTA 50 FeSO4 Control

Maximum shoot length 
(cm)

30th Days 6.08 ± 0.45a 6.61 ± 0.44a 7.10 ± 0.34a 7.47 ± 0.48a 4.03 ± 0.46b 3.25 ± 0.31b

45th Days 7.99 ± 0.61ab 8.25 ± 1.11ab 8.55 ± 0.94a 9.23 ± 1.04a 5.55 ± 0.76bc 5.06 ± 0.64c

60th Days 15.09 ± 1.48a 11.70 ± 2.71abc 11.97 ± 2.63abc 13.96 ± 1.29ab 8.07 ± 1.18bc 6.07 ± 0.51c

75th Days 16.49 ± 1.64b 14.31 ± 1.81b 16.18 ± 1.45b 20.20 ± 2.07a 12.86 ± 1.89b 11.33 ± 0.65b

Number of leaves per 
plant

30th Days 9.80 ± 0.63b 10.60 ± 0.84ab 10.40 ± 0.69ab 11.10 ± .073a 6.90 ± 0.31c 5.87 ± 0.64c

45th Days 11.70 ± 1.33b 12.00 ± 1.05ab 12.40 ± 0.96ab 13.80 ± 1.13a 8.40 ± 1.17c 6.66 ± 1.11c

60th Days 18.7 ± 1.49a 16.9 ± 1.37abc 15.7 ± 1.88bc 18.2 ± 1.68ab 14.7 ± 1.33 cd 12.11 ± 1.69d

75th Days 22.3 ± 1.41a 19.3 ± 1.15bc 17.2 ± 1.13 cd 20.4 ± 1.5ab 16.9 ± 1.37de 14.6 ± 0.84e

Average leaf length 
(cm)

30th Days 3.22 ± 0.22bcd 3.42 ± 0.21bc 3.54 ± 0.19ab 3.87 ± 0.17a 3.10 ± 0.19 cd 2.90 ± 0.15d

45th Days 4.23 ± 0.18b 4.54 ± 0.15a 4.48 ± 0.14ab 4.67 ± 0.13a 4.48 ± 0.19ab 3.40 ± 0.16c

60th Days 4.50 ± 0.15b 4.80 ± 0.18ab 4.94 ± 0.221a 4.96 ± 0.19a 4.72 ± 0.18ab 3.9 ± 0.13c

75th Days 5.23 ± 0.24a 5.32 ± 0.21a 5.45 ± 0.19a 5.36 ± 0.15a 4.97 ± 0.16a 4.30 ± 0.24a

Average leaf breadth 
(cm)

30th Days 2.45 ± 0.22bcd 2.60 ± 0.21abc 2.70 ± 0.19ab 2.90 ± 0.17a 2.35 ± 0.19 cd 2.12 ± 0.15d

45th Days 2.90 ± 0.18bc 3.10 ± 0.15ab 3.15 ± 0.14ab 3.28 ± 0.13a 2.89 ± 0.19bc 2.67 ± 0.16c

60th Days 3.60 ± 0.15c 3.98 ± 0.18ab 4.15 ± 0.221ab 4.29 ± 0.19a 3.87 ± 0.18bc 3.65 ± 0.13 c

75th Days 3.82 ± 0.24bc 4.10 ± 0.21ab 4.19 ± 0.19ab 4.36 ± 0.15a 3.98 ± 0.16b 3.54 ± 0.24c

Average number of 
branching

30th Days 2.70 ± 0.48a 2.88 ± 0.78a 2.80 ± 0.42a 2.90 ± 0.73a 2.66 ± 0.74a 2.33 ± 0.86a

45th Days 3.16 ± 0.40a 3.00 ± 0.78a 3.00 ± 0.66a 3.00 ± 0.92a 2.87 ±  064a 2.62 ± 0.51a

60th Days 3.40 ± 0.51a 3.20 ± 0.42a 3.50 ± .52a 3.39 ± 0.95a 3.40 ± 0.51a 3.00 ± 0.5a

75th Days 3.90 ± 0.73a 3.55 ± 0.69a 3.90 ± 0.56a 4.20 ± 0.78a 3.60 ± 0.69a 3.40 ± 0.84a
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FeNP and FeNP-EDTA, supports the findings of Palchoud-
hury et al. (2018). On evaluating root branching number, it 
was found that except FeNP 10, there was no significant dif-
ference among different dosage of iron oxide nanoparticles 
and EDTA functionalized iron oxide nanoparticles. Maxi-
mal significant root length improvement was recorded in 
FeNP 10 after  75th days of plantation which showed almost 
34% of increment over control. Formation of adventitious 
roots in cuttings is governed by various morphological and 
physiological processes and generally triggered by several 
external factors including mineral nutrition. Previous stud-
ies by various researchers have indicated the accumulation 
of several micronutrients including iron and copper at the 
base of stem cuttings (Svenson and Davies 1995; Rowe et al. 
1999). Iron specifically acts locally in the meristematic cells 
of adventitious root primordia and enhances root growth by 
promoting cell division (Hilo et al. 2017). Roschzttardtz 
et al. (2011) observed a high accumulation of iron in nucleo-
lus of plant cells, suggesting the possible involvement of this 
element in ribosomal RNA biosynthesis. Indeed, biogenesis 

of ribosome appears to be correlated with rate of cell prolif-
eration, which is becoming a vital factor in actively dividing 
cells (Manzano et al. 2013). In this study, on application of 
iron oxide nanoparticles externally, maximum length of the 
root and its branching number showed utmost value at FeNP 
10 dosage with a ratio of 1:4.10, which is almost similar to 
the ratio of shoot branching number and maximum shoot 
length. Enhanced root length and branching number helps in 
proper succession of cuttings as adventitious root formation 
is a prerequisite for the vegetative propagation in horticul-
ture, agriculture and forestry (Hartmann et al. 2011). Higher 
numbers of roots observed in present study help the plants to 
access more water and nutrients (Khan et al. 2012). In fact, 
high water availability assists plants to maintain cell turgid-
ity (Majeed et al. 2020). Turgid cells enhanced the leaf size 
to harvest more light which ultimately increased yield and 
biomass of the plants (Zayed et al. 2011).

Evaluation of plant biomass is a primary criterion in 
the study of functional plant biology which might predict 
the resource capture, usages and bioavailability of a plant 

Table 3  Effect of iron oxide nanoparticles and EDTA functionalized iron oxide nanoparticles on maximum root length and branching number of 
Mulberry at different growth stage

Results are expressed as mean ± SD, n = 3. Values with different letters (a, b, c etc.) differ significantly at p ≤ 0.05 by Tukey’s Honestly Signifi-
cant Difference (HSD) test

Attributes Days after plantation Treatments

FeNP10 FeNP EDTA 10 FeNP 50 FeNP EDTA 50 FeSO4 Control

Maximum root 
length (cm)

30th Days 6.20 ± 0.20a 5.80 ± 0.10ab 4.90 ± 0.14c 5.50 ± 0.20bc 4.20 ± 0.10b 3.17 ± 0.35e

45th Days 22.11 ± 1.44a 13.15 ± 1.13b 11.72 ± 0.63bc 12.57 ± 0.60b 10.87 ± 0.418bc 8.77 ± 0.61c

60th Days 26.88 ± 1.4a 16.8 ± 1.21b 15.21 ± 1.05bc 15.32 ± 1.47bc 14.59 ± 0.79bc 11.85 ± 0.5c

75th Days 28.88 ± 1.17a 23.66 ± 1.76ab 21.79 ± 1.67bc 21.26 ± 2.08bc 20.04 ± 1.57bc 16.96 ± 1.60c

Average root branch-
ing number

30th Days 69.33 ± 2.52a 60.33 ± 2.08bc 64.00 ± 1.00ab 65.33 ± 1.53ab 54.00 ± 2.00c 44.33 ± 2.52d

45th Days 84.67 ± 1.52a 74.00 ± 1.00bc 71.00 ± 2.00bc 76.33 ± 1.52b 69.00 ± 1.00c 61.76 ± 3.21d

60th Days 94.67 ± 1.52a 87 ±  2bc 88.67 ± 1.52abc 91.33 ± 2.52ab 83 ± 2.64c 75.67 ± 2.51d

75th Days 118.67 ± 6.65a 99.33 ± 3.21bc 106 ±  3ab 107 ± 3.6ab 97.67 ± 5.03bc 88 ±  3c

Table 4  Effect of iron oxide nanoparticles and EDTA functionalized iron oxide nanoparticles on biomass of Mulberry at different growth stage

Results are expressed as mean ± SD, n = 3. Values with different letters (a, b, c etc.) differ significantly at p ≤ 0.05 by Tukey’s Honestly Signifi-
cant Difference (HSD) test

Attributes Days after plantation Treatments

FeNP10 FeNP EDTA 10 FeNP 50 FeNP EDTA 50 FeSO4 Control

Fresh weight 
of shoot 
biomass 
(gm)

30th Days 2.730 ± .100b 3.150 ± 0.120a 3.510 ± 0.055a 2.1788 ± 0.100c 1.940 ± 0.150c 1.940 ± 0.138c

45th Days 4.470 ± 0.100b 4.330 ± 0.152b 4.150 ± 0.050b 5.100 ± 0.100a 3.530 ± 0.152c 2.760 ± 0.145d

60th Days 5.340 ± 0.141b 5.310 ± 0.172b 5.150 ± 0.081b 6.330 ± 0.019a 4.640 ± 0.231c 3.530 ± 0.126d

75th Days 6.380 ± 0.276a 6.640 ± 0.229a 6.650 ± 0.170a 7.010 ± 0.106a 5.600 ± 0.206b 4.650 ± 0.304c

Fresh weight 
of root 
Biomass 
(gm)

30th Days 1.110 ± 0.085a 0.860 ± 0.030b 0.650 ± 0.041c 0.830 ± 0.052b 0.540 ± 0.047c 0.170 ± 0.038d

45th Days 1.700 ± 0.070a 1.530 ± 0.030b 1.230 ± 0.050c 1.540 ± 0.040b 0.710 ± 0.014d 0.500 ± 0.019e

60th Days 1.940 ± 0.052a 1.720 ± 0.047bc 1.640 ± 0.038c 1.800 ± 0.008b 1.080 ± 0.049d 0.970 ± 0.032d

75th Days 2.340 ± 0.020a 2.110 ± 0.066b 1.900 ± 0.034c 1.940 ± 0.040c 1.510 ± 0.030d 1.230 ± 0.040e
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(Wilson et al. 1999; Poorter and Nagel 2000). The obtained 
results for mean fresh biomass (shoot and root) of various 
treatments were presented in Table 4. The obtained results 
for mean fresh shoot and root biomass of two different dos-
ages of both the iron oxide and EDTA functionalized iron 
oxide nanoparticles showed no significant variation among 
them; however, exhibited an increased value over control and 
ferrous sulphate treated cuttings. As a whole, application of 
iron nanoparticles at the rate of 10 mg/kg soil (FeNP 10) has 
resulted in improvement of both shoot and root fresh bio-
mass of the cuttings by 37% and 90% respectively in com-
parison with control. With increasing days after plantation, 
shoot and root biomass at optimum dose (FeNP EDTA 50 
for shoot and FeNP 10 for root) showed a positive correla-
tion (r2 = 0.778) sharing a ratio of 3:1. In soybean crops, it 
was established that magnetite nanoparticles were able to 
increase the leaf and pod dry weights (Sheykhbaglou et al. 
2010). Askary et al. (2017) reported that iron nanoparti-
cles treatment on Mentha piperita L. under salinity stress 
increased fresh and dry weight values as compared to con-
trol. Enhancement of biomass by application of iron oxide 
nanoparticles can be correlates with improved chlorophyll 
production, as photosynthesis is the most crucial process for 
plant growth, development and biomass production (Raines 
2011; Khan et al. 2017). Root length, branching number and 
its succession may also played a stimulatory role in plant 
biomass improvement as reported by Zhang et al. (2017) 
who showed a positive correlation between shoot biomass 
and root length density. Improvement in leaf area and plant 
height may also be the driving force in plant biomass incre-
ment (Majeed et al. 2020).

Effect on Biochemical Content

Besides biomass improvement, iron oxide nanoparticles 
treatment significantly enhanced leaf chlorophyll content 
over control as well as normal iron supplementation; how-
ever, there was no significant variation among different 
concentrations of iron oxide and EDTA functionalized iron 
oxide nanoparticles (Fig. 3). Compared with control, chlo-
rophyll content was found to be higher in Capsicum ann-
uum treated with 0.05 mM/L iron nanoparticles (Yuan et al. 
2018). Alfalfa grown in nanoscale zero valent iron (nZVI) 
amended soil contained more chlorophyll than control and 
normal Fe-EDTA treated groups (Kim et al. 2019). In plants 
iron acts as a key element playing vital role in electron trans-
fer process to operate photosynthetic system (López-Millán 
et al. 2016). Typically, in photosynthetic cells 80% of iron 
is found to be involved in the synthesis of cytochrome and 
other heme containing molecules as well as chlorophyll 
and construction of Fe-S clusters (Briat et al. 2007). Both 
chlorophyll a and chlorophyll b are helpful in absorption of 
light and consequent electron transport mostly enabled by 

Fe–S protein (Senge et al. 2014). These Fe–S proteins (con-
sisting of Fe–S clusters) through  Fe+2/Fe+3 oxidation states 
transfer electrons in photosystem and its role in chlorophyll 
production are the crucial steps in the process of produc-
tion of energy in plants, growth and development (Balk and 
Lobréaux 2005). Previous reports suggest that 30% improve-
ment in photosynthesis can increase 10% relative growth 
(Kirschbaum 2011). Application of iron oxide nanoparticles 
enhanced chlorophyll content, possibly by influencing both 
enzymatic and biochemical activities during photosynthesis 
(Ghafariyan et al. 2013). In our studies, higher concentration 
of chlorophyll a relative to chlorophyll b was also observed, 
which is comparable with the findings reported by Ju et al. 
(2019).

Protein and sugar content of all the plants increased with 
increasing days after plantation. Increment rate was higher in 
plants treated with iron oxide nanoparticles (FeNP) or EDTA 
functionalized iron oxide nanoparticles (FeNP EDTA) in 
comparison with control. On the other hand, phenolic 
content exhibited contrary results, where with increasing 
days after plantation the phenolics phytochemicals gradu-
ally declined. High phenolic contents belonging to the cut-
tings treated with FeNP EDTA 50, showed improvement of 
67.18%, 18.45% and 42.75% over control for total phenol, 
ortho-dihydric phenol and flavonol, respectively. Enhance-
ment of total phenol content in radish root was recorded by 
application of combined dosage of zinc oxide and iron oxide 
nanoparticles (Mahmoud et al. 2019). Lopez-Vargas et al. 
(2018) also observed improvement of flavonoid content by 
36.14% over control by application of copper nanoparticles 
in tomato plants. Furthermore, the higher initial phenolic 
content observed in present study attributed to young leaves, 
buds and young branches, which get matured with increasing 
days (Raya et al. 2015). Our results was also in conformity 
with Ghasemzadeh et al. (2014), who showed higher phe-
nolic content in early growth stage of Clinacanthus nutans 
compared to mature one. Except FeNP EDTA 50 treated cut-
tings, no significant variation among different treatments in 
sugar content was observed. Application of FeNP EDTA 50 
enhanced both total sugar and reducing sugar by 17.99% and 
42.29%, respectively, in comparison with control. The final 
ratio of total soluble sugar and reducing sugar was observed 
as 127:1. This increase in sugar content is perhaps due to 
increased rate of photosynthesis and better accumulation of 
photo-assimilates (Yoon et al. 2019). Tobacco plants treated 
with 5 nm size ranged  Fe3O4 nanoparticles have shown an 
increment in sugar content compared with control and other 
treated plants (Alkhatib et al. 2019). When Arabidopsis 
thaliana was exposed to nZVI, Yoon et al. (2019) observed 
significant enhancement of 52%, 27% and 44% of different 
carbohydrate metabolites like starch, sucrose and glucose 
content, respectively. However, on iron oxide nanoparticles 
exposure, Kim et al. (2019) and Wang et al. (2016) reported 
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Fig. 3  Effect of iron oxide nanoparticles EDTA functionalized iron 
oxide nanoparticles on different biochemical parameters, A chloro-
phyll content, B total protein content, C total sugar, D reducing sugar, 

E total phenol, F ortho-di-hydric phenol, G flavonoid content.Each 
vertical bar above the means indicates standard deviation of three rep-
licates (n = 3)
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no significant changes in sugar accumulation compared with 
control. Also in current study, no such improvement in pro-
tein content was observed except FENP EDTA 50, where 
only 8% improvement over control was observed which sup-
ports the findings of Yoon et al. (2019).

Antioxidant Enzyme Activity

Reactive oxygen species (ROS) is normally generated as a 
by-product of plant cellular metabolism. When stem cuttings 
were isolated from main plants, certain mechanical injury 
was imposed; this caused biotic stress in plants. Antioxi-
dant enzymes and biochemical defense responses are very 
common under the conditions of wounding (Prasad et al. 
2020). A series of local response get activated to repair the 
damages, which includes deposition of suberin, callose, syn-
thesis of defensive proteins, various phenolics etc. (Savatin 
et al. 2014). Applying an increasing amount of micro-ele-
ment is known to affect the efficiency of several antioxi-
dant enzymes which are the major ROS scavenger in plant 
cells and organs. Nanoparticles primarily interact with plant 
systems through chemical processes which generate ROS, 
creates oxidative damage and lipid peroxidation. Accord-
ing to previous reports nanoparticles generally increased the 
activity of antioxidant enzymes such as CAT, SOD and POD 
etc. (Laware and Raskar 2014). In our present study, with 
respect to control, significant consequence of nanoparticles 
interaction based on exposure time and treatment concentra-
tion were observed on the activity of all the studied enzymes 
(Fig. 4).

Catalase is an important heme containing enzyme in 
redox cycle (Shigeokaet al. 2002), showed highest activity 
in the plants treated with FeNP EDTA 10 at 30th DAP and 
following the trend up to 75th DAP. NOX also followed the 
same trend with an increment of 2.58-fold over control. In 
agreement with our observations, Rui et al. (2016) by apply-
ing different dosage of maghemite and Fe-EDTA in peanut 
shoots observed increased CAT activity in all the treatments 
exceeding control. POD is a heme protein belongs to oxido-
reductases which catalyze the oxidation of a wide range of 
inorganic and organic substances. FeNP EDTA 50 treated 
plants showed highest activity of POD, which surpassed 
the control by 71%. In case of PPO and GR, no significant 
variation among two different dosages of FeNP EDTA was 
observed. The GST activity of plant tissue increased after 
exposure with different Fe treatment, being highest in FENP 
10, which surpassed control by 81.93%. Control and nor-
mal iron salt supplementation  (FeSO4) showed no significant 
variation for GR, CAT and NOX. Activities of all the studied 
enzymes except POD, however, increased along with the 
plant growth.

Higher activity of POD, CAT and protein content 
was observed in mung bean treated with 10  ppm nano 

iron-chelate which supports our findings. Similar results 
were also observed by applying nano-Fe oxide in wheat. 
Ghafari and Razmjoo (2013) observed increased content of 
chlorophyll, carbohydrate and protein along with higher anti-
oxidant enzyme activities. Through lipid peroxidation assay, 
Hu et al. (2017) showed excess ROS production in  Fe2O3 
induced Citrus maxima, also showed increased production 
of antioxidant enzymes like CAT and POD. This might have 
indicated higher production of ROS and thereby increased 
scavenging potential of ROS to reduce oxidative stress and 
difficulties in plants. Becana et al. (1998) explained that, 
in the structures of antioxidant enzymes, shortage of iron 
as a cofactor leads to lowering the efficacy of antioxidant 
enzymes and elevating the plant’s susceptibility towards 
environmental stresses. According to Asl et al. (2019), even 
under optimal condition, different metabolic processes cre-
ate ROS. This enhanced activity of antioxidant enzymes as 
observed in our present experiment can increase the toler-
ance level of plants to oxidative stress (Mittler 2002). By 
comparing the activities of all the studied enzymes, it is 
evident that the accumulation of treated particles induced 
strong antioxidant responses in Morus alba.

Understanding Interactions Between Various 
Treatments and Variables Through PCA 
and Heatmap‑Based Clustering Approach

PCA and Heat map was used to assess the effect of appli-
cation of different dosage of iron oxide and EDTA func-
tionalized nanoparticles on mulberry propagation, to avail 
maximum amount of data variability and to draw an interac-
tion between variables and treatments. First two principal 
components i.e. PC1 (70.37%) and PC2 (18.38%) accounted 
for a total of 88.75% overall data variability (Fig. 5). On the 
basis of factor loading values, it was observed that lower 
right plot mainly represents control and  FeSO4 treatments 
(PC1 loadings are positive but PC2 loadings are negative). 
Higher concentration of both the iron oxide nanoparticles 
i.e. FeNP 50 and FeNP EDTA 50 were placed together in the 
lower left plot with both negative values, indicating a posi-
tive correlation. Whereas, FeNP 10 and FeNP EDTA 10 i.e. 
lower dose of iron oxide nanoparticles occupied the upper 
left plot (positive factor loadings are associated with second 
component and negative factor loadings are associated with 
first component). Presence of these two groups in different 
plots clearly depicted the concentration dependent effect of 
both the iron oxide nanoparticles on mulberry. Short dis-
tance between control and normal iron salt supplementation 
 (FeSO4) confirmed the rather small impact of  FeSO4 on the 
morpho-physiochemical attributes of mulberry.

PCA of different variables showed two major clusters 
(Fig. 6). First cluster grouped root attributes (root length, 
branching number and biomass), number of leaves per 
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plant, most of the antioxidant enzymes (catalase, NADPH 
oxidase, glutathione reductase, glutathione s transferase) 
along with some biochemical parameters (reducing sugar, 
chlorophyll). That indicate shoot length, branching number 
and biomass were positively correlated. Increment of chlo-
rophyll and reducing sugar in plants and placement of these 

two together in same cluster might be due to increment in 
photo-assimilates accumulation accelerated with the produc-
tion of active metabolites like reducing sugar which helps in 
energy production. Enhancement in active metabolism leads 
to generation of ROS which ultimately leads to activation 
of antioxidant enzymes like catalase, glutathione reductase, 

Fig. 4  Effect of iron oxide nanoparticles EDTA functionalized iron 
oxide nanoparticles on different antioxidant enzymes attribute, A cat-
alase, B peroxidase, C polyphenol oxidase, D glutathione reductase, 

E glutathione-s-transferase, F NADPH oxidase activity. Each vertical 
bar above the means indicates standard deviation of three replicates 
(n = 3)
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Fig. 5  Ordination diagram as 
obtained through principal 
component analysis (PCA), 
showing similarities between 
experimental treatments on 75th 
day dataset of overall variables FeNP 10

FeNP EDTA 10
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Fig. 6  Ordination diagram as 
obtained through principal 
component analysis (PCA), 
showing similarities between 
various growth and biochemical 
attributes, performed using the 
data of 75th days after planta-
tion DRAL days required for 
appearing first leaf, PC protein 
content, NOX NADPH oxidase, 
SP sprouting percentage, LB 
leaf breadth, POD peroxidase, 
LL leaf length, TS total sugar, 
FV flavonol, PPO polyphenol 
oxidase, OP ortho dihydric 
phenol, SB shoot biomass, TP 
total phenol, GST glutathione 
s transferase, MSL minimum 
shoot length, RBN root branch-
ing number, CHL chlorophyll, 
GR glutathione reductase, RS 
reducing sugar, CAT  catalase, 
MRL maximum root length, 
LPP number of leaves per plant, 
RB root biomass
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NADPH oxidase and glutathione-s-transferase. Panda and 
Sarkar (2012) also showed a significant positive correlation 
between chlorophyll content and activities of antioxidant 
enzymes. Another major cluster mainly represents above 
ground growth parameters together with polyphenols associ-
ated with defense system and antioxidant enzymes like poly-
phenol oxidase and peroxidase. Initially the content of total 
phenol, ortho di-hydric phenol and flavonol was maximum, 
which gradually decreases with increasing days after planta-
tion. The reason behind this might be due to the fact that ini-
tially the cuttings were susceptible to environmental stresses 
which gradually got acclimatized with increasing days after 
plantation. The enzyme peroxidase, using phenols played 
role in oxidative stress mitigation. Polyphenol oxidase also 
converts polyphenols to quinones group of compounds to 

facilitate defense system (Taranto et al. 2017). Heatmap is 
another data visualizing technique used, in which treatment 
and variables were arranged in row and column, respectively 
(Fig. 7). Hierarchical clustering was formed based on the 
proximity of relationship among attributes and treatments. 
Clusters obtained through heatmap were in conformity with 
the PCA clustering. Presence of days required for appear-
ing first leaf and protein content were out grouped which 
was also observed in PCA depicted that these two attributes 
somehow are unique and showed different trends than the 
others.

Fig. 7  Heat map analysis of different treatments and variables. 
1 = FeNP 10, 2 = FeNP EDTA 10, 3 = FeNP 50, 4 = FeNP EDTA 50, 
5 = FeSO4, 6 = Control. DRAL days required for appearing first leaf, 
PC protein content, NOX NADPH oxidase, SP sprouting percentage, 
LB leaf breadth, POD peroxidase, LL leaf length, TS total sugar, FV 
flavonol, PPO polyphenol oxidase, OP ortho dihydric phenol, SB 

shoot biomass, TP total phenol, GST glutathione s transferase, MSL 
minimum shoot length, RBN root branching number, CHL chloro-
phyll, GR glutathione reductase, RS reducing sugar, CAT  catalase, 
MRL maximum root length, LPP number of leaves per plant, RB root 
biomass
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Probable Mechanism of Action

The overall results obtained indicated strong potential of 
iron oxide nanoparticles and EDTA functionalized iron 
oxide nanoparticles to serve as a leading Fe-enriching 
micronutrients fertilizer for enhanced agricultural produc-
tion. However, understanding the method of these nanopar-
ticles uptake and accumulation in plant tissue is important 
for both practical applicability and safety. It is difficult to 
investigate interaction of nanoparticles with complex bio-
logical system like plants through a single experiment or 
via a single independent material characterization technique 
because of presence of low concentration of nanoparticles 
in the plant tissue and the similarity of nanoparticles with 
naturally occurring nanoparticles and metal ions (Boutch-
uen et al. 2019). Uptake of nanoparticles greatly depends 
upon nature of nanoparticles itself, its size, shape, chemical 
composition etc. (Rico et al. 2011). Judy et al. (2012) sug-
gested that functionalization and surface modification of the 
nanoparticles can change and alter its absorption proper-
ties and accumulation by the plants. Because of reported 
favorability of cheated Fe fertilizer uptake and transporta-
tion in plants, we engineered our iron oxide nanoparticles 
by surface functionalization using EDTA to investigate the 
efficacy of chelated iron nanoparticles.

Plant follows two mechanism viz. reduction-based strat-
egy and chelation-based strategy for uptake of iron. Reduc-
tion-based strategy involves in acidification of rhizosphere; 
thereby increases available Fe (III) in roots’ surroundings. 
Prior to its uptake by the iron-regulated transporter 1 (IRT1), 
root surface-localized ferric reductase oxidase 2 (FRO2) 
reduced Fe(III) to Fe(II) (Robinson et al. 1999; DiDonato 
et al. 2004). IRT1 is an Fe(II) transporter located at epi-
dermal cells that eventually facilitates iron uptake in plants 
(Thomine and Vert 2013). The problem is that IRT1 has 
a broad specificity which also uptakes other divalent cati-
ons (zinc, cadmium, manganese, cobalt) thereby competing 
with iron absorption (Meda et al. 2007; Pineau et al. 2012; 
Lešková et al. 2017). On the other side, in chelation-based 
strategy plants release some phyto-siderophores (PS) in the 
root surroundings which forms Fe-PS chelate. These chela-
tors are using yellow stripe-like (YSL) family of transporter 
protein to transport iron across the root plasma membrane.

For absorption of iron oxide nanoparticles, plant 
responses by acidification of rhizosphere through activa-
tion of  H+-ATPase, and secretion of different organic acids 
and phenolics for chelation of iron, and reduction of Fe(III) 
to Fe(II) by ferric reductase. In response to iron deficiency, 
AHA (plasma membrane localized  H+-ATPase) is known 
to pump protons across the plasma membrane (Jeong and 
Connolly 2009). The gene FRO2, which encodes ferric che-
late reductase had an over-expression in Citrus maxima by 
application of  Fe2O3 nanoparticles. However, the expression 

level of AHA was not influenced by maghemite application 
(Hu et al. 2017).

Plants have well developed mechanism for uptake, trans-
portation, storage and remobilization of  Fe+2 ions (Roschz-
ttardtz et al. 2009). Roschzttardtz et al. (2013) confirmed 
that, in the apoplast of central cylinder, plant roots mainly 
accumulate iron. But problem is that like  Fe+2 ions, FeNPs 
are not present in soluble form. By compiling all the evi-
dence observed, Yuan et al. (2018) concluded that applied 
FeNPs may somehow converted into bio-available form 
(for example,  Fe+3/Fe+2) and afterward transported towards 
the vascular tissues. These findings are also supported by 
Keller et al. (2012), who by application of FeNPs observed 
substantial increase in  Fe+3 and/or  Fe+2 concentrations. The 
apoplastic location and movement of FeNPs was previously 
supported by various viewpoints that typically nanoparticles 
of larger size (more than 20 nm) can’t penetrate through cell 
walls (Rico et al. 2013; Martínez-Fernández and Komárek, 
2016). Figure 8 shows a diagrammatic representation of the 
root strategies and possible routes for iron uptake and trans-
location into aerial plant parts.

Once the iron nanoparticles penetrate into the plants, they 
can follow two different paths to move through tissues i.e. 
apoplast or symplast. Apoplastic transport involve movement 
of water and substances through the extracellular spaces, 
xylem vessels and cell walls of adjacent cells and takes place 
outside the plasma membrane (Sattelmacher 2001), whereas 
in symplastic movement transportation takes place through 
the specialized structure called plasmodesmata (Roberts and 
Oparka 2003). Radial movement of nanoparticles within 
plant tissues was mainly triggered by apoplastic pathway 
which assists nanomaterials to reach the root central cylin-
der and the vascular tissues (Larue et al. 2012; Zhao et al. 
2012; Sun et al. 2014). Once it reaches the central cylinder, 
following the transpiration stream nanoparticles can further 
move upward to the aerial part through xylem (Cifuentes 
et al. 2010; Wang et al. 2012; Sun et al. 2014). However, 
through apoplastic pathway transportation can be stopped at 
casparian strip (Larue et al. 2012; Sun et al. 2014; Lv et al. 
2015) and some nanomaterials can be accumulated there. 
To overcome this hydrophobic layer, they have to follow 
symplastic pathway via endodermal cells (Robards and Robb 
1972). Symplastic transport is also possible in the phloem 
using sieve tube elements, which allow distribution towards 
non photosynthetic tissues and organs (Wang et al. 2012; 
Raliya et al. 2016).

On the other hand, in case of foliar applications, nanopar-
ticles have to cross cuticular barrier following the lipophilic 
or hydrophilic pathway (Schönherr 2002). In lipophilic path-
way diffusion takes place trough cuticular waxes, whereas 
the hydrophilic pathway involves dispersion through polar 
aqueous pores of cuticle or stomata (Eichert et al. 2008; 
Eichert and Goldbach, 2008). In comparison to cuticular 
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pores (pore diameter-2 nm), the stomatal diffusion path-
way appears as more appropriate route for nanomaterials 
penetration with a size exclusion limit of more than 10 nm 
(Eichert et al. 2008). Nanoparticles after entering the leaf 
apoplast through stomatal pathway may undergo long dis-
tance transport through vascular system. Previous reports 
suggested that sugars, photosynthate and other macromol-
ecules reside in the leaf can be transported downward to the 
shoot and root through phloem (Lough and Lucas, 2006). 
Wang et al. (2013) by applying four metal oxide nanoparti-
cles (size ranges 24–47 nm) in watermelon plant observed 
that small sized nanoparticles can penetrate the leaf and can 
reached the shoots and roots. The results indicated the abil-
ity of nanoparticles uptake by leaf to reach the roots through 
phloem sieve tubes.

Conclusion

In summary, this work reports the effects of iron oxide nano-
particles and EDTA functionalized iron oxide nanoparticles 
on the phenotypic characteristics of Morus alba, showing 
enhancement in biomass and different growth attributes. 
Applied nanoparticles also exhibited greater impact on sev-
eral biochemical and antioxidant enzymes attributes. These 
nanoparticles might be an ideal substitution for the tradi-
tional iron fertilizer and will be helpful in fortification of 
plants with nutritional value. However, some points like the 
mechanism behind the transformation of FeNP into available 

form, mobilization, sequestration and accumulation of nano-
particles should be investigated and improvement in under-
standing the toxicological effects like generations of ROS 
through FeNPs oxidation will require further study.
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