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Abstract
This study aims to investigate the effects of cold and salicylic acid (SA) priming on osmolytes accumulation in wheat leaves 
under freezing stress and its underlying physiological mechanism. The results showed that cold and SA priming treatment 
significantly enhanced sucrose and free proline contents as compared with non-priming treatment under freezing, result-
ing in increased leaf water potential, reduced cell death and boosted freezing tolerance. Cold and SA priming-induced free 
proline accumulation under freezing not only depended on promoting its synthesis, but also on inhibiting its degradation. 
Interestingly, the synthesis and hydrolysis of sucrose were both increased by cold and SA priming treatment under freezing. 
Besides, cold and SA priming up-regulated the catabolism of glucose and the assimilation of ammonia as compared with 
non-priming treatment under freezing stress. Findings of the present study suggested that cold and SA priming could simul-
taneously promote-free proline and sucrose accumulation in wheat leaves by coordinating carbon and nitrogen metabolism 
under freezing conditions, and then conferring tolerance to freezing stress. These findings could provide a new insight into 
the mechanisms by which cold and SA priming enhanced freezing tolerance in wheat.
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Introduction

Late spring frost is an important limiting factor in win-
ter wheat production worldwide, including the USA (Gu 
et al. 2008), Australia (Zheng et al. 2015), Italy (Bascietto 
et al. 2019) and China (Zhong et al. 2008). However, while 
slightly counterintuitive, the probability and severity of 
spring frost are predicted to increase due to global warming 

(Gu et al. 2008; Ji et al. 2017). In addition to thermodynami-
cal inhibition of metabolic reactions, sub-zero temperatures 
can also cause other adverse effects such as reactive oxygen 
species (ROS) over-accumulation, cell dehydration and con-
traction (Ruellan et al. 2009; Shin et al. 2018). Among them, 
dehydration stress is the main cause of deterioration of the 
intracellular structures and death of tissues induced by sub-
zero temperatures (Ruellan et al. 2009).

To cope with dehydration damage, wheat plants can 
induce the accumulation of compatible solutes (such as free 
proline, sucrose, glycine betaine and polyols) to support 
osmotic regulation and sustain cell turgor, which play an 
important role in maintaining water potential in the plant 
(Wani et al. 2018; Wang et al. 2019). In addition to their 
role in osmoregulation, free proline and sucrose can act as 
signaling molecules to regulate expression of stress-related 
genes, as ROS scavenger, and as nutrients to help plants 
recover from stresses (Couee et al. 2006; Islam et al. 2021; 
Szabados and Savourcb 2010). It is well-documented that 
the accumulation of free proline and sucrose plays a critical 
role in winter wheat response to freezing stress (Dörffling 
et al. 1990; Kamata and Uemura 2004; Kovács et al. 2011).
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It is interesting to note that the accumulation of sucrose 
and free proline often occur simultaneously in plant response 
to environmental stresses including cold, drought and salt 
(Cai et al. 2004; Ehsan et al. 2012; Perezalfocea and Larher 
1995; Wang et al. 2019). Sucrose and proline metabolism are 
important components of carbon and nitrogen metabolism, 
respectively (Martins et al. 2020; Vágújfalvi et al. 1999). 
Several studies have demonstrated that there was a close 
relationship between carbon and nitrogen metabolism in 
plants, which was critical for plant growth and development 
(Bao et al. 2015; Gálvez et al. 1999). It is reasonable to 
speculate that the coordination between carbon and nitro-
gen metabolism plays an important role in the simultaneous 
accumulation of sucrose and free proline in plant response 
to environmental stimulus.

Priming, defined as a temporal experience of an envi-
ronmental stimulus (including exposure to the stress cues 
themselves as well as the exogenous application of biologi-
cally active chemicals), can effectively improve the plant’s 
level of resistance to future stress events (Baier et al. 2019; 
Zuther et al. 2019). Salicylic acid (SA) is an important phe-
nolic derivative widely distributed in the plant kingdom and 
is known to be a crucial signalling molecule in response to 
abiotic and biotic stresses (Saleem et al. 2020; Sadiq et al. 
2020; Zaid et al. 2019; Ahmad et al. 2019; Dong et al. 2014). 
Previous studies have shown that SA and cold temperature 
priming could effectively enhance wheat freezing tolerance 
(Sun et al. 2018; Wang et al. 2020a). Zuther et al. (2019) 
indicted that the accumulation of sucrose and free proline 
was involved in the cold priming-induced tolerance to freez-
ing in Arabidopsis. A series of studies showed that exog-
enous SA could promote accumulation of free proline in 
plant leaves under both normal and cold conditions (Min 
et al. 2018; Ignatenko et al. 2019). Exogenous SA decreased 
sucrose content in tomato leaves under normal condition 
(Poór et al. 2011), but increased sucrose content in spinach 
leaves under cold condition (Min et al. 2018). However, the 
regulatory mechanisms of cold and SA priming on sucrose 
and free proline accumulation under freezing stress in wheat 
are poorly understood.

Therefore, we hypothesized that cold and SA priming can 
promote freeze-induced sucrose and free proline accumula-
tion by intensifying the coordination between carbon and 
nitrogen metabolism, which is contributing to improving 
wheat freezing tolerance. To test this hypothesis, we investi-
gated the effects of cold and SA priming on cell dehydration, 
free proline and sucrose accumulation, and key enzymes and 
metabolites involved in carbon and nitrogen metabolism 
under freezing stress in wheat leaves.

Materials and Methods

Experiment Design

The locally and widely planted winter wheat (Triticum 
aestivum L. cv Yangmai 16) was planted in plastic pots 
(22 cm in height and 25 cm in diameter), with a plant-
ing density of 7 plants per pot. The fertilizer and water 
management was carried out as described by Wang et al. 
(2020b). Wheat plants were grown outdoor until the appli-
cation of priming treatments.

At the beginning of the jointing stage (when the 1st 
node was detectable, Zadoks 2010), one-third of the wheat 
plants were transferred into a growth chamber with a tem-
perature of 16 °C/10 °C (day/night, set according to the 
ambient temperature) as control treatment (C); one-third 
of the wheat plants were primed with cold temperature 
(6 °C/2 °C, day/night) for 2 days as cold priming treat-
ment (P); one-third of the wheat plants were primed with 
100 μM SA (Sigma-Aldrich, St. Louis, MO) by foliage 
spraying for 2 days (twice a day with an interval of 12 h) 
under control temperature as SA priming treatment (S). 
Then, all the plants were grown under control temperature 
for recovery. After 8 days of recovery, half of each group 
of the plants were subjected to freezing stress for 2 days 
(the first day/night temperature was 2 °C/0 °C, and the sec-
ond day/night temperature was − 2 °C/ − 4 °C), while the 
other half were kept at control temperature (16 °C/10 °C, 
day/night). Finally, six treatments composed: control (CC), 
SA priming without freezing stress (SC), cold priming 
without freezing stress (PC), freezing stress without prim-
ing (CF), SA priming plus freezing stress (SF) and cold 
priming plus freezing stress (PF). The light intensity of the 
chambers was set at 500 μmol  m−2  s−1 with a photoperiod 
of 10 h. The latest fully expanded leaves were sampled at 
the end of freezing treatment for further biochemical and 
physiological analyses.

Freezing Tolerance Determination

The freezing tolerance of wheat leaves was determined by 
the  LT50 (temperature at which 50% of ions in plant tissues 
leak out) according to Cai et al. (2004) with slightly modi-
fications. Fresh leaves of C, S and P treatments at 8 days of 
recovery were cut into 1.5 cm lengths and wrapped in wet 
gauze, then placed in a glass tube and incubated at 4 °C for 
2 h. After incubation, the leaves were treated at different 
freezing temperatures (0, − 3, − 6, − 9, − 12 and – 15 °C) 
for 2 h in a freezing bath (CDN-1007020F, Southeast Co. 
Ltd., Ningbo, China). Then, the leaves were thawed at 
4 °C overnight and used to measure electrolyte leakage 
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using a electrical conductivity bridge (DDS-307A, LEX 
Instruments Co. Ltd., Shanghai, China). The mean values 
of electrolyte leakage of each treatment were utilized to 
generate a sigmoid curve fitting the Logistic function, and 
the temperature corresponding to the inflection point of 
the curve is the  LT50 (Sigmaplot 10.0, Systat Software 
Inc., CA, USA).

Leaf Water Potential and Histochemical Staining

The WP4C Dewpoint PotentiaMeter (Decagon Devices Inc., 
WA, USA) was used to detect water potential of the latest 
fully expanded leaves following the manufacturer’s instruc-
tion. Trypan blue and Evans blue staining were used to 
detect dead cells of the latest fully expanded leaves accord-
ing to Koch and Slusarenko (1990) and Baker and Mock 
(1994), respectively.

Metabolites Contents

The contents of free proline and sucrose were determined 
by Lu et al. (2005) and Huber (1983) method, respectively. 
Ammonium measurements were carried out as described 
by Husted et al. (2000). Glutamate contents were analyzed 
using an L-8900 High Speed Amino Acid Analyzer (Hitachi 
Corp., Tokyo, Japan) as described by Zhong et al. (2018). 
2-oxoglutarate (2-OG) contents were determined using 
an ACQUITY UPLC H-Class (Waters Corp., MA, USA) 
according to Lee and Foy (1986).

Enzyme Assays

The activities of sucrose-phosphate synthase (SPS) and 
sucrose synthase (SS, synthetic direction) were detected 
according to Wardlaw and Willenbrink (1994). The activities 
of acid-invertase (Ac-INV) and alkaline/neutral-invertase 
(A/N-INV) were measured according to Miron and Schaf-
fer (1991) and Vargas et al. (2007), respectively. The activi-
ties of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and 
proline dehydrogenase (PDH) were determined according 
to Mario et al. (1997) and Rena and Splittstoesser (1975), 
respectively. The activities of glutamine synthetase (GS), 
NADH-dependent glutamate dehydrogenase (NADH-GDH) 
and NADP-dependent isocitrate dehydrogenase (NADP-
ICDH) were measured by the method of Lu et al. (2005).

Genes Expression

Total RNA extraction, cDNA synthesis and quantitative 
real time PCR (qRT-PCR) were performed as described by 
Wang et al. (2018). The specific primers of genes encoding 
ornithine- δ-aminotransferase (OAT), pyrroline-5-carbox-
ylate dehydrogenase (P5CDH), hexokinase (HXK), citrate 

synthetase (CS), pyruvate kinase (PK) and malate dehydro-
genase (MDH) are listed in Table S1. The relative expression 
levels of genes were calculated according to the 2 − ΔΔCt 
method (Wang et al. 2018), using Actin gene as a reference 
gene.

Statistical Analysis

Statistical analysis was performed using analysis of vari-
ance (ANOVA) followed by Duncan’s multiple range test 
(SPSS18.0, SPSS Inc., IL, USA), and P < 0.05 was statisti-
cally significant.

Results

LT50, Leaf Water Potential and Cell Death

As shown in Fig. 1A, cold and SA priming treatment (S and 
P) decreased the  LT50 from − 4.4 °C (non-priming treat-
ment, C) to − 5.3 °C and − 5.8 °C, respectively, demonstrat-
ing the beneficial effect of cold and SA priming treatment 
on freezing tolerance enhancement. The  LT50 was calculated 
by electrolyte leakage of leaves. Therefore, we hypothesized 
that priming with SA and cold temperature could alleviate 
freeze-induced tissue dehydration in wheat leaves.

As shown in Fig. 1B, the freezing treatment caused a 
significant decrease in leaf water potential. However, the SF 
and the PF treatments showed lower reduction of leaf water 
potential than the CF treatment (Fig. 1B). As compared to 
the CC treatment, the leaf water potential was decreased by 
45.6%, 48.5% and 89.5% in the SF, the PF and the CF treat-
ments, respectively. Evans blue and Trypan blue staining 
showed that more dead cells (as indicated by the blue spots) 
were present in the CF treatment as compared with the SF 
and the PF treatments (Fig. 1C, D). There was no signifi-
cant difference in the leaf water potential and the number 
of dead cells between the primed and non-primed plants 
under non-freezing conditions (Fig. 1B–D). These results 
suggested that cold and SA priming could alleviate dehy-
dration-induced cell death under freezing stress.

Activities and Expression Levels of Key Enzymes 
Involved in Proline and Sucrose Biosynthesis

The activity of SPS plays a crucial role in controlling 
sucrose biosynthesis in wheat (Vargas et al. 2007), and 
SS is an important enzyme considered to have revers-
ible sucrose synthesis and cleavage functions (Kumutha 
et  al. 2008). As shown in Fig.  2A and B, the SC and 
the PC treatments significantly increased the activities 
of SPS and SS (synthetic direction) as compared with 
the CC treatment. Freezing stress obviously enhanced the 
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activities of SPS and SS (Fig. 2A, B). However, there 
were increases in SPS (67.3% and 72.3%, respectively) 
and SS (44.9% and 47.7%, respectively) activities in the 
SF and the PF treatments as compared with the CF treat-
ment (Fig. 2A, B).

In higher plants, proline can be synthesized from gluta-
mate and ornithine, which are, respectively, catalyzed by 
P5CS and OAT (Szabados and Savourcb 2010). As shown 
in Fig. 2C and D, the SC treatment clearly increased P5CS 
activity and the expression level of OAT as compared with 
the CC treatment. The PC treatment caused an obvious 
increase in the expression level of OAT, while it had no 
significant effect on P5CS activity as compared with the 
CC treatment (Fig. 2C, D). Freezing stress significantly 
up-regulated the expression level of OAT (2.31-fold), but 
it had no significant effect on P5CS activity as compared 
with the CC treatment (Fig. 2C, D). Here, the SF and 
the PF treatments showed relatively higher P5CS activity 
(73.1% and 87.3%, respectively) and expression level of 
OAT (1.52-fold and 1.45-fold, respectively) as compared 
with the CF treatment (Fig. 2C, D).

Free Proline and Sucrose Contents

Both free proline and sucrose contents were clearly 
enhanced by freezing stress (Fig. 3). Moreover, the SF 
and the PF treatments showed strikingly higher free pro-
line and sucrose contents as compared with the CF treat-
ment (Fig. 3). As compared to the CF treatment, the free 
proline and sucrose contents were increased by 64.9% and 
13.1% under the SF treatment, while increased 60.5% and 
20.9% under the PF treatment, respectively. The SC and 
the PC treatments significantly increased the contents of 
free proline (70.4% and 142%, respectively) and sucrose 
(28.0% and 32.8%, respectively) as compared with the CC 
treatment (Fig. 3). These results suggested that cold and 
SA priming could promote-free proline and sucrose accu-
mulation under freezing conditions contributing to allevi-
ating freeze-induced dehydration damage.

Fig. 1  Effects of SA and cold priming treatment on freeze-induced 
dehydration injury in wheat leaves. A  LT50. The measurement was 
taken at the end of the lag phase (8 days of recovery from priming 
treatment). C no priming treatment, S SA priming treatment, P cold 
priming treatment. Each value of electrolyte leakage is the mean ± SE 
of three biological replicates; B Leaf water potential. Each value is 
the mean ± SE of three biological replicates. The different lowercase 

letters indicate statistically significant differences at P < 0.05 level; C 
Trypan blue staining; D Evans blue staining. B–D were determined at 
the end of the freezing treatment. C–D blue spots indicate dead cells. 
CC no SA or cold priming + no freezing stress, SC SA priming + no 
freezing stress, PC cold priming + no freezing stress, CF no SA or 
cold priming + freezing stress, SF SA priming + freezing stress, PF 
cold priming + freezing stress
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Activities and Expression Levels of Key Enzymes 
Involved in Proline and Sucrose Catabolism

Sucrose can be hydrolyzed into glucose and fructose by 
INV in wheat (Vargas et al. 2007). As shown in Fig. 4A 
and B, the SC treatment had no significant effects on the 
activities of A/N-INV and Ac-INV as compared with the 
CC treatment. The PC treatment significantly increased 

the activities of A/N-INV and Ac-INV as compared with 
the CC treatment (Fig. 4A, B). Freezing stress obviously 
enhanced the activities of A/N-INV and Ac-INV (Fig. 4A, 
B). The SF and the PF treatments showed relatively higher 
A/N-INV (20.4% and 8.89%, respectively) and Ac-INV 
(12.4% and 10.3%, respectively) activities as compared 
with the CF treatment (Fig. 4A, B).

Fig. 2  Effects of SA and cold priming on the activities and the 
expression levels of sucrose and free proline biosynthesis-related 
enzymes in wheat leaves. A Sucrose-phosphate synthase (SPS) 
activity; B Sucrose synthase (SS, synthetic direction) activity; C 
Δ1-pyrroline-5-carboxylate synthetase (P5CS) activity; D Relative 
expression level of OAT (encoding ornithine- δ-aminotransferase). 
A–D were determined at the end of the freezing treatment. CC no 

SA or cold priming + no freezing stress, SC SA priming + no freez-
ing stress, PC cold priming + no freezing stress, CF no SA or cold 
priming + freezing stress, SF SA priming + freezing stress, PF cold 
priming + freezing stress. Each value is the mean ± SE of three bio-
logical replicates. For gene expression data, each biological replicate 
has three technical replicates. The different lowercase letters indicate 
statistically significant differences at P < 0.05 level

Fig. 3  Effects of SA and cold priming on sucrose and free proline 
contents in wheat leaves. A Sucrose content; B Free proline content. 
A–B were determined at the end of the freezing treatment. CC no SA 
or cold priming + no freezing stress, SC SA priming + no freezing 
stress, PC cold priming + no freezing stress, CF no SA or cold prim-

ing + freezing stress, SF SA priming + freezing stress, PF cold prim-
ing + freezing stress. Each value is the mean ± SE of three biological 
replicates. The different lowercase letters indicate statistically signifi-
cant differences at P < 0.05 level



2176 Journal of Plant Growth Regulation (2022) 41:2171–2184

1 3

The degradation of proline is catalyzed by PDH and 
P5CDH in higher plants (Yang et al. 2016). As shown in 
Fig. 4C and D, the SC treatment significantly decreased 
PDH activity, and up-regulated the expression level of 
P5CDH as compared with the CC treatment. The PC treat-
ment obviously up-regulated PDH activity and the expres-
sion level of P5CDH as compared with the CC treatment 
(Fig. 4C, D). The CF treatment significantly increased PDH 
activity (18.7%) and the expression level of P5CDH (4.47-
fold) as compared with the CC treatment (Fig. 4C, D). Here, 
there were decreases in PDH activity (18.4% and 11.4%, 
respectively) and expression level of P5CDH (0.76-fold and 
0.75-fold, respectively) in the SF and the PF treatments as 
compared with the CF treatment (Fig. 4C, D).

Ammonium Assimilation

The activity of GS and NADH-GDH play critical role in reg-
ulating the assimilation of ammonia for glutamate synthesis 
in plants (Miflin and Habash 2002). There was no substantial 

difference in the contents of ammonium and activities of 
GS and NADH-GDH between the primed and non-primed 
plants under non-freezing conditions, except for a signifi-
cant increase of NADH-GDH activity in the SC treatment 
as compared with the CC treatment (Table 1). The CF treat-
ment caused a significant increase in ammonium content 
(115%) and GS activity (12.2%), and a slight increase in 
NADH-GDH activity (8.0%) as compared with the CC treat-
ment (Table 1). The SF and the PF treatments obviously 
increased the activities of GS (13.0% and 17.4%, respec-
tively) and NADH-GDH (20.1% and 16.3%, respectively), 
and dramatically decreased ammonium content (46.8% and 
39.2%, respectively) as compared with the CF treatment 
(Table 1). These results suggested that cold and SA prim-
ing promoted the assimilation of ammonium under freezing. 
Here, we investigated glutamate content in each treatment 
to further confirm this inference. Interestingly, the SF and 
the PF treatments induced a significant reduction by 28.7% 
and 26.5% in glutamate content in wheat leaves as compared 
with the CF treatment (Table 1).

Fig. 4  Effects of SA and cold priming on the activities and the 
expression levels of sucrose and free proline catabolism-related 
enzymes in wheat leaves. A Alkaline/neutral-invertase (A/N-INV) 
activity; B Acid-invertase (Ac-INV) activity; C Proline dehydroge-
nase (PDH) activity; D Relative expression level of P5CDH (encod-
ing pyrroline-5-carboxylate dehydrogenase). A–D were determined 
at the end of the freezing treatment. CC no SA or cold priming + no 

freezing stress, SC SA priming + no freezing stress, PC cold prim-
ing + no freezing stress, CF no SA or cold priming + freezing stress, 
SF SA priming + freezing stress, PF cold priming + freezing stress. 
Each value is the mean ± SE of three biological replicates. For gene 
expression data, each biological replicate has three technical repli-
cates. The different lowercase letters indicate statistically significant 
differences at P < 0.05 level
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NADP‑ICDH Activity and 2‑OG Content

In plants, 2-OG is an important carbon skeleton for glu-
tamate synthesis (Miflin and Habash 2002), and cytosolic 
NADP-ICDH plays a key role in 2-OG synthesis (Wang 
et al. 2007). As shown in Fig. 5, the SC and the PC treat-
ments insignificantly increased NADP-ICDH activity, and 
remarkably increased the content of 2-OG as compared 
with the CC treatment. The CF treatment induced a slight 
increase in NADP-ICDH activity (13.0%), but obviously 
enhanced the accumulation of 2-OG (61.3%) as compared 
with the CC treatment (Fig. 5). Interestingly, the SF and the 
PF treatments clearly increased NADP-ICDH activity by 

23.0% and 35.1%, but significantly decreased 2-OG content 
by 14.9% and 11.9% as compared with the CF treatment, 
repectively (Fig. 5).

Expression Levels of Key Enzymes Involved 
in Carbon Metabolism

Expression levels of four key genes (HXK, CS, PK and 
MDH) involved in carbon metabolism were investigated 
here. There was no substantial difference in expression 
levels of these genes between the primed and non-primed 
plants under non-freezing conditions, except for a signifi-
cant up-regulation of the expression level of HXK in the 

Table 1  Effects of SA and 
cold priming on the levels of 
ammonium and glutamate, and 
the activities of GS and NADH-
GDH in wheat leaves

The measurement was taken at the end of the freezing treatment. Each value is the mean ± SE of three 
biological replicates. The different lowercase letters indicate statistically significant differences at P < 0.05 
level
GS glutamine synthetase, NADH-GDH NADH-dependent glutamate dehydrogenase, CC no SA or cold 
priming + no freezing stress, SC SA priming + no freezing stress, PC cold priming + no freezing stress, CF 
no SA or cold priming + freezing stress, SF SA priming + freezing stress, PF cold priming + freezing stress

Treatment Ammonium content 
(mg  g−1 FW)

GS activity (A540 
 g−1 FW  h−1)

NADH-GDH activity 
(μmol  g−1 FW  h−1)

Glutamate 
content (μg  g−1 
DW)

CC 1.66 ± 0.01b 12.3 ± 0.38c 26.2 ± 1.00c 539 ± 40.0b

SC 1.98 ± 0.24b 13.5 ± 0.11bc 30.9 ± 0.80ab 261 ± 23.3d

PC 1.79 ± 0.16b 13.6 ± 0.21bc 29.1 ± 0.71bc 429 ± 18.7c

CF 3.57 ± 0.26a 13.8 ± 0.42b 28.3 ± 0.61bc 634 ± 44.0a

SF 1.90 ± 0.15b 15.6 ± 0.39a 34.0 ± 1.14a 452 ± 6.25bc

PF 2.17 ± 0.31b 16.2 ± 0.55a 32.9 ± 1.02a 466 ± 25.0bc

Fig. 5  Effects of SA and cold priming on the activities of NADP-
ICDH and the contents of 2-OG in wheat leaves. A NADP-dependent 
isocitrate dehydrogenase (NADP-ICDH) activity; B 2-oxoglutar-
ate (2-OG) content. A–B were determined at the end of the freezing 
treatment. CC no SA or cold priming + no freezing stress, SC SA 

priming + no freezing stress, PC cold priming + no freezing stress, 
CF no SA or cold priming + freezing stress, SF SA priming + freezing 
stress, PF cold priming + freezing stress. Each value is the mean ± SE 
of three biological replicates. The different lowercase letters indicate 
statistically significant differences at P < 0.05 level



2178 Journal of Plant Growth Regulation (2022) 41:2171–2184

1 3

SC treatment as compared with the CC treatment (Fig. 6). 
The CF treatment significantly up-regulated the expression 
levels of HXK (1.81-fold) and CS (1.82-fold), while it had no 
significant effects on the expression level of PK and MDH 
as compared with the CC treatment (Fig. 6). The SF and 
the PF treatment evidently up-regulated the expression level 
of MDH (2.22-fold and 1.75-fold, respectively), and gently 
up-regulated the expression level of HXK, PK and CS as 
compared with the CF treatment (Fig. 6).

Discussion

Despite the important role of sucrose and proline in win-
ter wheat resisting freezing stress has been well recorded, 
the underlying mechanisms of freeze-induced sucrose and 

free proline accumulation are not completely understood. In 
the present study, the synthesis and degradation of sucrose 
were both clearly increased by freezing, as revealed by a 
significant higher SPS, SS (synthetic direction), A/N-INV 
and Ac-INV activities under freezing conditions than non-
freezing conditions (Figs. 2A, B, and 4A, B). These results 
were similar to those of Savitch et al. (2000), who found that 
chilling stress prominently increased the activities of SPS, 
SS (synthetic direction), A/N-INV and Ac-INV in wheat 
leaves. Kaplan et al. (2007) indicated that starch degradation 
played an important role in chilling-induced sugar accumu-
lation in Arabidopsis. The degradation of starch leaded to 
the accumulation of glucose-6-phosphate and fructose-phos-
phate (immediate precursors for sucrose biosynthesis), then 
to sucrose and then to fructose and glucose (Kaplan et al. 
2007). In the light of the above studies, it appears that the 

Fig. 6  Effects of SA and cold priming on the expression levels of 
genes involved in glycolysis and the tricarboxylic acid (TCA) cycle 
in wheat leaves. A Relative expression level of HXK (encoding 
hexokinase); B Relative expression level of CS (encoding citrate 
synthetase); C Relative expression level of PK (encoding pyruvate 
kinase); D Relative expression level of MDH (encoding malate dehy-
drogenase). A–D were determined at the end of the freezing treat-

ment. CC no SA or cold priming + no freezing stress, SC SA prim-
ing + no freezing stress, PC cold priming + no freezing stress, CF 
no SA or cold priming + freezing stress, SF SA priming + freezing 
stress, PF cold priming + freezing stress. Each value is the mean ± SE 
of three biological replicates, and each biological replicate has three 
technical replicates. The different lowercase letters indicate statisti-
cally significant differences at P < 0.05 level



2179Journal of Plant Growth Regulation (2022) 41:2171–2184 

1 3

accumulation of sucrose in wheat leaves under cold tempera-
ture stress might be due to a faster rate or an earlier start of 
its synthesis than degradation. Zhang et al. (2019) reported 
that freezing stress significantly increased sucrose content 
and SPS activity, but decreased INV activity in wheat ears 
at the booting stage. These studies suggested that the differ-
ential mechanisms of freeze-induced sucrose accumulation 
found in different organs of wheat.

Previous studies reported that the increased INV activity 
could contribute to producing more hexoses (fructose and 
glucose) that would be metabolized into energy and inter-
mediate metabolites for plant resistance to stresses (Sehar 
et al. 2019; Savitch et al. 2000; Vargas et al. 2007). This 
was further confirmed by our results that the up-regulation 
of INV activity and the expression levels of HXK (encod-
ing hexokinase, the crucial rate-limiting enzyme relating to 
the glycolytic pathway) and CS (encoding citrate synthetase, 
the crucial rate-limiting enzyme relating to the tricarboxylic 
acid cycle) induced by freezing treatment (Figs. 4A, B, and 
6A, B). In addition, increased INV activity was associated 
with the transport of sucrose to the vacuole where it is used 
for fructan synthesis, which also played an important role in 
the regulation of freezing tolerance in wheat (Amani 2008; 
Vágújfalvi et al. 1999).

Previous studies indicated that both the glutamate path-
way and the ornithine pathway were implicated in chilling-
induced proline synthesis (Cao et al. 2012; Yang et al. 2016). 
However, in this study, freezing treatment caused a signifi-
cant up-regulation of the expression level of gene encod-
ing OAT, but it had no significant effect on P5CS activity 
(Fig. 2C, D). Yang et al. (2009) and (2016) found that the 
glutamate pathway was activated prior to the ornithine path-
way when maize and Jatropha curcas seedlings responded 
to stress factors such as chilling temperature and hydrogen 
peroxide. Due to the activity of P5CS determined at the end 
of freezing treatment here, the role of the glutamate path-
way in proline synthesis at the early time points of wheat 
plants response to freezing cannot be excluded. However, 
our results suggested that the ornithine pathway played an 
important role in proline synthesis at the later stage of freez-
ing stress in wheat.

The accumulation of proline depends not only on its syn-
thesis, but also on its degradation (Liu et al. 2020; Szabados 
and Savourcb 2010). Cao et al. (2012) and Zeng et al. (2015) 
indicated that the increase in proline level in loquat fruit and 
bamboo shoots under chilling stress were related with lower 
PDH activity. Intriguingly, freezing treatment significantly 

up-regulated the activity of PDH and the expression level of 
gene encoding P5CDH in this study (Fig. 4C, D). Szabados 
and Savourcb (2010) indicated that proline had a feedback 
effect on transcriptional regulation of proline metabolism. 
Thus, the up-regulation of activity of PDH and expression 
level of P5CDH at the end of freezing treatment might be 
induced by the accumulated free proline.

Due to glutamate is an important substrate for proline 
synthesis, the accumulation of proline is closely associ-
ated with ammonia metabolism (Martins et al. 2020). In the 
present study, freezing stress obviously enhanced ammonia 
content in wheat leaves (Table 1). This is in accordance with 
previous studies that the enhancement of photorespiration 
capacity and ROS-induced proteolysis under stress condi-
tions could lead to an increase in intracellular ammonia 
(Skopelitis et al. 2006; Wang et al. 2007). The synthetic 
precursor of 2-OG is citrate, an intermediate metabolite of 
the tricarboxylic acid cycle (Gálvez et al. 1999). Therefore, 
freeze-enhanced the expression of HXK and CS and the 
activity of NADP-ICDH could contribute to the increase in 
2-OG level (Figs. 5 and 6A, B). Previous studies indicated 
that accumulation of ammonia and 2-OG could regulate 
the activities of GS and NADH-GDH (Gálvez et al. 1999; 
Wang et al. 2016). Thus, the increased ammonia and 2-OG 
might induce the increasement of GS and NADH-GDH 
activities under freezing, resulting in a significant increase 
in glutamate content that could be used for proline synthe-
sis (Table 1). These results were consistent with Lu et al. 
(2005), who found that the accumulation of free proline 
under chilling stress in rice was in good agreement with the 
induction of GS and NADP-ICDH activities. All these find-
ings suggested that the coordination of carbon and nitrogen 
metabolism played an important role in the freeze-induced 
simultaneous accumulation of sucrose and free proline in 
wheat leaves.

It has been well-documented that winter wheat can 
acquire tolerance to sub-zero temperatures by a process 
known as cold acclimation or cold hardening (Kaplan et al. 
2007; Savitch et al. 2000). Nevertheless, there are some dif-
ferences between cold acclimation and cold priming, which 
have been well elucidated in several recent papers (Baier 
et al. 2019; Zuther et al. 2019). Previous studies demon-
strated that accumulation of compatible solutes plays an 
important role in the cold acclimation-induced freezing 
tolerance in wheat (Vágújfalvi et al. 1999; Wardlaw and 
Willenbrink 1994). However, the effects of cold priming 
on compatible solutes accumulation under freezing remain 
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largely unidentified. In this study, we found that cold prim-
ing treatment significantly increased free proline and sucrose 
contents in wheat leaves as compared with non-priming 
treatment under both non-freezing and freezing conditions 
(Fig. 3). This is in good agreement with a recent study by 
Zuther et al. (2019), who reported that the accumulation of 
osmoprotective compounds such as galactinol, sucrose and 
proline were involved in the cold priming-induced freezing 
tolerance in Arabidopsis. In addition, our previous studies 
reported that drought primed plants showed significantly 
higher levels of the compatible solutes such as free proline, 
sucrose and glycine betaine as compared with non-primed 
pants under the subsequent drought stress (Wang et al. 2019, 
2018). Taken together, these results suggested that accumu-
lation of compatible solutes is an important mechanism of 
the priming events inducing stress tolerance in wheat plants.

Numerous recent reports have shown that exogenous SA 
could promote accumulation of free proline under stressful 
conditions (Sedaghat et al. 2020; Min et al. 2018; Estaji and 
Niknam 2020). The regulatory effect of SA on accumulation 
of free proline in this study was consistent with the previ-
ous studies (Fig. 3B). However, previous reports about the 
regulatory effect of SA on sucrose level was inconsistent. 
Poór et al. (2011) and Dong et al. (2011) found that SA sig-
nificantly decreased sucrose content in tomato and cucumber 
leaves, but increased its content in roots under salinity stress. 
La et al. (2019a) and Min et al. (2018) reported that SA 
markedly enhanced sucrose content in Brassica rapa and 
spinach leaves under drought and freezing stress, respec-
tively. In this study, SA significantly increased sucrose level 
in wheat leaves under both non-freezing and freezing condi-
tions (Fig. 3A). These results indicated that the regulatory 
effect of SA on sucrose level might be dependent on species 
and type of organs and stresses.

In the present work, it was shown that cold and SA prim-
ing-induced free proline accumulation by promoting its syn-
thesis and inhibiting its degradation in wheat leaves as com-
pared with non-priming treatment under freezing conditions 
(Figs. 2C, D, and 4C, D). The results were consistent with 
La et al. (2019b) who found that exogenous SA increased 
free proline content by up-regulating the expression level of 
P5CS and down-regulating the expression level of PDH in 
Brassica rapa leaves under drought stress. Previous studies 
indicated that exogenous SA could enhance sucrose level 
through increasing the activity of SPS and the degradation 
of starch in Brassica rapa leaves under drought stress (La 
et al. 2019a). Our results showed that cold and SA priming 

promoted sucrose accumulation by increasing the activities 
of SPS and SS (synthetic direction) in wheat leaves under 
freezing stress (Fig. 2A, B). However, the role of starch deg-
radation in SA and cold priming-induced the accumulation 
of sucrose in wheat leaves under freezing need to be inves-
tigated further.

In this study, priming treatment significantly increased 
activities of GS and NADH-GDH, and decreased level of 
ammonia as compared with non-priming treatment under 
freezing stress (Table 1). This indicated that cold and SA 
priming improved ammonia assimilation under freezing 
stress, which could provide more synthetic precursor (glu-
tamate) for the synthesis of proline. Meanwhile, cold and SA 
primed plants showed relatively higher activities of INV and 
NADP-ICDH, and higher expression level of genes involved 
in the glycolytic pathway (such as HXK and PK) and the 
tricarboxylic acid cycle (such as CS and MDH) as compared 
with non-primed plants under freezing stress (Figs. 4–6), 
indicating that cold and SA priming promoted the catabo-
lism of sucrose and glucose under freezing stress. This might 
contribute to producing more energy and carbon skeleton 
(2-OG) for ammonia assimilation. Collectively, these results 
suggested that cold and SA priming could intensify the 
coordination between carbon and nitrogen metabolism to 
enhance the accumulation of compatible solutes in wheat 
leaves under the later freezing stress, and therefore effec-
tively alleviated freeze-induced dehydration damage.

But interestingly, SA and cold primed plants showed sig-
nificantly lower level of 2-OG as compared with non-primed 
plants under freezing conditions (Fig. 5B). This might be 
due to the accelerated ammonia assimilation by the prim-
ing treatment under freezing conditions (Table 1). In addi-
tion, the higher level of free proline in primed plants might 
explain why the primed plants accelerated ammonia assimi-
lation but had lower glutamate contents as compared with 
the non-primed plants under freezing conditions (Table 1).

Our previous study found that cold priming signifi-
cantly increased SA level in wheat leaves, and the results of 
pharmacological experiment indicated that SA signal was 
involved in the cold priming-induced tolerance to freezing 
in wheat (Wang et al. 2021). In the present study, the results 
indicated that SA and cold priming have similar mecha-
nisms in inducing sucrose and free proline accumulation in 
wheat leaves to alleviate freeze-caused dehydration dam-
age (Fig. 7). This could provide indirectly evidence for the 
involvement of SA in the cold priming-induced freezing 
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tolerance, and should help the introduction of SA into prac-
tices of anti-freezing stress cultivation in wheat.

Conclusions

In conclusion, the coordination between carbon and nitro-
gen metabolism played important role in the simultaneous 
accumulation of sucrose and free proline in wheat leaves 
response to freezing stress, and cold and SA priming could 
intensify this coordination to enhance sucrose and free 
proline levels, which was contributing to the alleviation of 
freeze-induced cell dehydration (Fig. 7). It has become clear 

that carbon and nitrogen metabolism are regulated to enable 
the coordination essential for plant growth and development. 
To the best of our knowledge, this is the first report owing 
that the important role of the coordination between carbon 
and nitrogen metabolism in wheat responded to freezing 
stress. However, the carbon and nitrogen metabolisms of 
plants involve many processes, the more detailed mecha-
nisms of plant coordinated carbon and nitrogen metabolism 
in response to environmental stresses need further study.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00344- 021- 10412-4.

Fig. 7  Schematics of SA and cold priming simultaneously enhanced 
freeze-induced sucrose and proline accumulation by intensifying the 
coordination of carbon and ammonia metabolism in wheat leaves. 
SPS sucrose-phosphate synthase, SS sucrose synthase, INV invertase, 
NADP-ICDH NADP-dependent isocitrate dehydrogenase; TCA cycle 
tricarboxylic acid cycle, 2-OG 2-oxoglutarate, NADH-GDH NADH-
dependent glutamate dehydrogenase, GS glutamine synthetase, 
GOGAT  glutamate synthase, P5CS Δ1-pyrroline-5-carboxylate syn-

thetase, OAT ornithine- δ-aminotransferase, PDH proline dehydro-
genase, P5CDH pyrroline-5-carboxylate dehydrogenase, ROS reac-
tive oxygen species. Black arrows indicate the positive regulation of 
freezing temperature in metabolites level, enzymes activity and genes 
expression. Red arrows indicate the positive or negative regulation of 
SA and cold priming in metabolites level, enzymes activity and genes 
expression
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