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Abstract
The field experiment was conducted to investigate the effects of applying urea with nitrification inhibitor (NI) (Nitrapyrine) 
alone or in combination with gibberellic acid (GA-K salt), on improving wheat yield and N-use efficiency at The University 
of Agriculture (34.1°ʹ21″ N, 71°28′5′E), Peshawar-Pakistan. There were five treatments with four replications: control (no 
urea), urea (150 kg N ha−1), urea + nitrapyrin (525 g ha−1), urea + GA-K salt (60 g ha−1), and urea + nitrapyrin + GA-K salt, 
respectively. Wheat plant biomass, grain yield and total N uptake were enhanced by 31, 37 and 44%, respectively, when urea 
was applied together with nitrapyrin and GA-K salt over control. In addition, 1000 grains weight, grain spike−1, and spike 
length were also significantly increased when urea was applied with both nitrapyrin + GA-K salt. In conclusion, use of urea with 
525 g ha−1 nitrapyrin or 60 g ha−1 GA-K salt has the potential to enhance N-use efficiency and yield components of wheat yield.
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Introduction

Nitrogen (N) is an essential nutrient and plays an important 
role for plant growth and health as it has a key role in the syn-
thesis of protein and chlorophyll (Dawar et al. 2011), which 
are essential for plant development and crop yield (Zhu and 

Chen 2002). Farmers have led to high inputs of N fertilizer 
into cultivated and grass land (Qu et al. 2014). The low nitro-
gen use efficiency (NUE) 5–56% (Dawar et al. 2021) observed 
in many cropping systems is also largely the result of N losses 
associated with NO3

−-N leaching possesses (i.e., N losses 
from nitrification and denitrification) (Cui et al. 2011; Wu 
et al. 2017; He et al. 2018). Further increases in fertilization 
rates are not likely to be useful at increasing crop yields, as 
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the N-use efficiency of fertilizer sharply decreases at higher 
application rates, and attention related to N fertilizer appli-
cation has shifted from its role in increasing crop yield to 
environmental problems. Nitrification, a key process in the 
global N cycle that provides NO3

− through microbial activity 
may result in the conversion of relatively immobile NH4

+ to 
highly mobile NO3

−, making inorganic N susceptible to losses 
through leaching of NO3

− to the ground water and gaseous 
N emissions (NH3 and N2O) to the atmosphere, potentially 
increasing environmental and health problems (Galloway et al. 
2008; Schlesinger 2009; Megaritis et al. 2013).

Modern agricultural practices require a new concept of 
N fertilizer management in order to optimize N utilization 
and avoid N losses. There are a many new management 
practices and technologies that can enhance N-use efficiency 
and could reduce environmental pollution (Yao et al. 2009; 
Shoun et al. 2012; Blagodatskaya et al. 2014; Choudhary 
et al. 2018; Keuschnig et al. 2020). One of the mitigation 
option that can be highly effective in reducing N fertilizer 
losses and increasing N-use efficiency and yields in a few 
cropping systems is the application of nitrification inhibitors 
(NIs) (Majumdar et al. 2002; Cui et al. 2011; Moir et al. 
2012; Wu et al. 2017; He et al. 2018; Dawar et al. 2021). 
Nitrification inhibitors are compounds that delay bacterial 
oxidation of the ammonium-ion (NH4

+) by depressing over a 
certain period of time the activities of Nitrosomonas bacteria 
and also provide more opportunities for plant uptake and 
microbial immobilization of NH4

+ within the soil profile. 
They are responsible for the transformation of ammonium 
into nitrite (NO2

−) which is further changed into nitrate 
(NO3

−) by Nitrobacter and Nitrosolobus bacteria. The inhi-
bition of O2 consumption by the nitrification process may 
also improve soil O2 status and reduce N2O loss through 
denitrification (Sun et al. 2015; Zhu et al. 2015).

Hundreds of NIs are tested, but only a few have gained 
commercial importance, such as dicyandiamide (DCD), 
which is one of the most commonly used NIs (De Klein 
et al. 2011; Ball et al. 2012). The application of DCD with 
N-based fertilizers has increased yield and  reduced N losses 
(Majumdar et al. 2002; Cui et al. 2011; Moir et al. 2012). 
The commonly used NIs are nitrapyrin (NP) (2-chloro-6-(tri-
chloromethyl) pyridine), commercialized with the name of 
N-Serve (He et al. 2018; Dawar et al. 2021; Borzouei et al. 
2021). These inhibitors have been found to be effective, at 
low concentrations, in reducing N2O loss and NO3

− leach-
ing in pasture or cropping systems and improved yield and 
N-use efficiency (Abalos et al., 2014; Sun et al. 2015; Wu 
et al. 2017; He et al. 2018; Dawar et al. 2021. Borzouei et al. 
2021). 

Plant growth regulators (PGRs), either produced naturally 
by the plant or synthetically by a chemist, are small organic 
molecules that act inside the plant cells and alter the growth 
and development of plants. Plant growth regulators can be 

broadly divided into two groups: plant growth promoters 
(auxins, gibberellins, and cytokinins) and bioinhibitors (ABA, 
methyljasmonate). Plant growth regulators are involved in cell 
division, cell enlargement, pattern formation, tropic growth, 
flowering, fruiting, and seed formation. Bioinhibitors play an 
important role in plant responses to wounds and stresses of 
biotic and abiotic origin, and they are also involved in various 
growth-inhibiting activities such as dormancy and abscission. 
The use of PGRs, as gibberellins, cytokinins, auxins, or their 
synthetic compounds, is becoming popular to ensure efficient 
Production. There are many reports which indicate that appli-
cation of PGRs enhanced plant growth and crop yield (Ud-
Deen 2009; Mostafa & Alhamd 2011). One frequently used 
gibberellic acid (GA3) increases stem length, the number of 
flower per plant and increasing yield (Kurepin et al. 2014).

However, the combined application of NIs and PGR has 
not previously been investigated. Therefore, we investigated 
the effects of NIs and PGR to compare with conventional N 
fertilization without NIs in intensive cropping systems in 
Pakistan. The objectives of this field study were therefore 
to investigate the effects of the use of NI and PGR on yield 
and NUE.

Materials and Methods

Field Management and Experimental Set‑Up

A field experiment was conducted in the research farm of The 
University of Agriculture Peshawar, Pakistan (34.1°ʹ21″ N, 
71°28′5′ E) during Rabi 2015–0.2016. The soil was cultivated 
with the common cultivator (tine plough) up to a depth of 
0.30 m followed by 2 cultivations across the field and planking 
was done in all plots to break the clods and smooth the field. 
Before sowing wheat, surface irrigation of 100 mm was applied 
and final seedbed was prepared when field moisture reached at 
50% field capacity after six days of irrigation. Wheat variety, 
Atta Habib, was sown by mounted planter equipped with row 
cleaner wheels with seed rate of 100 kg ha−1 on November, 15, 
2015. Eight irrigations were applied during the wheat-growing 
season; all were equivalent to 75 mm, except the first (pre-
planting) which was 100 mm. Before sowing, a basal dose 
of phosphorus (P) at 90 kg P2O5 ha−1 in the form of single 
superphosphate (SSP) and of potassium (K) at 60 kg K2O 
ha−1 in the form of potassium sulfate were applied and incor-
porated in to the soil. Wheat variety (Atta Habib) was sown 
with seed rate of 100 kg ha−1. There were 5 treatments in the 
experiment and plot size was kept 5 × 3 m2 containing 10 rows. 
The row-to-row distance was kept 30 cm apart. The experi-
ment was laid out as a randomized complete block design 
(RCBD), having five treatments with four replications: control 
(no N), urea (150 kg N ha−1), urea (150 kg N ha−1) + nitrapy-
rin (525 g ha−1), urea (150 kg N ha−1) + GA3-K (60 g ha−1), 
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and urea (150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K 
(60 g ha−1) treatments. All treatments were applied in 3 split 
applications, i.e., at sowing time (15th November), after first 
irrigation (December 05, 2015) and at stem elongation stage 
(50–60 days after sowing). Nitrapyrin and GA3-K were applied 
at a rate of 0.35% and 0.03% of the applied N (w/w) and the 
mixtures were obtained by dissolving urea with nitrapyrin and 
GA3-K in water. Nitrapyrin, GA3-K, and urea were dissolved 
in water 30 min before application and surface applied by hand 
at 90 L solution per plot. Soil samples at (0–10 cm) depth were 
collected after 1, 3, 7, 14, 21, 28, and 36 days after fertilizer 
application to assess the trend of urea hydrolysis and nitrifica-
tion (Soil NH4

+ and NO3
− concentrations).

All other cultural practices including hoeing, weeding, 
and insects control were carried out to all plots uniformly. 
Soil moisture and temperature probes were inserted at 
0–10 cm soil depth to monitor moisture contents and tem-
peratures. An on-site rain gauge enabled rainfall and irriga-
tion to be monitored.

Determination of Mineral N in Soil

Total mineral N in soil was determined by the steam distillation 
method of Bremner and Mulvaney (1982). In this method, 20 g 
samples of moist soil were shaken with 100 ml of 1 M KCl for 
one hour and filtered. Twenty ml of the filtrate was distillated 
with either MgO to recover NH4

+-N or with MgO + devarday’s 
alloy to recover total mineral N. The distillate was collected 
in 5 ml boric acid mixed indicator solution and then titrated 
against 0.005 M HCl. The NO3

−-N was determined by sub-
tracting the NH4

+-N from the total mineral N.

Determination of Total N in Soil and Plant

Total N in soil and plant samples was determined by the 
Kjekdhal method (Bremner 1996). In this method, 0.2 g 
of finely ground samples of dry materials were digested 
with 3 ml of concentrated H2SO4 in the presence of 1.1 g 

digestion mixture containing CuSO4, K2SO4, and Se on a 
heating mantle for about 1 h. The digest was transferred 
quantitatively to the distillation flask and distilled in the 
presence of 10 ml of 10 M NaOH solution. The distillate 
was collected in 5 ml boric acid mixed indicator solution 
and then titrated against 0.01 M HCl solution by adding 5 ml 
boric acid mix Indicator. Using the following formula, total 
N was calculated.

Crop Harvesting and Yield Measurement

Wheat crop from main plots was harvested at physiological 
maturity on and data were recorded on various agronomi-
cal traits (biomass, grain yield, and straw yield) and total 
N uptake in crop. Biomass yield was separated into grain 
and above-ground plant tissue (i.e., shoot and leaves) and 
their fresh bulk weight was recorded immediately. Five 
randomly chosen plant tissue subsamples (ca. 100 g fresh 
weight) from each subplot were transferred to sealable 
plastic bags and transferred to lab in container with ice to 
ensure no water losses occur from collected plant tissue. 
After transporting the plant tissue samples to the lab, fresh 
weight was immediately recorded. After recording the fresh 
weight, harvested material was placed in pre-weighed paper 
bags and dried at 65 °C for seven days. Dry weights of 
the plant tissue after seven days were recorded in order to 
calculate its moisture content or fraction. The grain yield 
was adjusted for moisture fraction, prior to obtaining its dry 
weight, using a moisture tester. For N uptake, the above-
ground plant tissues (i.e., shoot and leaves) and the grains 
were taken, and then both these two tissues samples were 
ground separately to a fine powder (for determination of the 
total N by Kjeldahl method).

Grains yield was recorded after threshing of wheat plants 
taken from central four rows of each treatment and then con-
verted into kg ha−1 by using the following formula:

Biological yield was recorded by harvesting 4 central 
rows in each plot, dried, and weighed, and then weight was 
converted into kg ha−1 using the following formula:

Total nitrogen % =
(Sample − Blank) × 0.005 × 0.014 × 100

Weight of soil × volume made

Grain yield (kg ha−1) =
Grain yield in four central rows

Row − row distance × Row length × No. of rows
× 10,000.

Biological yield (kg ha−1) =
Biological yield in four central rows

Row − row distance × Row length × No. of rows
× 10,000.
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Total N uptake was calculated using formula below:

Nitrogen use efficiency was calculated using formula 
stated below:

Thousand (1000) grains weight was recorded by count-
ing thousand (1000) grains randomly from each treatment 
and then weighing on electronic balance. This parameter 
was also recorded for each treatment separately. Plant height 
was recorded by selecting five plants which were randomly 
selected from each plot and tagged and their heights were 
recorded from the soil surface to the tip of each plant at 
physiological maturity. Then for precision, mean of five 
plants was taken for each treatment. For determination of 
spike length, five spikes were randomly selected from each 
treatment plot and measurements from the base of the rachis 
to the tip of the uppermost spikelet were taken. Five ran-
domly selected spikes from each plot were thrashed indi-
vidually to determine the number of grains per spike and 
then the mean of both spike length and grains spike−1 was 
taken for each treatment for statistical analysis and mean 
comparison.

Laboratory Soil and Plant Analyses

Before treatment application, four composite soil samples 
(0–10 cm depth) were taken. Each composite soil sample 
was comprised of 10 randomly collected soil cores which 
were collected from the experimental site and passed 
through a 2-mm sieve to remove visible plant litter and roots. 
Sieved soil samples were analyzed for key soil properties. 
Mineral N in soil samples was determined by the steam dis-
tillation method (Bremner and Mulvaney 1982). Soil pH and 
EC were determined in the saturated soil extract (1:5 sus-
pensions). Soil organic matter was determined by the Walk-
ley–Black procedure (Nelson and Sommers 1982). Soil tex-
ture was determined by hydrometer (Gee and Bauder 1986). 
Total N in both soil and plant samples was determined by 
Kjeldhal method (Bremner 1996).

Statistical Analysis

Analysis of variance (ANOVA) was calculated to com-
pare fertilizer treatments with respect to various measured 
parameters. When significant differences at P ≤ 0.05 between 
treatments were found, adjusted LSD values of Turkey’s test 
were calculated to make comparisons among the different 

Total N uptake =
%N in grains × grain yield (kg ha−1)

100

NUE =
(Yield obtained from controlplot − yield obtained from fertilized plot)

Amount of fertilizer applied

fertilizer treatments. Minitab (Version 12, Minitab Inc., 
USA) was used to perform statistical analyses. The graphs 
were designed in sigma plot 12.

Results

Soil Physico‑chemical Properties

The experimental site was silt clay loam in nature, alkaline 
in reaction with a pH 7.81 and EC 0.25 dSm−1. The soil was 
highly calcareous in nature with lime content of 18.37%, 
organic matter (< 1%) and also was deficient in nitrogen and 
phosphorus (Table 1).

Effect of NI and PGR on Soil NH4
+ ‑N and NO3

−‑N 
Concentrations

Urea applied alone or with nitrapyrine or with GA-K salt 
exhibited fast hydrolysis soon after its application, as evi-
denced by significantly (P < 0.05) higher concentrations of 
soil NH4

+ in all treatments (Fig. 1a). While soil NO3
− con-

centrations remained relatively low (Fig. 1b). After ferti-
lizer application, soil NH4

+ concentration in the urea-alone 
and urea with GA-K salt treatments reached its maximum 
in 5–7 days and sharply decreased afterward. Urea with 
nitrapyrin and mulch delayed nitrification rate, as evidenced 
by significantly (P < 0.05) higher concentrations of soil 
NH4

+ up to 21 days compared with those of urea-alone or 
urea with GA-K salt treatments. Soil NO3

−-N concentration 
were significantly (P < 0.05) lower in nitrapyrin treatments 
compared with those of the urea-alone or urea with GA-K 
salt treatments during the experimental period (Fig. 1b).

Table 1   Physico-chemical properties of soil before wheat sowing

Soil physico-chemical properties Units Concentration

Silt % 64.5
Sand % 29.6
Clay % 5.4
Textural Class – Silt loam
EC(e) dS m−1 0.25
pH – 7.81
Organic matter content % 0.76
Mineral nitrogen mg kg−1 8.76
AB-DTPA extractable P content mg kg−1 3.26
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Effect of NI and PGR on Yield and Yield Components 
of Wheat

Urea applied with nitrapyrine or with GA-K salt had a sig-
nificant (P < 0.05) influence on biological yield of wheat 
(Fig. 2). Pearson correlation showed that a significant posi-
tive correlation was existed between treatments and biologi-
cal yield of wheat (Fig. 8). Principle component analyses 
showed that biological yield was more closely associated 
with treatment T3 (Fig. 9). Urea applied with nitrapyrine 
or with GA-K salt produced significantly higher biologi-
cal yield (8622 kg ha−1 and 9502 kg ha−1) compared to 
(7703 kg ha−1) from the equivalent urea-alone treatment. 
Urea applied with nitrapyrine or with GA-K salt increased 
the biological yield by 12% and 23%, respectively, compared 
to the equivalent urea-only treatment. Wheat biological 
yield was increased further by 31%, when urea was applied 
together with nitrapyrin and GA-K salt.

Similarly, grain yield of wheat was significantly (P < 0.05) 
higher when urea was applied with nitrapyrine or with GA-K 
salt than urea treatment (Fig. 2). Pearson correlation showed 
that a significant positive correlation was existed between 
treatments and grain yield of wheat (Fig. 8). Principle com-
ponent analyses showed that grain yield was more closely 
associated with treatments T3 and T5 (Fig. 9). Urea applied 
with nitrapyrine or with GA-K salt enhanced the biologi-
cal yield significantly (8622 kg ha−1 and 9502 kg ha−1) 
compared to (7703 kg ha−1) than the equivalent urea-alone 
treatment. Urea applied with nitrapyrine or with GA-K salt 
increased the biological yield by 12% and 23%, respectively, 
compared to the equivalent urea-only treatment (Fig. 3).

Urea applied with nitrapyrine or with GA-K salt had 
a significant effect on plant height (Fig. 4), 1000 grain 
weight (Fig. 5), grain per spike (Fig. 6), and spike length 
(Fig. 7) of wheat compared to the urea-alone treatment 
(Fig. 4). Pearson correlation showed that a significant 
positive correlation was existed between treatments, plant 

Fig. 1   Effects of urea with or 
without nitrification inhibitor 
(nitrapyrin) (NI) and GA-K 
salt on soil ammonium (a) and 
nitrate (b) (0–10 cm soil depth). 
Vertical bars indicate standard 
errors. The solid arrows indicate 
the time of N fertilization
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height, 1000 grains weight, grains per spike, and spike 
length of wheat (Fig. 8). Principle component analyses 
showed that plant height, 1000 grains weight, grains per 
spike, and spike length were more closely associated 
with treatments T3, T4, and T5 (Fig. 9). Plant height was 
significantly higher from treatments receiving urea with 

nitrapyrine plus GA-K salt than in the urea-alone treat-
ment. The highest plant height was recorded from treat-
ments with nitrapyrine -treated urea plus GA-K 3Salt 
(90.3 cm), followed by urea + GA-K salt (87.5 cm) and 
urea + nitrapyrine (85.7 cm). This represents an increase 
in plant height by 10.2, 6.8, and 4.1%, respectively, than 
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Fig. 2   Effect of urea applied with or without nitrapyrin and 
GA-K salt on biological (kg ha−1) of wheat. Values are means 
(n = 4). T1 = control (no N); T2 = urea (150  kg  N  ha−1); 
T3 = urea (150  kg  N  ha−1) + nitrapyrin (525  g  ha−1); 
T4 = urea (150  kg  N  ha−1) + GA3-K (60  g  ha−1); T5 = urea 
(150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K (60 g ha−1)
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Fig. 3   Effect of urea applied with or without nitrapyrin and 
GA-K salt on grains yield (kg ha−1) of wheat. Values are 
means (n = 4). T1 = control (no N); T2 = urea (150  kg  N  ha−1); 
T3 = urea (150  kg  N  ha−1) + nitrapyrin (525  g  ha−1); 
T4 = urea (150  kg  N  ha−1) + GA3-K (60  g  ha−1); T5 = urea 
(150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K (60 g ha−1)
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Fig. 4   Effect of urea applied with or without nitrapyrin and 
GA-K salt on plant height (cm) of wheat. Values are means 
(n = 4). T1 = control (no N); T2 = urea (150  kg  N  ha−1); 
T3 = urea (150  kg  N  ha−1) + nitrapyrin (525  g  ha−1); 
T4 = urea (150  kg  N  ha−1) + GA3-K (60  g  ha−1); T5 = urea 
(150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K (60 g ha−1)
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Fig. 5   Effect of urea applied with or without nitrapyrin and 
GA-K salt on 1000 grains weight (g) of wheat. Values are 
means (n = 4). T1 = control (no N); T2 = urea (150  kg  N  ha−1); 
T3 = urea (150  kg  N  ha−1) + nitrapyrin (525  g  ha−1); 
T4 = urea (150  kg  N  ha−1) + GA3-K (60  g  ha−1); T5 = urea 
(150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K (60 g ha−1)
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in the urea-alone treatment. The maximum grain weight 
(g) was 46, 43, and 30 (g) for wheat receiving urea with 
nitrapyrine plus GA-K salt, urea with GA-K salt, and urea 
with nitrapyrine, respectively. This shows a 12.1, 4.8, and 
2.4% increase, respectively, relative to the corresponding 
urea-alone treatment. Number of grains spike−1 in the urea 
with nitrapyrine and with GA-K salt were significantly 

higher (by 2.1 and 4.2%, respectively, over the urea-alone 
treatment (Fig. 6). Urea with nitrapyrine and with GA-K 
salt was significantly effective up to 8.2 and 17.5%, respec-
tively, Compared to the urea-alone treatment. The com-
bined application urea with nitrapyrine plus GA-K salt 
significantly increased the Spike length by 41.2% over the 
individual urea treatment. Spike length was significantly 
(P < 0.05) affected by nitrapyrine with and without GA-K 
salt. Urea with nitrapyrine and with GA-K salt was signifi-
cantly effective by 8.2 and 17.5%, respectively, Compared 
to the urea-alone treatment. However, the combined appli-
cation of urea with nitrapyrine plus GA-K salt significantly 
increased the Number of grains spike−1 by 8.5% over the 
individuals urea treatment.     

Effect of NI and PGR on Total N Uptake and N‑Use 
Efficiency

The results obtained on total N uptake by wheat crops are 
presented in Table 2. All fertilizer treatments increased 
the total N uptake in the above-ground biomass compared 
with the control treatment. The maximum N uptake of 
133 kg ha−1 was recorded in the urea with nitrapyrine plus 
GA-K salt followed by urea + GA-K salt 112 kg ha−1 and 
urea + nitrapyrine 112 kg ha−1 treatments, respectively. The 
results showed that total N uptake in the above-ground bio-
mass was significantly (P < 0.05) improved in the treatments 
where urea was applied with nitrapyrin and GA-K salt. It 
was observed that nitrapyrin and GA-K salt significantly 
(P < 0.05) increased (15% and 32%) total N uptake by the 
wheat crop than urea-alone treatment (Table 2). Total N 
uptake was improved further (44%) when urea was applied 
with both nitrapyrin and mulch. Nitrogen use efficiency (kg 
DM kg−1 of N applied) also varied significantly (P < 0.05) 
when urea was applied with nitrapyrin and with GA-K salt 
(Table 2). Nitrogen use efficiencies were 6, 12, 18, and 
22 kg DM kg−1 N for urea-alone, urea with nitrapyrin, urea 
with mulch, and urea with nitrapyrin + mulch treatments, 
respectively.

Discussion

After application, urea was quickly hydrolyzed within 5 to 
7 days (Dawar et al. 2011; Sanz-Cobena et al. 2011; He 
et al. 2018) by urease enzymes to NH4

+, resulting the higher 
concentrations of soil NH4

− from urea, with or without 
nitrapyrin, during the first 7 days after fertilizer applica-
tion (Fig. 1Ba). After day 7, the soil that recived urea with 
nitrapyrin significantly increased NH4

− compared to urea-
alone treatment, and this trend of nitrapyrin on the nitrifi-
cation inhibition continued till day 28 (Wang et al. 2015; 
Zhang et al. 2015; Borzouei et al. 2021; Dawar et al. 2021). 
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Fig. 6   Effect of urea applied with or without nitrapyrin and 
GA-K salt on grains per spike of wheat. Values are means 
(n = 4). T1 = control (no N); T2 = urea (150  kg  N  ha−1); 
T3 = urea (150  kg  N  ha−1) + nitrapyrin (525  g  ha−1); 
T4 = urea (150  kg  N  ha−1) + GA3-K (60  g  ha−1); T5 = urea 
(150 kg N ha−1) + nitrapyrin (525 g ha−1) + GA3-K (60 g ha−1)
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Suppressing NH4
+ oxidation by nitrification inhibitors for 

longer period of time minimized the risk of soil N being 
lost via NO3

− leaching and N2O emission and improved N 
uptake (Gioacchini et al. 2002; Belastegui Macadam et al. 
2003; Abalos et al. 2012; Sun et al. 2015).

The application of urea with nitrapyrin or GA3-K resulted 
in significant (P < 0.05) increases in yield, total N uptake, 
and N-response efficiency compared with the urea-alone 
treatment (Table 2 and Figs.  1, 2, 3, 4, 5, 6, 7). It had 

previously been reported by other researchers, that applying 
N fertilizers with nitrapyrin increases crop yield and ferti-
lizer N efficiency by increased N uptake (Yuchun Ma et al. 
2013a, b; Zhang et al. 2015; He et al. 2018; Borzouei et al. 
2021; Dawar et al. 2021). These increases are highlights 
the fact that application of the nitrapyrin, which increases 
the proportion of mineral N in the NH4

+ form for several 
days, had equal opportunity to take up applied N as NH4

+ 
forms which may be incorporated into organic compounds 

Fig. 8   Pearson correlation of 
treatments and wheat yield 
indices

Fig. 9   Principle component 
analyses of growth and yield 
attributes of wheat under differ-
ent application of treatments
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and finally into plant protein at less energy cost compared to 
NO3

−, suggesting that the plant may be left with extra energy 
to allocate to growth and crop yields (Aulakh et al. 2001; 
Dawar et al. 2011, 2021).

It is important to note that we found greater wheat yield 
and yield components, as well as N-use efficiency which 
could also be due in part to a lower energy requirement for 
assimilation of N into protein in plants when they take up 
NH4

+ relative to when NO3
− is the primary N source. Urea 

and NH4
+ are both known to require less metabolic energy 

for conversion to plant protein (Middleton & Smith 1979; 
Dawar et al. 2021). Furthermore, NO3

− N has to be reduced 
before assimilation, which requires additional energy (Raven 
1985). Soil NO3

− concentrations were lower than concen-
trations NH4

+ and were significantly influenced by urea 
applied with nitrapyrin (Fig. 1b). This implies that nitrapy-
rin delayed nitrification process and maintained high soil 
NH4

+ content for a longer period of time. Such reductions 
in NO3

− content provide both environmental benefits by 
reducing N2O emissions and the risks of NO3

−N leaching 
(Wu et al. 2017; Dawar et al. 2021) and agronomic and eco-
nomic benefits by increasing N-use efficiency especially in 
N-deficient soil, as evidenced by the increased total N uptake 
and crop yield in our study.

Similarly, N-response efficiency further improved when 
urea was applied with GA3-K (Table 2). Plant growth regula-
tors like gibberellins may thus play a role in plant tolerance 
to salinity and drought by enhancing plant growth. Gibber-
ellins also affect N metabolism and N redistribution with 
increased nitrate reductase and carbonic anhydrase activi-
ties in plants and improve N-use efficiency through better 
utilization of soil-derived N. This suggests that plant growth 
hormones can increase plant N uptake when N fertilizer is 
applied, thus resulting in an increased yield (Giannakoula 
et al. 2012; Dawr et al. 2021).

Conclusions

Our field study provided important insights into the effects 
of urea applied with nitrapyrin and GA-K salt on N losses 
and improving wheat yield, N-use efficiency and N uptake 
under the semi-arid and hot climatic conditions of Pakistan. 
In conclusion, the co-application of urea with nitrapyrin and 
GA-K salt is likely to be significant steps toward improving 
N-response efficiency and both biomass and grain yields. 
Further long-term field research is, however, required under 
a wide range of soils and environmental conditions to evalu-
ate the performance of different types of PGRs on crop bio-
mass and to better understand the effect of nitrapyrin on N 
losses production under different crops and vegetable culti-
vation in Pakistan.
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Table 2   Effect of urea applied with or without nitrapyrin and GA-K salt on biological and grain yields, total nitrogen uptake, and N-response 
efficiency

Values are means (n = 4)
Means followed by same letter(s) within columns are statistically nonsignificant (P < 0.05)

Treatment Biomass (kg ha−1) Grain yield (kg ha−1) Total N uptake (kg ha−1) Response efficiency (kg bio-
mass yield kg−1 of applied N)

% Change from 
urea treatment

% Change from 
urea treatment

% Change from 
urea treatment

Control 5822 ± 211f 2349 ± 48f – 54 ± 13f –
Urea only 7703 ± 209d 2712 ± 39d – 92 ± 11d – 6 ± 2d

Urea + Nitrapyrin 8622 ± 202c 12 3027 ± 56c 12 106 ± 15c 15 12 ± 5c

Urea + GA-K salt 9502 ± 276b 23 3408 ± 55b 26 12 ± 19b 32 18 ± 4b

Urea + Nitrapy-
rin + GA-K salt

10,098 ± 236a 31 3706 ± 61a 37 133 ± 17a 44 22 ± 3a
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