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Abstract
Hydrogen sulfide  (H2S) has emerged as a novel gaseous signal molecule with multifarious effects on seed germination, plant 
growth, development, and physiological processes. Due to its dominant role in plant stress tolerance and cross-adaptation, 
it is getting more attention nowadays, although it has been largely referred as toxic and environmental hazardous gas. In this 
review work, we are highlighting the importance of  H2S as an essential gaseous molecule to help in signaling, metabolism, 
and stress tolerance in plants. Firstly, production of  H2S from different natural and artificial sources were discussed with its 
transformation from sulfur (S) to sulfate  (SO4

2−) and then to sulfite  (SO3
2−). The importance of different kinds of transporters 

that helps to take  SO4
2− from the soil solution was presented. Mainly, these transporters are SULTRs  (H+/SO4

2− cotrans-
porters) and multigene family encodes them. Furthermore, these SULTRs have LAST (Low affinity transport proteins), 
HAST (High affinity transport proteins), vacuole transporters, and plastid transporters. Since it is well known that there is 
strong relationship between  SO4

2− and synthesis of hydrogen sulfide or dihydrogen sulfide or sulfane in plant cells. Thus, 
cysteine (Cys) metabolism through which  H2S could be generated in plant cell with the role of different enzymes has been 
presented. Furthermore,  H2S in interaction with other molecules could help to mitigate biotic and abiotic stress. Based on 
this review work, it can be concluded that  H2S has potential to induce cross-adaptation to biotic and abiotic stress; thus, it 
is recommended that it should be considered in future studies to answer the questions like what are the receptors of  H2S in 
plant cell, where in plants the physiological concentration of  H2S is high in response to multiple stress and how it induces 
cross-adaptation by interaction with other signal molecules.

Keywords Hydrogen sulfide · Physiological processes · Abiotic stress · Natural and artificial sources · Molecular 
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Abbreviations
ABA  Abscisic acid
CAS  Cyano alanine synthase
CS  Cysteine synthase
Cys  Cysteine
DES1  l-Cysteine Desulhydrase
DMS  Dimethyl sulfide
HAST  High affinity transport proteins
LAST  Low affinity transport proteins
LCDSH/DCDSH  l- and d-cysteine desulfhydrase
MAPK  Mitogen-activated protein kinase

PTMs  Persulfidation and S-nitrosation
SR  Sulfite reductase

Introduction

Hydrogen sulfide  (H2S) is a colorless, low molecular weight, 
and soluble gas which had been known for its bad odor and 
phytotoxic effects for centuries. It is present in atmosphere 
and mainly added through volcanos, salt marshes, wet land, 
geothermal vents, livestock, industry, combustion of bio-
mass and fossil fuels, and bacterial anaerobic respiration. 
Hydrogen sulfide represents only 8.5% (i.e., 4.4 Tg) of the 
total annual natural sulfur emission (i.e., 52 Tg) (Watts 
2000). The  H2S is present in the atmosphere and plants may 
take it through foliage which negatively affects the normal 
sulfate metabolism in plants that is uptaken by plant roots 
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(Ausma and Kok 2019). The  H2S is absorbed through foliage 
via stomata and acts as substantial nutrient source of sulfur 
(S) in plants. For S homeostasis in plants, these must have 
to maintain the ability to emit it temporarily through foli-
age to atmosphere (Schröder 1993). The detoxification and 
removal of  H2S from plants is more important when  H2S is 
just a pollutant. In such circumstances, the role of  H2S is not 
just a signaling molecule (Lisjak et al. 2013).

Most studies about  H2S focused on animals, while stud-
ies on the effect of  H2S on plants only started to be more 
frequent during the late part of the twentieth century (Wang 
2002). Its endogenous generation in plants as signaling mol-
ecule and its direct and indirect role in stress tolerance and 
protection against diseases was realized after 1975, time 
until which it was only considered as a determinant of plant 
growth and development. At that time, results reported by 
Joshi et al. (1975) indicated that  H2S inhibits the oxygen 
release from rice seedlings and nutrient uptake. A few years 
later, results about the impact of  H2S fumigation on forest 
plant were published (Thompson and Kats 1978a, b).

Reported negative impacts of  H2S include respiration 
inhibition in hemp (Martin and Maricle 2015), decrease 
in freezing tolerance of wheat (Stuiver et al. 1992), inhibi-
tion of photoreduction of  NADP+ in spinach (De Kok et al. 
1983), and inhibition of activity of cytochrome oxidase in 
the mitochondria (Dorman et al. 2002). However, the impact 
of  H2S on plants are dose specific and low doses may rather 
be beneficial for crop growth and development (Dooley et al. 
2013; Filipovic and Jovanović 2017). However, plants spe-
cies vary greatly to atmospheric  H2S phytotoxicity, revealing 
that various doses have differential effects on plants. These 
are mainly attributed due to differences in leave absorption 
capacity, leaf elongation rate, and other related physiological 
and morphological traits. Plants with tolerance to atmos-
pheric  H2S could be utilized in regions characterized as 
highly pollutant with  H2S.

Most of the studies carried out on investigation of 
 H2S on growth and physiological parameters were car-
ried out with Sodium hydrosulfide (NaHS) as a donor 
of  H2S. However, sodium sulfide  (Na2S) has also 
been described as important  H2S donor (Ziogas et  al. 

2018). The NaHS rapidly dissociated to generate  H2S 
and hence used in most of studies to evaluate the  H2S 
impacts on plants. The GYY4137 (morpholin4-ium 4 
methoxyphenyl(morpholino) phosphinodithionate may 
be another donor of  H2S (Lisjak et al. 2010). Nutrition-
ally, it is important with respect to sulfur source, a major 
nutrient and component of s-containing amino acid such 
as cysteine and methionine.

Hydrogen sulfide acts as signaling molecules in stress 
along with interplay with other plant hormones, signaling 
molecules, and reactive oxygen species. Globally, now it 
is being applied for protection against stresses including 
drought (Ma et  al. 2016a, b), waterlogging (Xiao et  al. 
2020), heavy metals (Thapa et al. 2012), salinity (Chris-
tou et al. 2011), inhibition of autophagy (Filipovic and 
Jovanović 2017), and fruit ripening (Ziogas et al. 2018). 
Some of the benefits associated with the use of  H2S include 
enhancement in processes like seed germination, root pro-
liferation, stomatal closure, leaf senescence, maintenance 
of  K+/Na+ balance, and improvement in fruit shelf life and 
quality. Table 1 described the dose of NaHS application 
which is most important for exogenous application. Due its 
lipophilic and gaseous nature,  H2S can be easily transported 
through cell membrane and within plant bodies. The water-
logged conditions create hypoxia stress and root respiration 
is primarily suffered oxygen deficiency in such conditions. 
The  H2S application played a protective role against oxida-
tive damages imposed by waterlogged conditions through 
reducing accumulation of reactive oxygen species in roots 
and leaves of peach (Xiao et al. 2020). It triggers the gene 
expression in grapevine related to biosynthesis of metab-
olites which are used to improve production of defensive 
compounds (Ma and Yang 2018). Moreover, evidence from 
tomato concluded that  H2S application from NaHS regulated 
the expression of more five thousand genes (Guo et al. 2018). 
The  H2S as stress tolerance molecules sustain crop growth 
and development through regulating the production of reac-
tive oxygen species. Application of  H2S may also increase 
the level of various antioxidant components, resulting in an 
improved tolerance (Corpas and Palma 2020). Keeping in 
view the important regulatory role in management of abiotic 

Table 1  Description of alleviating impacts of various stresses through  H2S application

Crop name Donor’s name Conc. of donor Impacts References

Strawberry NaHS 0.8 mM Improving post-harvest life of fruit and reducing rottening Hu et al. (2012)
Banana NaHS 1.0 mM Alleviate the impact of ethylene production and reduce fruit softening Ge et al. (2017)
Avacado NaHS 200 µmM Protection against frost and day light Joshi et al. (2020)
Rice NaHS 2 µM Reduce aluminum in roots, reduce  H2O2 levels Zhu et al. (2018)
Maize NaHS 500 µM Reduce chromium toxicity and improve antioxident activity Kharbech et al. (2017)
Wheat NaHS 50 µM Reduce ROS Deng et al. (2016)
Cotton NaHS 200 μM Improved plant growth, photosynthesis, relieved Pb stress Bharwana et al. (2014a,b)
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and biotic stress, it is now being applied exogenously for 
additional protection.

The post-harvest deterioration of fruit quality is an impor-
tant issue of producers, marketing agents, and consumers. 
Exogenously applied  H2S may impact the fruit ripening 
process and post-harvest quality, by reducing the activity of 
enzymes like superoxide dismutase, catalase, peroxidase, 
and other related enzymes for reducing the levels of reactive 
oxygen species. It is helpful to preserve vitamin C, solu-
ble protein, and total phenols along with other fruit quality 
traits in apple and grapes (Zheng et al. 2016; Ni et al. 2016). 
The anti-ripening role of  H2S results from the interplay with 
ethylene in fruits (Ge et al. 2017). The regulation of  H2S 
concentration during transition of ripening stages was also 
reported in sweet pepper (Muñoz-Vargas et al. 2018). The 
current review mainly focused on  H2S application in the 
field of agriculture in term of stress tolerance molecule, 
growth promotion, and preservation of post-harvest quality. 
The main objective of this review is to highlight the biosyn-
thesis, sources, absorption, translocation, and regulatory role 
of  H2S in stress tolerance for exogenous applications in field 
conditions for dealing various issues of crop production.

Artificial and Natural Sources of  H2S 
for Plant Cells

To be effective in plant cells,  H2S gas must be present in high 
concentration. There are two sources of  H2S emission in 
environment, i.e., anthropogenic and natural source. Among 
anthropogenic activities, the main source of  H2S emission is 
from combustion of fuels. Other manmade sources include 
geothermal industries, wastewater treatment, and agriculture 
activities. Areas located near geothermal site faced 50 ppb 
 H2S. Modern cars that have catalytic inverters also emit  H2S 
gas (Kourtidis et al. 2008). Drilling and refining, coke oven, 
paper making process and waste treatment processes emit 
 H2S gas in sufficient amount. In mining process, during the 
decomposition of xanthates in presence of water also pro-
duce  H2S (Bhomick and Rao 2014).

Natural gas is considered a more environment friendly 
fuel as it emits about 50% less carbon dioxide in atmosphere 
as compared to coal. Increasing demand of natural gas leads 
to the depletion of natural reservoirs, and trend is shifting 
toward the use of gas extracted from undesirable lands, such 
as shale gas reservoirs (Goodwin et al. 2015; Brace and 
Engelberth 2020). Natural gas obtained from such reservoirs 
is highly acidic and concentrated with  H2S gas and consid-
ered as sour gas. In 2004, sour gas contributed 21% among 
total natural gas and predicted to be 27% in 2030, which will 
be a major health concern in future (Goodwin et al. 2015).

Volcanoes are considered to be major natural source of 
 H2S gas emission (Aiuppa et al. 2005). Plants grown in such 

regions would be resistant from  H2S. It is also released from 
marshlands, anoxic soils, ground water, and coastal sedi-
ments (Hansen et al. 1978). Areas near coastal regions face 
5–30 µg/m3  H2S concentration in atmosphere (Kourtidis 
et al. 2008).

Sulfur Dynamics and Synthesis of  H2S in Soil

Besides volcanoes, other natural sources of  H2S include 
coastal marine sediments and anoxic soils of marshland. 
Archaea (e.g., Archaeoglobus) and Bacteria (e.g., Desul-
fovibrio, Desulfobacter) present in waterlogged soils and 
marshy places produce sulfur (S)-based compounds such 
as sulfate  (SO4

2−) which is then transformed into sulfite 
 (SO3

2−). According to the genesis point of view,  H2S 
mainly comes from the four sources i.e., volcanic inorganic 
sources,  SO4

2− reduction by bacteria (SRB), decomposition 
of organic S compounds by heat, and  SO4

2− reduction by the 
thermochemical reactions (Ma et al. 2019).

Production of  H2S in waterlogged soils is mainly due 
to the reduction of  SO4

2−. The reduction that occurs only 
in these soils is due to the presence of anaerobic bacteria. 
This is also a major reaction of S cycling that prevails in 
waterlogged soils due to the readily decomposition of plant 
residues e.g., alfalfa (Medicago sativa). The  SO4

2− reduc-
tion due to bacteria involves assimilation  (SO4

2− is reduced 
to the thiol) or dissimilation  (SO4

2− reduction leads to the 
production of  H2S) processes. Since soil is main source of 
 H2S production, it is essential to report about availability 
of S in the earth crust, which is the main reagent for the 
synthesis of  H2S. The average S content of the earth crust 
is in the range of 0.06 to 0.10% and it is ranked as 13th 
most abundant element in nature (Tabatabai 2005). Minerals 
of S are available in rocks and soils as  SO4

2− (e.g., Epso-
maite  (MgSO4.7H2O), Mirabilite  (Na2SO4.10H2O), Gypsum 
 (CaSO4.2H2O), Gypsum anhydorous  (CaSO4)), and as  S−2 
(e.g., Arseno pyrite  (FeS2.FeAs2), chalcopyrite  (CuFeS2), 
cobaltite (CoAsS), galena (PbS), marcasite  (FeS2), pent-
landite (Fe, Ni)9S8, pyrrhotite  (Fe11S12) sphalerite (ZnS)). 
There is continuous flow of S going on between terrestrial 
and marine masses (Fuentes-Lara et al. 2019). The simple 
biogeochemical cycle that shows transformation of S to dif-
ferent forms is shown in Fig. 1.

Generally, two types of S occur in soil i.e., Organic and 
inorganic. Organic S in soil accounts for 95% of the total S in 
the humid and semi humid regions. The S availability to the 
plants in agricultural ecosystems follows different mecha-
nisms as shown in Fig. 2. From atmosphere, it comes from 
aerosols of S and S gaseous forms as well as dissolved S 
 (SO4

2−) in snow and rain. Similarly, oxidation of S from soil 
organic matter and  So also generates  SO4

2−. These  SO4
2− can 

be leached to the subsoil or fixed in the soil exchange matrix 
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(Chao et al. 1962). Large quantities of  SO4
2− in the subsoil 

of arid regions are also available as gypsum  (CaSO4), while 
in the regions where rainfall is high this  SO4

2− leached down 
to the lower horizons (Johnson and Cole 1980).

The  SO4
2− in the soil is subjected to two kind of reactions 

i.e., dissimilatory  (SO4
2− acts as final acceptor of electrons 

in the anaerobic metabolisms of microbes producing  H2S 
that on re-oxidation goes to the atmosphere) and assimila-
tory reduction (Biosynthesis of organic compounds through 
algae, fungi, plants and prokaryotes e.g., amino acids). 
Assimilatory reduction of  SO4

2− is not possible by animals 
and protists; thus, they depend on other organism that syn-
thesizes the organic S compounds (Andreae 1990). The dis-
similatory reduction of  SO4

2− results in the production of  S0 
mostly under anoxic conditions. This  S0 could be assimilated 
into  S2− that will be part of the biomolecules or volatilized 
in the case of excess S (Fig. 2). Plant can be a source or sink 
of volatile forms of S such as  H2S, DMS (dimethyl sulfide; 
CH

3
− S − CH

3
 ), carbon disulfide  (CS2) etc.

Availability of S for many crop species is very beneficial 
as it improves the nutritional quality as well as tolerance to 
the biotic and abiotic stresses (Tea et al. 2004; González-
Morales et al. 2017; Corpas et al. 2020; Fuentes-Lara et al. 
2019; Corpas and Palma 2020; Nawaz et al. 2020; Zhang and 
Liao 2020). Tabatabai (2005) reported significant relation-
ship of Sulfur with Carbon (C), Nitrogen (N), and Phospho-
rus (P) in soils around the globe. However, S availability 
as inorganic form like N is very small as compared to the 
organic forms, but P is abundantly available in both forms. 
Thus, relationship between total N, organic P, organic C, 

and total S has been reported mostly. The mean C: N: P: S 
ratios for the agricultural soil is 130:10:1.3:1.3, while for the 
peat and organic soils it is 160:10:1.2:1.2 and the soil under 
native grass has ratio of 200:10:1:1.

Absorption and Translocation

The absorption of S in plant cell is mostly in the form of 
 H2S, DMS, COS, and  SO2. However, most of the S is taken 
up by the plants from the soil solution as  SO4

2− (Wainwright 
1984; Rennenberg 1989). Different kinds of transporters 
help to take  SO4

2− from the soil solution. Mainly, these 
transporters are SULTRs  (H+/  SO4

2− cotransporters) and 
multigene family encodes them. Furthermore, these SUL-
TRs have LAST (Low affinity transport proteins), HAST 
(High affinity transport proteins), vacuole transporters and 
plastid transporters (Fig. 3). The concentration of  SO4

2− that 
induces HAST is less than 10 mg dm−3 (Fuentes-Lara et al. 
2019). Absorption of  SO4

2− in the root is facilitated by 
HAST, SULTR 1:1, SULTR 1:2, and SULTR 1:3 in the pres-
ence of ATPase enzyme as shown in Fig. 3. In the epidermis 
and cortex of root HAST are present abundantly, while in 
the parenchyma cell adjacent to the vascular bundles (Xylem 
and phloem) LAST dominates.

The cotransporters SULTR 4:1 and 4:2 help the vac-
uoles to absorb  SO4

2− which is then stored there. This 
can be further redistributed to different plant parts 
depending upon the demand. Xylem and phloem helps to 
transport and translocate  SO4

2− from the roots to stems 

Fig. 1  Biogeochemical S cycle between different spheres
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and afterward to the leaves and seeds through different 
kinds of SULTRs (Yoshimoto et al. 2003; Kataoka et al. 
2004; Takahashi et al. 2011; Cao et al. 2013; Maruyama-
Nakashita 2017; Kirschner et al. 2018; Singh and Schwan 
2019). The absorbed  SO4

2− is largely assimilated into pro-
teins and other biomolecules, while in some plants e.g., 
Brassica spp., it might be present in the plant tissues. 

The  SO4
2− absorbed by the xylem is discharged in the 

mesophyll cell of the leaf with the help of HAST and 
LAST. Some of this  SO4

2− is stored in the vacuoles, 
while other moves to the chloroplast through SULTR3:1, 
SULTR3:2, SULTR 3:3, and SULTR 3:4, where it is 
reduced to  S2− and assimilated to the biological mole-
cules. The stored sulfate can be remobilized through the 

Fig. 2  S availability mechanisms to plants in agricultural ecosystems
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SULTR 4:1 and SULTR 4:2 (Fig. 3). Excessive accumula-
tion of  SO4

2− is possible if excess of S is available which 
further leads to the formation of volatile compounds e.g., 
 H2S (Rennenberg 1989). Since  H2S is a weak acid, it can 

be changed to different form as shown in the following 
equation:

H
2
S ↔ H

2
SAquoesossolution ↔ HS− + H+

↔ S2− + 2H+

Fig. 3  Sulfate  (SO4
2−) uptake from soil solution to different plant parts and role of SULTRs  (H+/  SO4

2− cotransporters)
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Detrimental Effects of Hydrogen Sulfide

Hydrogen sulfide has been considered as a phytotoxin 
since long time, for its deleterious effects on plant growth 
(Lisjak et al. 2013). It is lipophilic in nature and can easily 
cross the cell membrane and its effects on the two impor-
tant PTMs processes (persulfidation and S-nitrosation) 
by reaction with Cys-protein thiol group. These proteins 
regulate the productivity of redox species and signaling 
(Spadaro et al. 2010). Oxidation state of S varies from 
− 2 (thiol) to + 4 (sulfonic acid) and its variation further 
depends upon ROS contents.

In 1975, it was first identified that at toxic level,  H2S gas 
is detrimental for plant health. Joshi et al. (1975) reported 
inhibited  O2 release from six rice cultivar seedlings, when 
exposed to  H2S. In few cultivars, it also negatively affected 
on plant nutritional status especially phosphorous nutri-
tion. Continuous fumigation of  H2S at 3000 ppb on Med-
icago, sugar beet, pine, lettuce, and grapes caused leaf 
lesions leading to defoliation (Thompson and Kats 1978a, 
b). Defoliation is caused by mutation in two T-DNA, des1-
1 and des 1–2 of Arabidopsis thaliana plants. Enzymes 
responsible for production of  H2S in plants is l-cysteine 
desulfhydrase, and increased activity of this enzyme 
alters the gene expression and transcription factor which 
are associated with the leaf senescence due to increased 
cysteine concentration in plant leaf (Alvarez et al. 2010).

Furthermore, studies also reported the cross talk 
between  H2S and NO, which is toxic at higher concentra-
tion (Wang 2003).  H2S promotes the production of NO 
which controls the stomatal closure process by regulating 
the abscisic acid concentration (Jin et al. 2013). Increased 
 H2S concentration in plant tissues also reduced the auxin 
translocation and synthesis followed by modulation in PIN 
proteins distribution resulting in restricted root growth (Jia 
et al. 2015). The cytochrome oxidase is an crucial enzyme 
in mitochondrial respiration which is involved in electron 
transport chain. The inhibition of cytochrome oxidase 
activity due to  H2S had been recognized in experiments 
conducted for rice (Xiao et al. 2010).

Role of  H2S Systems in Morpho‑Physiological 
Processes

In recent years,  H2S started to be considered as a signaling 
molecule in various physiological functions. It is now con-
sidered as third gaseous signaling molecule after  CO2 and 
NO. From seed germination to maturity, it is thought to be 
involved in various physiological functions in aerobic and 
anaerobic organisms (Corpas and Palma 2020). In studies, 

a very narrow concentration of  H2S application to plants 
showed positive response which showed that  H2S acts as 
signaling molecule in plants (Joshi et al. 2020; Zhang et al. 
2020). It actively takes part in various physiological pro-
cesses like photosynthesis, defense and growth metabo-
lism. Studies reported that it increases plant tolerance from 
heat, heavy metal stress, and nutrient stress by increasing 
photosynthesis rate via increasing ribulose-1, 5-bisphos-
phate carboxylase activity (Chen et al. 2011; Arnao and 
Hernandez-Ruiz 2015). It also improves stomatal density 
which further affects positively the photosynthesis rate. 
Seedlings treated with 0.01 mM  H2S reduce photorespi-
ration and increase stomatal density which leads to high 
photosynthesis activity. Photorespiration is reduced due to 
the downregulation of Glycolate oxidase, enzyme involved 
in  C2 cycle in photorespiration (Duan et al. 2015).

Studies showed that  H2S provides S to protein thiol 
group (-SH) and produces persulphide group (-SSH). This 
played a vital role in modulating the responses of selected 
proteins (Aroca et al. 2018). NaHS application, which is a 
donor of  H2S improves seed germination rate by upregulat-
ing β-amylase activity in endosperm and downregulating 
the MDA and  H2O2 contents. Increased starch hydrolysis 
by β-amylase increased the seed germination rate (Zhang 
et al. 2008, 2010). Exogenous  H2S provoke some signaling 
molecules which increased cell division rate in roots and 
increased adventitious root growth.

Exogenous  H2S application alleviates biotic and abiotic 
stress in plants. Earlier research only associated it with 
defense system in plants during pathogenic attacks (Bloem 
et al. 2004). Later in 2008, study revealed its protective 
effect against copper (Cu) toxicity (Zhang et al. 2008). After 
that, studies showed positive response of  H2S application in 
alleviating the metal stress (e.g., aluminum, chromium, zinc, 
boron, and cadmium), drought, temperature, and nutrient 
stress in various plants as described in Table 2.  H2S regu-
lates homeostasis process in cells. During drought stress, it 
accumulates osmolytes proline and trehalose, which protect 
plants from drought effects. It is also involved in the stomata 
closing process, reducing the amount of water transpired by 
the plant under both normal and stressed conditions, thus 
increasing overall photosynthesis efficiency (Iqbal 2018). 
 H2S also mediates stomatal opening by downregulating the 
ethylene-induced NO accumulation in stomatal cells (Liu 
et al. 2011; Iqbal 2018).

Several studies pointed to an inter-relationship between 
 H2S and other plant hormones such as gibberellic acid, 
abscisic acid, and ethylene and modulate their signal-
ing process (Hasanuzzaman et al. 2018).  H2S controls 
the induction of abscisic acid (ABA) in plants. Studies 
highlighted the effect of increased ABA synthesis at high 
 H2S concentration (Jin et al. 2011). High atmospheric or 
intracellular  H2S concentration in plants influences ABA 
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receptor expression and upstreams the ABA accumula-
tion. This initiates signals for stomata closure, reduced 
water loss, and protection of plants from drought (Jin et al. 
2013; Antoniou et al. 2020). Exposure of plant to ethylene 
initiates  H2S synthesis in plants (Liu et al. 2011). Expo-
sure of some plants with  H2S increases indole acetic acid 
production (Zhang et al. 2009a, b). However,  H2S allevi-
ates the negative effect of jasmonic acid and gibberellic 
acid through signal transduction process (Xie et al. 2014; 
Hou et al. 2011). Jasmonic acid increases  H2O2 contents 
in plants causing closure of stomata.  H2O2 is another sign-
aling molecule inter-related with  H2S. There are plenty 
of evidences that proved these both signaling molecules 
have antagonistic effects (Hou et al. 2011), but few stud-
ies showed that seed priming with  H2O2 improves  H2S 
contents in endosperm and increases germination rate of 
Jatropha curcas (Li et al. 2012a, b). However, under plant 
stress conditions,  H2S improves antioxidant system (Tang 
et al. 2020; Zhang et al. 2020).

Contrary effect of  H2S is also reported with NO (sign-
aling molecule). In Arabidopsis thaliana, application of 
NaSH reduced NO accumulation in epidermal cells due to 
increased  H2S activity. Molecular analysis denoted that both 
NaSH and GYY4137 reduced the NO activity up to a large 
extent (Lisjak et al. 2010).  H2S also inter-relates with Ca-
signaling pathways. Calcium maintains the permeability and 
rigidity of cell wall. Pre-treatment of tobacco with NaSH 
improves  Ca2+ uptake in plants through upstreaming of 
calmodulin (Li et al. 2013). Under metal toxicity,  H2S ame-
liorates the plant tolerance by increasing proline contents. 

In short,  H2S protects plant against biotic and abiotic stress 
and improves the growth of plants (Fu et al. 2019).

Hydrogen Sulfide and Abiotic Stress

Climate change is one of the significant factors that affect 
plant health and results in a decrease in production. Cli-
mate change imposes different environmental stresses on 
plants, i.e., salt stress, water deficit, extreme temperatures, 
and nutritional imbalance (Khalid et al. 2019). When the 
plants are exposed to these kinds of stresses, they generally 
increase the production and accumulation of reactive oxygen 
species (ROS), i.e., hydroxyl radicals, hydrogen peroxide, 
and superoxide ions in cells. To make the equilibrium in 
the cells, plant increases the activity of specific antioxidant 
enzymes, osmolytes, which decrease the accumulation of 
ROS (Suzuki et al. 2012).

In previous years, several reports have emphasized the 
impact of exogenous application of hydrogen sulfide on 
plants and their response to different environmental stresses, 
mainly its contribution in the regulation of cell signaling 
metabolism, upregulation, downregulation of gene expres-
sions, and the activation of different antioxidant enzymes 
and osmolytes (Singh et al. 2019). Previous scientists also 
described a swift accumulation of endogenous hydrogen 
sulfide under different abiotic stress conditions to levels 
that trigger physiological responses (Fang et al. 2014; Lai 
et al. 2014). However, the molecular responses and signal 
transduction metabolism of hydrogen peroxide in plants are 

Table 2  Various studies indicating the signaling role of  H2S in plant growth improvement under abiotic and biotic stress conditions

Plant species H2S donor Plant response References

Strawberry NaHS Increase shelf life of harvested fruit and reduce rottening Hu et al. (2012)
Maize NaHS Increase seed germination under heat stress Li et al. (2013)
Bean, corn and wheat Dissolved  H2S Germination rate, increase seedling size and improve growth Dooley et al. (2013)
Cotton NaHS Mitigate lead induced changes in plant and improve plant growth, 

chlorophyll contents and photosynthesis rate
Bharwana et al. (2014a,2014b)

Rice NaHS Improve photosynthesis rate and stomatal density Duan et al. (2015)
Maize NaHS Increase plant tolerance against chromium toxicity and increase 

antioxidant enzyme activities
Kharbech et al. (2017)

Tomato NaHS Antagonize ethylene effect and delayed ripening of postharvest 
tomato

Yao et al. (2018)

Strawberry NaHS Alleviate iron deficiency effects Kaya and Ashraf (2019)
Barley NaHS Reduced Cd toxicity and malondialdehyde and increase superoxide 

dismutase activity and chlorophyll contents
Fu et al. (2019)

Alfalfa NOSH Increased drought tolerance and reduce malondialdehyde production 
and increase superoxide dismutase activity

Antoniou et al. (2020)

Blueberry NaSH Improve tolerance of temperature stress and increase photosynthesis 
rate

Tang et al. (2020)

Arabidopsis haliana Endogenous  H2S Reduce cadmium and reactive oxygen species contents Zhang et al. (2020)
Avocado NaSH Protect plant from frost and high light intensity Joshi et al. (2020)
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still elusive. The information on these metabolisms and the 
alterations that are carried out in different environmental 
conditions is essential to recognize how plants adequately 
respond to their environment.

Low temperature or cold stress significantly affects the 
plant’s growth and development directly by constraining 
enzyme activities and metabolic reactions and, indirectly, 
through cold-induced osmotic stress (inhibition of water 
uptake and cellular dehydration) and oxidative stress (Chin-
nusamy et al. 2007). Hydrogen sulfide was stated to alleviate 
osmotic and oxidative stresses induced under cold or low-
temperature stress by modifying the antioxidant enzymes 
activities, accelerates the accumulation of osmoprotectants 
(proline, total soluble sugars), and decreases cell membrane 
permeability (Shi et al. 2013). The mitogen-activated protein 
kinase (MAPK) pathway was also observed to be involved 
in the hydrogen sulfide-mediated response of Arabidopsis 
seedlings to low-temperature stress, with a specific effect 
on stomatal opening.

High temperature, water deficiency, and salt stress have 
reached an alarming concern in the context of environmen-
tal change (Hussain et al. 2018; Khalid et al. 2020). High 
temperature strictly affects plant growth and development, 
resulting in a substantial decline in yield (Akter and Islam 
2017). The tolerance of plants against high temperatures is 
also improved by hydrogen sulfide. Numerous studies have 
delivered confirmation that the addition of sodium hydro-
gen sulfide, a hydrogen sulfide donor, improves plant ger-
mination and tissue viability (Li et al. 2013) and decreases 
the adverse phenotypic effects of high temperature such as 
wilting and curling of leaves (Christou et al. 2014). Differ-
ent mechanisms of different plants against heat stress were 
reported: in corn, the hydrogen sulfide-induced tolerance, 

which was arbitrated by an increase in salicylic acid (SA) 
and proline (Li et al. 2015); in tobacco, it was suggested 
that hydrogen sulfide adjusts the entry of extracellular cal-
cium ions across the plasma membrane by a direct effect 
on calmodulin (ubiquitous calcium-binding protein) (Li 
et al. 2012a, b). In strawberry, hydrogen sulfide alleviated 
oxidative stress. It helped to preserve root tissues against 
heat-induced damage by inducing gene expression of sev-
eral antioxidants and heat shock proteins, including catalase, 
superoxide dismutase, HSP70, HSP80, and HSP90 (Christou 
et al. 2014).

The involvement of hydrogen sulfide in plant responses 
to water deficit has also been widely evaluated. It mainly 
depends on how much time and what concentration of heat 
was applied, hydrogen peroxide may encourage the closure 
or aperture of stomata. Both effects are mediated by a signal-
ing molecule and involves the activity of calcium ion, cADP 
ribose, and slows anion channel 1 (Honda et al. 2015).

By knocking down the l-cysteine desulfhydrase in 
Arabidopsis plants, Jin et al. (2013) studied the function 
of hydrogen sulfide in stomatal movement and the relation-
ship between hydrogen sulfide and abscisic acid metabolism 
in signaling transduction. They concluded that hydrogen 
sulfide is involved in the expression regulation of abscisic 
acid receptor candidates and potassium ions and calcium ion 
channels in guard cells. In addition to stomatal movement, 
numerous works have reported that hydrogen sulfide helps 
to provide tolerance to drought through the accumulation of 
osmolytes like proline and the association of calcium mes-
senger system (Li et al. 2014).

Heavy metals such as cadmium, chromium, copper, and 
zinc are highly toxic for plants. Their accumulation in the 
intracellular compartments can cause DNA damage, enzyme 

Table 3  Endogenous  H2S production in plants triggered under various abiotic stresses

FW fresh weight, Pr protein

Species Stress H2S contents References

Without stress With stress

Rice (Oryza sativa) Cd 5 µmol g−1 (FW) 6 µmol g−1 (FW) Mostofa et al. (2015)
Chinese cabbage (Brassica rapa) Cd 0.38 nmol mg−1 (Pr  min−1) 0.58 nmol mg−1 (Pr  min−1) Zhang et al. (2015)
Foxtail millet (Setaria italica) Cr6 + 0.6 nmol mg−1 (Pr  min−1) 1.6 nmol mg−1 (Pr  min−1) Fang et al. (2014)
Alfalfa (Medicago sativa) NaCl 30 nmol g−1 (FW) 70 nmol g−1 (FW) Lai et al. (2014)
Strawberry (Fragaria × ananassa) PEG-6000, NaCl 25 nmol g−1 (FW) 35 nmol g−1 (FW) Christou et al. (2013)
Arabidopsis (Arabidopsis thaliana) Drought 6 nmol mg−1 (Pr  min−1) 14 nmol mg−1 Pr  min−1) Jin et al. (2011)
Arabidopsis (Arabidopsis thaliana) Cold 3 nmol g−1 (FW) 5 nmol g−1 (FW) Shi et al. (2015)
Grape (Vitis vinifera) Cold 7 µmol g−1 (FW) 15 µmol g−1 (FW) Fu et al. (2013)
Bermudagrass (Cynodon dactylon) Cold 5 nmol g−1 (FW) 14 nmol g−1 (FW) Shi et al. (2013)
Lamiophlomis rotata Cold 12 nmol g−1 (FW) 24 nmol g−1 (FW) Ma et al. (2015)
Tobacco (Nicotiana tabacum) Heat 2 nmol g−1 (FW) 8 nmol g−1 (FW) Chen et al. (2016)
Barley (Hordeum vulgare) UV-B 125 nmol g−1 (FW) 230 nmol g−1 (FW) Li et al. (2016a)
Pea (Pisum sativum) Hypoxia 0.8 µmol g−1 (FW) 1.5 µmol g−1 (FW) Cheng et al. (2013)
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inactivation, protein oxidation, and lipid peroxidation. The 
role of hydrogen sulfide in plant response to heavy metal 
stress has been recently reviewed by Hancock and Whiteman 
(2015) and Li et al. (2016b) (Table 3). In cucumber seed-
lings, pre-treatment with sodium hydrogen sulfide altered 
the expression of cell wall-associated proteins such as PME 
(CsPME) and expansin (CsExp), leading to the alleviation of 
boron-induced toxicity. Similarly, sodium hydrogen sulfide 
alleviated the inhibitory effects of copper and reduced the 
visible symptoms in germinated seeds and radical tips.

The roots are important plant organs for anchoring and 
nutrient and water uptake. Therefore, fast growth and devel-
opment of root is essential for crop survival in stressful 
conditions. The knowledge about impact of  H2S on roots 
formation and growth pattern is very important for stress 
tolerance. Several researchers reported positive impacts 
of application of this molecule on root of raddish (Carter 
et al. 2018), sweet potato, willow and soybean (Zhang et al. 
2009a, b), and Chinese crab apple (Wei et al. 2017) and 
these are mainly as a result of  H2S interaction with Indole 
Acetic Acid (IAA), Nitric Oxide (NO), Hydrogen per Oxide 
 (H2O2), and Malondialdehyde (MDA) (Zhang et al. 2009a, b, 
Mei et al. 2017, Ma et al. 2016a, b). The pretreated seedlings 
with NaHS upregulated abscisic acid (ABA) biosynthesis 
in roots during drought. Moreover, the exogenous appli-
cation of ABA increased the  H2S contents in the roots in 
drought, and it showed cross talks between these two mol-
ecules (Ma et al. 2016a, b). The presence of excessive salt 
in soil resulted in salinity stress which disupts nutrients and 
water uptake along with oxidative damages and produces 
poor yield. The  H2S mediates the NO production which is 
further utilized for maintaining ion  (K+/Na+) homeostatis to 
improve salt tolerance (Chen et al. 2015).

Molecular Mechanism and Biosynthesis 
of  H2S in Plants

Hydrogen sulfide gaseous signaling molecule is involved in 
the growth and development of plants. It regulates different 
physiological processes in plants, including germination, 
lateral and adventitious root formation, stomatal conduct-
ance and photosynthesis (Duan et al. 2015; Jia et al. 2015; 
Liu and Lal 2015; Jin and Pei 2016; Li et al. 2016a, b). 
Plant response to abiotic stress is also regulated by  H2S and 
thus considered as versatile regulator (Guo et al. 2015). The 
emission of  H2S in plant was first observed by DeCormis 
in 1968 (Rennenberg, 1989). Exposure of some plants e.g., 
pumpkin, cantaloupe, corn, cucumber, and soybean to light 
results in the synthesis of  H2S as reported by Wilson et al. 
(1978). Similarly, emission of  H2S in cucumber leaf tissue 
was reported earlier (Sekiya et al. 1982).

H2S is recognized as an important secondary messenger 
in various plant developmental processes, stress responses, 
and due to its small size it can easily navigate between cells. 
Thus, it behaves as a gasotransmitter at lower cellular con-
centrations. It does not require any transporter assistance; 
therefore, it can move through hydrophobic plasma and 
organelle membranes (Mathai et al. 2009; Shivaraj et al. 
2020). Hydrogen sulfide accumulation occurs in chloroplasts 
via a photosynthetic sulfate assimilation pathway, and the 
reaction is triggered by sulfide reductase (SiR) (Garcia et al. 
2015). The cytosolic hydrogen sulfide is accumulated mainly 
with the action of the enzyme l-cysteine desulhydrase 1 
(DES1), and it is of interest that the sulfide concentration 
in chloroplasts is always higher than in cytosol (Kabil and 
Banerjee 2010).

Multiple enzymatic systems are involved in the biosyn-
thesis of  H2S in plants. According to Aroca et al. (2015), 
 H2S production mainly occurs in the chloroplast and partly 
in the mitochondria and cytosol. It includes sulfite reductase 
(SiR), l‐Cysteine desulfhydrase (LCD), d‐Cysteine desulf-
hydrase (DCD), cysteine synthase (CS), beta‐cyanoalanine 
synthase (CAS), carbonic anhydrase, Nitrogenase Fe-S clus-
ter (NFS 1& 2), O-acetyl-l-serine (thiol) lyase (OASTL), 
and Desulfhydrase (DES1). The enzymatic role in various 
steps of synthesis of  H2S is shown in Fig. 4. l‐Cysteine des-
ulfhydrase is the major player involved in the production 
of  H2S as it catalyzes the conversion of l-Cys to pyruvate, 
 NH4+ , and  H2S as shown in Fig. 4. The cofactor in this reac-
tion is pyridoxal phosphate (Gotor et al. 2015). Similarly, 
d-Cys is converted to pyruvate, ammonia, and  H2S in the 
cytoplasm through DCD (Riemenschneider et al. 2005).

Until today, there are six different pathways reported in 
the plants through which  H2S has been generated. Firstly, 
 SO4

2− is reduced to  S2− and then it became a part of organic 
metabolites. Before this reduction reaction,  SO4

2− is acti-
vated by adenylation to form adenosine 5ʹ phosphosulfate 
(APS), which is catalyzed by ATP sulfurylase (ATPS). APS 
reductase (APR) enzyme in plastid converts APS to sulfite 
that is further reduced to sulfide and  H2S through ferredoxin-
dependent sulfite reductase (SiR) enzyme (Fig. 4). At the 
end, sulfide is incorporated into amino acids skeleton of 
OAS (O-acetylserine) by OAS-TL (O-acetylserine thiol 
lyase) to form cysteine. The revers of this reaction gener-
ates  H2S (Li 2015). In these all reactions, OAS is product 
of serine and catalyzed by SAT (serine acetyltransferase). 
 H2S, pyruvate, and  NH4

+1 synthesis due to the degradation 
of l-Cysteine were first reported by Harrington and Smith 
(1980). Xie et al. (2013) found that  H2S in higher plants 
was produced by enzymatic reaction of LCD on substrate 
l-cysteine. Furthermore, l-cysteine was converted to l-ala-
nine and elemental S through the action of enzyme LCD. 
The elemental S could be further reduced to  H2S if reductant 
is present (Papenbrock et al. 2007a, b).
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Léon et  al. (2002) reported two genes (AtNFS1 and 
AtNFS2) that encoded NifS-like cysteine desulfurase cata-
lyzing cysteine to form  H2S. d-cysteine could also be cata-
lyzed by DCD to generate  H2S as reported by Riemensch-
neider et al. (2005) in their study on Arabidopsis thaliana. 

The subcellular localization, enzymatic inhibitors, and 
substrates for both LCD and DCD seem different. Another 
enzyme, i.e., b-cyanoalanine synthase (CAS) can also act 
on l-Cysteine and cyanide to form H2S and b-cyanoalanine 
as reported by Hatzfeld et al. (2000). Similarly, it has been 

Fig. 4  Hydrogen sulfide  (H2S) generation mechanism in plants (Adapted from Papenbrock et al. 2007a, b)
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found that three genes, i.e., CYSC1,CYS-D1, and CYS-D2 
encode enzyme CAS that confirm that l-Cysteine is involved 
in the synthesis of  H2S (Jost et al. 2000). The enzyme cyano-
alanine synthase cI (CAS-CI) also produces hydrogen sulfide 
in the mitochondria during the synthesis of β-cyanoalanine 
(Yamaguchi et al. 2000).

Hydrogen Sulfide and its Interaction 
with Other Signaling Molecules During Plant 
Abiotic Stress

Hydrogen sulfide has been considered as a toxic gas for liv-
ing organisms; however, it has emerged as a new molecule 
in living cells for signaling, considering equally crucial as 
hydrogen peroxide  (H2O2), carbon monoxide (CO), and 
nitric oxide (NO) (Kimura 2014). Hydrogen sulfide is a 
major component in plant responses against stress. Many 
stresses may result in an increase in hydrogen sulfide in 
plants, and this may result in the mediation of cell stress by 
different cellular metabolisms (Fig. 5).

Numerous reports have been available on this gasotrans-
mitter related to the growth of vegetative plants and affect-
ing the disease resistance, protective roles against stresses 
such as oxidative stresses (Fang et al. 2016), drought and 
heat tolerance (Li et al. 2012a, b; Shen et al. 2013), osmotic 
and saline stresses, stomatal closure/aperture (Papanatsiou 
et al. 2015), modulating in photosynthetic machinery (Chen 
et al. 2011), and autophagy regulation (Laureano-Marin 
et al. 2016).

Moreover, hydrogen sulfide is a reactive molecule to 
alter the signals concerning the plant hormones (Liu et al. 
2011; Lisjak et al. 2010a; Zhang et al. 2010). Concerning 
the primary mechanism of action, a post-translational modi-
fication (PTM) of proteins (persulfidation) is formed when 
the conversion of the thiol group (−SH) into the persulfide 
group (−SSH) occurred at the reactive cysteine residues 
on the target proteins. Persulfidation showed an increased 
nucleophilicity than the thiol group; thus, modified cysteines 
demonstrated a more significant challenge activity leading 

to a higher percentage of proteins compared to the reactive 
nitrogen and oxygen species. The modified targets of hydro-
gen sulfide is unclear; however, the sulfane-sulfur atom has 
a unique ability to bind reversibly to other sulfur atoms to 
generate hydrosulfides and polysulfides. Polysulfides seemed 
to be effective in the persulfidation since these are more 
nucleophilic than hydrogen sulfide (Toohey 1989). These 
newly emerged low molecular weight compound persulfides 
are the potential mediators in sulfide signaling. In conclu-
sion, the extent of the interaction between signaling mol-
ecules needs more study on the biochemical cascade trig-
gered in the plant cells toward different stress conditions. 
Hydrogen peroxide molecules are small in size and have 
ability to cross by cellular membranes and its movement 
also occurs through aquaporin channels in different compart-
ments of cells. Hydrogen sulfide is also involved in feed-
ing of electrons in complex II of mitochondria by enzyme 
quinone oxidoreductase. Hydrogen sulfide also involved in 
regulation of phosphorylation of the plasma membrane to 
maintain homeostasis of ions (Li et al. 2013).

The optimum concentration of hydrogen sulfide will 
increase growth and activate different metabolisms. How-
ever, variation in the concentration of hydrogen sulfide will 
ultimately restrict the development of primary roots (Zhang 
et al. 2017). Hydrogen sulfide toxicity repressed primary root 
growth by triggering a signal transduction pathway involving 
reactive oxygen species (ROS) accumulation, MITOGEN-
ACTIVATED PROTEIN KINASE 6 (MPK6) activation,, 
and nitric oxide (NO) production.

Conclusion and Future Perspectives

The role of  H2S is alleviating various stresses through 
endogenous production and exogenous application is quite 
clear. The literature highlighted that advent of biotic and 
abiotic stress stimulates the generation of  H2S to provide 
protection against damages imposed by stress and is even 
helpful for protection against diseases. There is detailed 
description of alleviating the role of  H2S against heavy 

Fig. 5  Modifications in cellular 
reactions by hydrogen sulfide 
under stress
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metals, salinity, drought, and water logging and others. It is 
a potential tool for preservation of post-harvest fruit quality.

The phytotoxic and beneficial impacts of  H2S largely 
depend upon the dose, the detailed research on dose stand-
ardization for various crops should be focused for its prac-
tical application in agriculture. It is still unknow that the 
actual site of  H2S production in plants and its interaction 
with other molecules in plant metabolism (Corpas and Palma 
2020). The  H2S and NO displayed interplay with each other 
and biochemical basis of interplay still need to be worked 
out for deep understanding of the phenomenon. Suppose 
 H2S is endogenously produced as signaling molecules, then 
it should be measured. Furthermore, considering  H2S sign-
aling molecules, its production should be stopped when not 
needed. Because plants remove  H2S when it is just a pollut-
ant, the process of removal of  H2S still needs to be studied 
(Lisjak et al. 2013).

Although  H2S is widely being used for improving post-
harvest quality of climacteric and non-climacteric fruits, 
understanding the mechanism of signaling  H2S with fruit 
ripening is required for future investigation (Ziogas et al. 
2018). Although detail studies on role of  H2S in fruits have 
been carried out and its practical application has been sug-
gested regarding preservation of post-harvest fruit quality, 
the exact biochemical basis of interaction of  H2S with NO 
should be exploited (Ziogas et al. 2018). The levels of bio-
logical sulfide measuring techniques differ greatly according 
to testing procedure. The future investigation is required for 
uniform readings. Keeping in view the phytotoxicity, the 
crops like brassica species may be grown in areas where  H2S 
concentration is high in atmosphere (Ausma and Kok 2019).
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