
Vol.:(0123456789)1 3

Journal of Plant Growth Regulation (2021) 40:2515–2531 
https://doi.org/10.1007/s00344-020-10254-6

Hydrogen Sulfide  (H2S) Mitigates Arsenic (As)‑Induced Toxicity in Pea 
(Pisum sativum L.) Plants by Regulating Osmoregulation, Antioxidant 
Defense System, Ascorbate Glutathione Cycle and Glyoxalase System

Abdulaziz Abdullah Alsahli1 · Javaid Akhter Bhat2 · Mohammed Nasser Alyemeni1 · Muhammad Ashraf3 · 
Parvaiz Ahmad1,4 

Received: 29 July 2020 / Accepted: 14 October 2020 / Published online: 12 November 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Arsenic (As) being a toxic metalloid adversely affects plant growth and yield, as well as poses severe risks to human health. 
Hydrogen sulfide  (H2S) has emerged a vital signaling molecule regulating key plant growth processes under stress conditions. 
However, till date little information is available regarding the role of  H2S in mitigating As toxicity in pea plants. In the pre-
sent study, the effect of externally applied  H2S and its scavenger hypotaurine (HT) on various morphological, physiological 
and biochemical parameters of pea plants was evaluated. Our results showed significant decline in root length (RL), shoot 
length (SL), dry biomass, photosynthetic parameters such as pigment content and gas exchange characteristics in pea plants 
subjected to As stress. However,  H2S supplementation significantly decreased As accumulation in the roots and shoot, as well 
as considerably enhanced growth and photosynthetic parameters. Hydrogen peroxide (H2O2), malondialdehyde (MDA) and 
electrolyte leakage (EL) increased significantly in the As-treated plants, while  H2S supplementation considerably reduced the 
levels of  H2O2 and MDA as well as EL. Arsenic stress accelerated the activities of antioxidant and AsA-GSH cycle enzymes 
except that of CAT; however, the activities of these enzymes were found to be further increased by  H2S supply including that 
of CAT. Furthermore, ascorbate (AsA), glutathione (GSH) and methylglyoxal (MG) levels were significantly enhanced by 
As stress, and were further intensified in the  H2S-supplemented plants. Our results demonstrated significant role of  H2S in 
reducing As accumulation and inducing upregulation of the AsA-GSH cycle to overcome ROS-mediated oxidative damage 
to the cellular components of pea plants. Hence,  H2S reduced oxidative damage and promoted growth of pea plants under 
As stress, suggesting an important role of  H2S in plant priming.

Keywords Arsenic toxicity · H2S · Pisum sativum · Growth · Oxidative stress · Antioxidants · Ascorbate glutathione cycle · 
Glyoxalase system

Introduction

Heavy metal stress is recognized as an important constraint 
for attaining optimum crop production world over. Of the 
various heavy metals known so far, arsenic (As) is a toxic 
heavy metal(loid), and is known as “King of Poisons” 
(Abbas et al. 2018). Arsenic is present in many forms with 
different mechanisms of toxicity, and its inorganic form is 
more toxic (Lizama et al. 2011). Arsenic is easily trans-
ported from root to upper parts, as it is highly mobile and 
can ultimately find its way to humans wherein it can cause 
various health problems (Abbas et al. 2018; Heikens et al. 
2007; Zhao et al. 2011).

An increase in As concentration in soil might result due 
to anthropogenic activity, use of extremely high contents 
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of pesticides and herbicides, irrigation with ground water 
polluted with heavy metals, etc. (Eliana Andrea et  al. 
2019; Tripathi et al. 2007; Zhao et al. 2010)) Arsenic is 
very toxic in nature even in small concentrations because 
it can cause a marked impairment in physio-biochemi-
cal processes of plants. Arsenic in soil is present in two 
inorganic forms viz, arsenite (AsIII) and arsenate (AsV). 
According to Ji et al. (2017), the AsIII is highly toxic com-
pared with AsV, because AsIII is more soluble and mobile. 
Plants exposed to As are reported to show reduced growth 
and biomass yield as well as reduced crop production 
(Abbas et al. 2018; Rahman et al. 2008, 2007). According 
to Garg and Singla (2011), As toxicity hampers photo-
synthesis, respiration and other physiological activities as 
it disrupts the water transport (Verbruggen et al. 2009). 
Arsenic stress leads to ionic, osmotic as well as oxidative 
stress; however, plants are able to synthesize osmolytes 
like proline, glycine betaine, etc., which can effectively 
protect the cell organelles from the stress-induced toxicity. 
Prolonged metal stress also leads to generation of reac-
tive oxygen species (ROS) like hydrogen peroxide  (H2O2), 
superoxide  (O2

−), singlet oxygen (.O−) etc. which react 
with biomolecules and affect their normal functioning 
(Ahmed et al. 2010). Arsenic stress also induces higher 
accumulation of methylglyoxal (MG), a key byproduct of 
glycolysis, which is believed to be very harmful for plant 
organelles (Jan et al. 2018; Kumar and Yadav 2009; Yadav 
et al. 2005). MG and ROS work together and hamper the 
normal functioning of plant organelles, and if they are not 
properly removed they may cause cell death (Ahmad et al. 
2019a). However, plants have their own defense mecha-
nisms to offset the ionic, osmotic and oxidative stresses. 
Plants can accumulate osmolytes like proline and glycine 
betaine that protect the biomolecules from dehydration 
stress without interfering with the key functions of the 
cell. Proline has also been reported to have an antioxi-
dant property that helps to quench the ROS. Plants under 
a stress also induce the activities of different antioxidant 
enzymes, such as superoxide dismutase (SOD), catalase 
(CAT), glutathione-S-transferase and other enzymes of 
the ascorbate glutathione cycle (ascorbate peroxidase, 
APX; glutathione reductase, dehydroascorbate reductase, 
monodehydroascorbate reductase, ascorbic acid, and glu-
tathione). These antioxidants are known to scavenge the 
extra ROS from the cell and make it less prone to oxidative 
stress. Another system is glyoxalase system [glyoxalase I, 
(Gly I); glyoxalase II, (Gly II)] is thought to be responsible 
for the detoxification of MG (Jan et al. 2018).

Different strategies have been adopted to reclaim As pol-
luted soils for achieving maximal crop production from the 
limited soil resources. One of the sustainable approaches is 

the use of external supplementation of nutrients, inorganic 
elements and phytohormones, etc. (Shivaraj et al. 2019).

Hydrogen sulfide  (H2S), a gaseous molecule with a lot 
of health benefits, has been reported in animal system (du 
Toit 2015; Mancardi et al. 2009). However, within the last 
two decades, this gaseous molecule has gained a consider-
able ground because of its effective role in mitigating the 
adverse effects of environmental cues on plants (Ali et al. 
2014; Christou et al. 2013; Mostofa et al. 2015; Shi et al. 
2014; Shivaraj et al. 2019). Mitigation of an abiotic stress 
by  H2S is attributed to its role in different defense mecha-
nisms like antioxidant activities and ROS detoxification sys-
tem (Chen et al. 2013; Mostofa et al. 2015). Hence, the key 
objective of the present study was to determine whether  H2S 
has any role in the mitigation of As stress in pea plants. For 
this various morphological, physiological and biochemical 
parameter related to As tolerance were used for the evalua-
tion of pea plants.

Materials and Methods

Plant Material, Treatment and Growth Conditions

Healthy and viable pea (Pisum sativum L.) seeds were 
selected for surface sterilization for 10  min using 5% 
sodium hypochlorite (NaOCl) solution, and were washed 
thoroughly with distilled water. The seeds were got germi-
nated in pots containing a mixture of sand, perlite and peat 
(1:1:1); however, full strength Hoagland’s nutrient solution 
was used to grow the pea seedlings for two weeks by follow-
ing detailed procedure of Singh et al. (2015). Thereafter, the 
seedlings were subjected to AsIII stress by mixing 20 µM 
sodium arsenite  (NaAsO2) in Hoagland’s solution, whereas 
normal Hoagland solution was used to grow the control 
plants (Ahmad et al. 2020). The  H2S donor, i.e., sodium 
hydrosulfide (NaHS; 200 µM) was mixed with Hoagland 
solution and then supplied to both control and As-treated 
plants. Moreover, a  H2S scavenger i.e., hypotaurine (HT; 
200 µM) was also applied with Hoagland solution in absence 
and presence of  H2S to check if  H2S really had a positive 
role under As stress by following (Kaya et al. 2020). Based 
on the following treatments, the plants were grouped as: (i) 
control (Hoagland solution only), (II) control + H2S, (III) 
As stress (20 mM), (IV) As + H2S, and (V) As + H2S + HT. 
The pots were placed in a growth chamber under controlled 
environmental conditions viz., photoperiod of 18 h, rela-
tive humidity (RH) of 70–75%, and day/night temperature 
25 ± 2 °C/15 ± 2 °C. Forty-day old plants were harvested 
for estimating different morphological, physiological and 
biochemical parameters.
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Growth and Photosynthetic Pigment Parameters

Morphological parameters viz., shoot length (SL), root 
length (RL), shoot fresh weight (SFW) and shoot dry weight 
(SDW) were estimated from 40-day-old plants following 
Singh et al. (2015). For the estimation of SDW, the samples 
were oven-dried at 70 °C for 48 h and final weights of the 
dry samples were recorded. Pigment related to photosynthe-
sis viz., chlorophyll and carotenoids were extracted and esti-
mated using the acetone extract method (Arnon 1949). Fresh 
leaf tissue was used for the extraction of pigments using 
80% acetone, and a spectrophotometer (Beckman 640D 
USA) was used to record absorbance at 480 nm, 645 nm 
and 663 nm.

Horizontal fully expanded leaves were used for the esti-
mation of leaf gas exchange parameters at full noon using 
an IRGA (LCA-4 model Analytical Development Company, 
Hoddesdon, England). These traits included transpiration 
rate (E), net photosynthetic rate (Pn) and stomatal conduct-
ance (gs).

Physiological and Biochemical Parameters

The Yamasaki and Dillenburg (1999) standard protocol were 
followed for leaf relative water content (LRWC) estimation. 
The upper most leaves were used to collect leaf disks, and 
the fresh weights of these leaf samples were recorded. The 
below mentioned formula was used to estimate LRWC:

The standard procedure of Bates et al. (1973), i.e., acid 
ninhydrin method, was followed for proline content estima-
tion. A spectrophotometer (Beckman 640D, USA) was used 
to measure absorbance at 520 nm. Determination of proline 
content was done using a standard curve and worked out as 
μmol proline  g−1 FW (Bates et al. 1973).

For the estimation of glycine betaine (GB) content, the 
method as described previously in detail by Grieve and Grat-
tan (1983) was followed.

Oxidative Stress Biomarkers

Estimation of hydrogen peroxide  (H2O2) was carried out 
following the detailed procedure of Velikova et al. (2000). 
A spectrophotometer (Beckman 640D, USA) was used to 
measure absorbance at 390 nm.

The protocol of Madhava Rao and Sresty (2000) was fol-
lowed to measure malondialdehyde (MDA) content and lipid 

LRWC = Freshweight − Dryweight∕Turgidweight − Dryweight × 100

peroxidation. The MDA and lipid peroxidation were measured 
using a spectrophotometer (Beckman 640D, USA).

Electrolyte leakage (EL) was determined by following a 
procedure as described in detail by Dionisio-Sese and Tobita 
(1998).

Estimation of Enzymatic and Non‑enzymatic 
Activity

Enzyme extract and assay were prepared by collecting fresh 
leaf tissue. Potassium phosphate buffer (100 mM, pH 7.0) con-
taining polyvinyl pyrrolidone (1%) were used for homogeniz-
ing the leaf samples using a pestle and mortar. Centrifugation 
of the slurry was carried out for 30 min at 16,128 rcf/g-force 
at 4 °C. Enzyme activities were determined from the resulting 
supernatant (Ahmad et al. 2018).

The Dhindsa and Matowe (1981) protocol was followed to 
measure SOD (EU  mg−1 protein) activity, which is based on 
nitroblue tetrazolium (NBT) reduction method. The procedure 
as described in detail by Aebi (1984) was used to measure 
CAT (EU  mg−1 protein) activity. The activity of GST (EU 
 mg−1 protein) was determined by following the detailed pro-
cedure of Hasanuzzaman and Fujita (2013). For the estimation 
of APX (EU  mg−1 protein) activity, we followed the procedure 
as previously described by Nakano and Asada (1981). The 
method of Foster and Hess (1980) was used to estimate GR 
(EU  mg−1 protein) activity.

The detailed procedure as previously described by Miyake 
and Asada (1992) was used to determine MDHAR (EU  mg−1 

protein) activity. A standard protocol of Nakano and Asada 
(1981) was used to estimate DHAR (EU  mg−1 protein) activ-
ity. For estimating AsA and GSH contents, we followed the 
previously described methods of Huang et al. (2005) and Yu 
et al. (2003), respectively.

Statistical Analysis

In the present study, average values each estimated from five 
replicates were used for the data analysis. One-way analysis 
of variance (ANOVA) was carried out using the SPSS soft-
ware (Version 17), and the significant differences among the 
means were worked out at P ≤ 0.05. Tukey’s HSD (Honestly 
Significant Difference) test was used for comparison between 
control and treatment’s means at P ≤ 0.05 significance level 
using SPSS 10 software.
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Results

Phenotypic Evaluation

Arsenic stress significantly decreased SL and RL by 
55.32% and 64.83%, respectively, in As-treated pea 
plants with respect to controls; however,  H2S application 
slightly increased SL and RL in the control plants, whereas 
it enhanced SL and RL by 24.77% and 35.10%, respec-
tively, in the As-treated plants (Fig. 1a). The SFW and 
SDW also decreased by 65.88% and 42.85%, respectively, 
in the As-treated plants relative to those in the untreated 
plants; however, exogenous supply of  H2S to the As-
treated plants increased the SFW and SDW by 41.17% and 
23.80%, respectively, with reference to those in the plants 
solely treated with As (Fig. 1b). Our study observed that 
 H2S scavenger i.e., hypotaurine (HT) reversed the posi-
tive effects of  H2S. The As + HT-treated plants revealed 
almost similar phenotypic effects as those of plants treated 

with As only for the traits viz., SL, RL, SFW and SDW 
(Fig. 1a, b).

Arsenic Concentration, Tolerance Index 
and Translocation Factor

Accumulation of As in the shoot tissue decreased from 
525 to 225 µg g−1 DW, and in roots it reduced from 715 
to 492 µg g−1 DW with the supplementation of  H2S. How-
ever, the effect of  H2S on As concentration in the shoot and 
root tissues was nullified by the HT treatment; for example, 
As + HT + H2S and As-treated plants showed non-significant 
difference in shoot and root As accumulation, but showed 
significantly higher As concentration in both tissues relative 
to those in the As + H2S-treated plants (Table 1).

Shoot tolerance index (STI) and root tolerance index 
(RTI) also increased from 44.67 to 75.22% and 35.16 to 
64.89%, respectively, by the exogenous supply of  H2S in the 
As-treated plants. However, translocation factor decreased 
from 0.734 to 0.457 in the present of  H2S in the As-treated 
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Fig. 1  Supplementation of  H2S restored the a lengths of shoot and root and b FW and DW shoot in As-stressed pea plants (Mean ± S.E., n = 5). 
Different letters indicate significant difference at P ≤ 0.05

Table 1  Effect of  H2S on As accumulation by shoot and root, translocation factor, shoot and root tolerance index in pea under As toxicity

Data presented are the means ± SE (n = 5). Different letters indicate significant difference at P ≤ 0.05

Treatments Shoot As (µg  g−1 DW) Root As (µg  g−1 DW) Translocation factor (TF) Shoot tolerance 
index (STI%)

Root tolerance 
index (RTI%)

0 ND ND ND ND ND
H2S ND ND ND ND ND
As 525 ± 13.67a 715 ± 17.64a 0.734 ± 0.02a 44.67 ± 0.97b 35.16 ± 0.84b
As + H2S 225 ± 7.95b 492 ± 10.01b 0.457 ± 0.01b 75.22 ± 1.93a 64.89 ± 1.69a
As + H2S + HT 

(hypotaurine)
542 ± 14.40a 734 ± 18.46a 0.738 ± 0.02a 43.82 ± 0.97b 33.13 ± 0.85b
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plants (Table 1). The beneficial effect of  H2S on STI, RTI 
and translocation factor in the As-treated plants was nulli-
fied by the application of HT, and these parameters showed 
non-significant difference between the As-treated and 
As + HT + H2S plants (Table 1).

Pigments and Gas Exchange Parameters

Arsenic stress reduced total chlorophyll and carotenoid con-
tents by 37.41% and 57.57% in the pea plants compared to 
that in the control plants. However, As + H2S-treated plants 
showed only 24.45% and 36.36% decrease in total chloro-
phyll and carotenoid contents relative to the controls. Fur-
thermore, exogenous supply of As + HT + H2S to the pea 
plants showed similar levels of total chlorophyll and carot-
enoid contents to those in the As-treated plants (Fig. 2a, b).

The Pn, gs, and E decreased by 51.60%, 82.20% and 
75.46% under As stress in the pea plants compared to the 
controls. However,  H2S application to the As-treated plants 
showed a marked reduction in Pn, gs and E by 35.47%, 
57.37% and 42.33% with reference to the controls, which are 
significantly lower than those in the pea plants treated with 
only As (Fig. 2c–e). Moreover, addition of HT eliminated 
the positive effects of  H2S in the As-stressed plants.

Physiological and Biochemical Analysis

Arsenic stress reduced RWC by 46.56% in the pea plants 
with respect to the control. However, supplementation 
of  H2S to the As-treated plants exhibited enhanced RWC 
(70.62%) compared to that in the pea plants fed with As 
only (Fig. 3a). Proline and GB contents increased under As 
stress by 82.81% and 71.83%, respectively, compared to the 
controls. However, in the As + H2S-treated plants an increase 
of only 52.82% in proline and 57.26% in GB content, respec-
tively, was observed relative to the controls, which is con-
siderably low compared to those in the pea plants treated 
with As only (Fig. 3b, c). The As + H2S + HT and As-treated 
plants showed non-significant differences for RWC, proline 
and GB contents.

Oxidants, Electrolyte Leakage and Antioxidant 
Activity

Hydrogen peroxide  (H2O2) and MDA contents increased by 
74.22% and 63.09%, respectively, in the As-treated plants 
compared to the controls. However, application of  H2S 
suppressed the  H2O2 and MDA contents in the As + H2S-
treated plants by 63.23% and 57.26%, respectively, com-
pared to those in the As-treated plants (Fig. 4a, b). In addi-
tion, electrolyte leakage (EL) was recorded to be increased 
from 10.77% to 69.05% under As stress; however,  H2S 
application reduced the EL to 44.15% (Fig. 4c). The HT 

supplementation to As + H2S-treated plants showed a similar 
behavior in  H2O2, MDA and EL as that in the As-treated 
plants.

The activities of enzymatic antioxidants viz., SOD, CAT, 
APX, GR and GST, enhanced by 179.88%, 39.21%, 58.95%, 
89.65% and 63.45%, respectively, in the As-treated plants 
with reference to the controls. However,  H2S application 
to the As-stressed plants further showed enhanced activi-
ties of SOD, CAT, APX, GR and GST by 32.10%, 70.59%, 
14.54%, 19.33% and 26.93% with reference to those in 
the As-stressed plants (Figs. 5a–c, 6a, b). Arsenic stress 
decreased the ascorbate recycling enzymes MDHAR and 
DHAR by 49.16% and 49.06%, respectively, relative to the 
controls. Supplementation of  H2S increased the activities of 
MDHAR and DHAR by 43.38% and 70.79%, respectively, 
with respect to those in the As-stressed plants (Fig. 6c, d). 
However, the As + H2S + HT and As-treated plants showed 
non-significant differences for CAT, APX, GR, GST, 
MDHAR and DHAR.

As stress decreased AsA and GSSG by 55.00% and 
42.76%, respectively, but increased GSH by 75.60% in the 
As-treated plants relative to the controls. The  H2S supply 
enhanced the levels of AsA, GSH and GSSG by 66.66%, 
25.38% and 61.34%, respectively, with respect to those in 
the plants treated with As only (Fig. 7a–c). However, HT 
supplemented to the As + H2S-treated plants showed non-
significant effect on this trait.

Methyl Glyoxal and Glyoxalase Cycle

Arsenic stress applied to the pea plants resulted in increased 
amount of MG by 92.66% compared to the control; however, 
application of  H2S decreased the MG content by 35.48% 
relative to that in the As-stressed plants (Fig. 8a). Applica-
tion of HT to the As + H2S-treated plants nullified the effect 
of  H2S, and As + H2S + HT and As-treated plants showed 
non-significant differences for MT.

Arsenic stress enhanced the Gly I by 63.23%, but 
decreased Gly II by 41.55% relative to the controls. Appli-
cation of  H2S to the As-treated plants further enhanced Gly 
I by 18.01%, and Gly II by 44.44% compared to those in 
the As-treated plants (Fig. 8b, c). The addition of HT to the 
As + H2S-treated plants showed non-significant difference 
between As + H2S + HT and As-alone-treated plants.

Discussion

Hydrogen sulfide  (H2S) has recently emerged as an impor-
tant gaseous signaling molecule regulating numerous physi-
ological processes in plants such as germination, regulation 
of stomatal aperture, photosynthesis and formation of lateral 
and adventitious root (Shivaraj et al. 2019). Besides, many 
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studies have demonstrated important role of  H2S in plant 
defense response against multiple abiotic stresses such as 
including drought stress (Jin et al. 2017), salt stress (Lai et al. 
2014), chilling stress (Fu et al. 2013), osmotic stress (Khan 
et al. 2017) and heavy metal stress (Guo et al. 2016). Hence, 
the present study demonstrated a potential role of  H2S in 
mitigating As stress in the pea plants, which was ascribed to 
varying regulation of various morphological, physiological 
and biochemical parameters. Our results revealed that As 
toxicity diminished growth (SL & RL) and biomass (SFW 
& SDW) of the pea plants. Similar to our results, many pre-
vious studies have reported As-induced reduction in plant 
growth and biomass in different plant species viz., Luffa 
acutangula (Singh et al. 2013), rice (Singh et al. 2017), 
and soybean (Chandrakar and Keshavkant 2019). Such 

As-induced reduction in plants growth may occur due to 
disturbance in cellular processes at molecular, biochemical 
and physiological levels in plants (Abbas et al. 2018; Gunes 
et al. 2010; Khalid et al. 2017; Rafiq et al. 2017, 2018). The 
supplementation of  H2S significantly increased growth and 
biomass of As-treated pea plants, similar as previously dem-
onstrated by Singh et al. (2015). Exogenous supply of  H2S 
has been widely reported to increase plant growth parame-
ters in various plants under toxic metal concentrations (Chen 
et al. 2013; Cui et al. 2014; Shi et al. 2014; Singh et al. 
2015). Application of the  H2S scavenger, i.e., HT, has been 
well documented to reverse the beneficial effects of  H2S on 
plant growth under heavy metal stress (Kaya and Ashraf 
2019; Kaya et al. 2020; Mostofa et al. 2015; Scuffi et al. 
2014). It has been suggested that improvement in growth 
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and biomass yield of As-treated plants by  H2S might result 
from the reduced accumulation of As in the tissues (root and 
shoot), as well as its translocation from root to shoot of pea 
plants (Singh et al. 2015). For example, our results showed 
that  H2S application significantly reduced the As concentra-
tion in the root and shoot tissues, and its translocation from 
root to shoot, suggesting some specific mechanisms utilized 
by the  H2S to reduce As uptake, accumulation and transport 
to aboveground shoot tissues. Moreover, many authors have 
documented the key role of  H2S in regulating uptake, accu-
mulation and transport of metal(loid)s in plants (Li et al. 
2013; Singh et al. 2015; Sun et al. 2013).

A negative effect of As stress has been demonstrated 
on photosynthesis and chlorophyll metabolism, leading to 
impaired biosynthesis and accelerated degradation of the 
pigments (Abbas et al. 2018; Singh et al. 2016). However, 

our study exhibited a considerable reduction in chlorophyll 
content of the pea plants by As stress which is analogous 
to some earlier studies on Zea mays (Emamverdian et al. 
2015) and Trifolium pratense (Hasanuzzaman et al. 2017). 
Anjum et al. (2011) reported that a remarkable reduction in 
chlorophyll pigment synthesis under As stress results from 
the shortage of adaptive adjustments of photosystems-I and 
-II. In agreement with the present study, previous studies 
reported As-induced reduction in carotenoid pigment in 
different plant species such as mungbean (Srivastava et al. 
2017) and chickpea (Dwivedi et al. 2012). However, sup-
plementation of  H2S to the As-treated plants considerably 
reduced the degradation of chlorophyll and carotenoid pig-
ments in the pea plants, as previously demonstrated by Singh 
et al. (2015). This effect on photosynthetic pigment biosyn-
thesis may have been due to the role of  H2S in reducing 
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the translocation and accumulation of As in photosynthetic 
organs (Abbas et al. 2018; Luo et al. 2020; Singh et al. 
2015).

Arsenic induced reduction in leaf gas exchange char-
acteristics such as Pn, E and gs is evident in the present 
investigation, which is in agreement with the findings 
earlier reported in maize (Wang et al. 2015) and cowpea 
(Dutta and Mondal 2014). Arsenic stress and ABA accu-
mulation are directly correlated; higher concentration of 
As in plants leads to accumulation of ABA in plant cells 
including guard cells (Huang et al. 2012), thereby causing 
stomatal closure and reduced transpiration (Stoeva et al. 
2004). For example, Armendariz et al. (2016) reported that 
As stress induces ABA accumulation and stomatal closure 
in soybean, and reduces transpiration. However, closure of 

stomata decreases  CO2 fixation, that in turn reduces photo-
synthetic rate (Ahmad et al. 2018). The reduction in Pn can 
be attributed to the damage caused by As in both photo-
chemical and biochemical steps of the photosynthesis pro-
cess (Abbas et al. 2018). Application of  H2S significantly 
enhanced gas exchange parameters in the As-treated pea 
plants. Many studies have reported that  H2S can enhance 
gas exchange parameters under metal toxicity stress in dif-
ferent plants such as in nickel-stressed rice (Rizwan et al. 
2019), chromium-stressed cauliflower (Ahmad et al. 2019b), 
and arsenic-stressed pea (Singh et al. 2015). However, HT 
application reversed the positive effects of  H2S on photo-
synthetic and gas exchange parameters, which in line with 
some earlier studies (Baudouin et al. 2016; Khan et al. 2018; 
Wei et al. 2017).
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The present study showed as significant reduction in 
RWC of pea plants under As stress, similar as earlier found 
in rice (Rahman et  al. 2016) and soybean (Vezza et  al. 
2018). This effect most possibly results due to As-induced 
constraints to water uptake and damage to the root system 
architecture. Vezza et al. (2018) reported water absorption 
reduction of 25–39% in soybean under As stress. They dem-
onstrated that As treatment applied could not decrease the 
osmotic potential, and suggested reduction in water absorp-
tion might be controlled instead of physiological or pheno-
typic changes. Armendariz et al. (2016) reported that As 
treatment to soybean plants resulted in thicker and lignified 
cell walls of root cells as well as deposition of huge quantity 
of dark deposits in the xylem vessels, and also observed a 
decline in root length and biomass. Many previous studies 

have also observed a similar kind of effect on the roots of 
several other plants under As and other heavy metals (Rai 
et al. 2011; Rui et al. 2016; Yoon et al. 2015). Heavy metal 
toxicity including As generally stimulates imbalance in plant 
water as well as induces osmolyte accumulation like Pro 
and GB. In the present study, we observed an inverse rela-
tionship of leaf RWC, Pro and GB levels under As stress, 
but the application of  H2S recovered RWC by avoiding the 
accumulation of high amount of Pro. These findings show 
the direct role of  H2S in other metabolic adjustment(s) by 
preventing accumulation of high Pro level. Importantly, 
the observed increment in the RWC might result in open-
ing of stomata as well as increased transpiration in plants 
treated with  H2S + As, which in turn may contribute to the 
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improvement of photosynthesis (Bharwana et al. 2014; Duan 
et al. 2014) thereby improving the growth of the pea plants.

Hydrogen peroxide  (H2O2), MDA and EL are prospec-
tive biomarkers of oxidative stress (Ahmad et al. 2017; 
Hasanuzzaman et al. 2014). Like many other metals, As 
can induce the production and accumulation of MDA and 
 H2O2, that in turn may increase EL; these results are similar 
to those reported in by different authors (Choudhury et al. 
2011; Ghosh et al. 2013; Mylona et al. 1998; Rafiq et al. 
2018). In the present investigation, supplementation of  H2S 
to the As-stressed pea plants resulted in reduction of  H2O2, 
MDA and EL, suggesting an important function of  H2S in 
mitigating oxidative damage resulting due to the effect of 
As stress. Three different mechanisms were suggested to 
mediate alleviation of As-induced oxidative damage by  H2S: 
(1)  H2S reduces accumulation of As, hence reducing the 

metal-induced e damage, (2)  H2S induces higher levels of 
NO, and NO acts as a scavenger of ROS such as SOR and 
peroxy radicals (lipid peroxidation products) (Singh et al. 
2013), and (3) both  H2S and NO are important molecules 
involved in defense signaling molecules; these molecules 
regulate oxidative stress tolerance by inducing antioxidant 
defense system (Fang et al. 2016; Hancock and Whiteman 
2014). Plants possess enzymatic and non-enzymatic anti-
oxidants defense mechanisms to scavenge excess ROS and 
maintain normal redox balance within the cells, as well as 
prevent oxidative cellular damages. Under abiotic-induced 
oxidative stress, SOD scavenges O⋅− into oxygen  (O2) and 
 H2O2, and it acts as a first line of defense in managing oxi-
dative stress. However, the APX, CAT and GPX act on the 
stress-generated  H2O2, that is finally reduced to  H2O. In our 
study, the activities of SOD and APX increased significantly 
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under As stress, which is a similar response as earlier 
observed in other species like rice (Shri et al. 2009), and 
maize (Requejo and Tena 2005). In contrast, the activity of 
CAT decreased in the pea plants under As stress, that is in 
agreement with the findings reported in Taxithelium nepa-
lense by Singh et al. (2007). Hence, an increase or a decrease 
in the activities of SOD and CAT, suggests accumulation 
of  H2O2, which is also supported by  H2O2 data presented 
here. However, the CAT plays an important function in the 
removal of excess  H2O2 produced under oxidative stress. 
Application of  H2S further increased the activities of SOD, 
APX, and CAT, which is in consistent with the findings 
reported in wheat (Zhang et al. 2008), pepper (Kaya et al. 
2018), and Arabidopsis (Shan et al. 2018).

Four enzymes, i.e., MDHAR DHAR, APX and GR, and 
two non-enzymatic antioxidants i.e., AsA and GSH are 

important components of the AsA-GSH cycle (Foyer and 
Noctor 2011). These AsA-GSH cycle components interact 
with the ROS and induce specific changes in the ROS and 
antioxidant levels as well as the redox ratios of AsA and 
GSH (Kuźniak and Skłodowska 2005). Our results showed 
a significant (P < 0.05) inhibition in the MDHAR and 
DHAR activities under As stress, but those of APX and GR 
increased significantly. The decreased activities of MDHAR 
and DHAR resulted in reduced (P < 0.05) AsA and GSH 
pools. Hence, inhibition in the MDHAR and DHAR activi-
ties might have increased lipid and protein damage due to 
oxidative stress resulting from As stress as reported by Ara-
vind and Prasad (2005). However,  H2S supply ameliorated 
the inhibition of MDHAR and DHAR activities in the As-
treated plants, as well as further increased the activities of 
APX and GR. These findings suggest the putative role of 
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 H2S in inducing enzyme activities of the AsA-GSH cycle, 
thereby regulating the redox status of AsA and GSH. This 
in turn might have resulted in improved growth of the pea 
plants relative to the plants treated with As only. However, 
Gao and Zhang (2008) demonstrated the protective role of 
AsA in the Arabidopsis ascorbate-deficient (vtc1) mutant 
against oxidative stress. Furthermore, the role of GSH in 
the synthesis of phytochelatins and ROS elimination has 
been well documented (Kalinowska and Pawlik-Skowrońska 
2010), and GSH is known to regulate the detoxification of 
lipids and protein peroxidation products by acting as a sub-
strate via the activity of glutathione-S-transferase (Gajew-
ska and SkŁodowska 2010). Our results clearly showed As-
mediated redox status alteration in the pea plants through its 
interference with the AsA and GSH pools. However,  H2S 
application recovered the redox status as shown by increased 
accumulation of AsA and GSH, and thus regulates the redox 
buffering. The increased content of AsA and GSH is directly 
associated with the enzyme activities of the AsA-GSH cycle, 
suggesting the function of  H2S in stimulating the antioxi-
dant defense system. In agreement with our findings, the 
application  H2S was shown to reestablish the redox status 
in Medicago sativa plants, thereby increasing plant salinity 
tolerance (Lai et al. 2014).

Over-accumulation of methylglyoxal (MG) in plant 
cells leads to adverse effects by inducing the generation of 
ROS as well as inhibiting the antioxidant defense system 
(Li 2016; Yadav et al. 2005). For avoiding MG-mediated 
cellular injury, plants have developed a well-developed 
detoxification mechanism for MG which is referred to as 
the glyoxalase (Gly) system. This system includes Gly I and 
Gly II (Kaur et al. 2016). By utilizing the GSH, the gly-
oxalase I converts MG to S-d-lactoylglutathione, while as 
S-d-lactoylglutathione is further converted to D-lactic acid 
by glyoxalase II, and during this reaction GSH is regenerated 
(Hossain et al. 2012). Higher accumulation of MG observed 
under As toxicity indicates clear signs of oxidative stress. In 
the present study, As stress mediated increase and decrease 
in the activity of Gly I and Gly II, respectively, suggests 
the inefficiency of the Gly system in the As-stressed plants. 
Enhanced Gly I activity under heavy metal toxicity has 
been reported in various studies (Hossain and Fujita 2010; 
Hossain et al. 2009; Kalapos et al. 1992; Lin et al. 2010). 
Mostofa et al. (2015) which suggest that decline in Gly II in 
response to heavy metal stress might result from proteolytic 
damage to enzymes. However, supplementation of  H2S to 
the As-treated pea plants increased the activities of both Gly 
I and Gly II enzymes with a corresponding decrease in the 
MG levels. Previously, it was demonstrated that supplemen-
tation of rice seedlings with  H2S induces Gly I and Gly II 
accumulation; hence, resulting in increased Cd tolerance by 
increasing MG accumulation (Mostofa et al. 2015). These 
findings also suggest that induction of Gly II activity assists 

in recycling GSH efficiently into the system, which in turn 
maintains GSH homeostasis and higher enzyme activity 
of the AsA and GSH cycle to effectively prevent oxidative 
stress. Barrameda-Medina et al. (2014) have demonstrated 
increased activities of Gly enzymes and antioxidant enzymes 
(APX, GST and GPX) which were found to alleviate Zn 
toxicity in Brassica oleracea (Barrameda-Medina et al. 
2014). Thus, our results suggest an important role of  H2S 
in the regulation of the antioxidant defense as well as the 
Gly systems to overcome ROS and MG toxicity induced by 
As stress in the pea plants. Hence,  H2S alleviated the oxida-
tive damage in the As-treated pea plants through regulating 
the activities of Gly I and Gly II enzymes, which suggests 
that  H2S can effectively restore GSH and glutathione redox 
potential via the glyoxalase system.

However, the positive effects of  H2S in regulating ROS 
levels, and antioxidant and glyoxalase systems under As 
stress in the pea plants were all reversed by the supplemen-
tation of HT (a  H2S scavenger), which, suggest that  H2S 
plays an important role in alleviating As-induced damage 
to pea plants.

Conclusion

Arsenic toxicity is an important constraint to growth and 
yield of crop plants. In higher plants, As has been analyzed 
under diverse perspectives such as its assimilation, transport, 
accumulation, and cellular metabolism etc. Recently, some 
gaseous signaling molecules such as  H2S have been sug-
gested to play an important role in the mitigation of As tox-
icity in crop plants. However, least efforts have been made to 
elucidate the role and mechanism involved in  H2S mediated 
alleviation of As stress in pea crop. Hence, in the present 
study various morphological, physiological and biochemi-
cal parameters were appraised to determine the role of  H2S 
in regulating As tolerance in pea plants. Our results showed 
significant adverse effects of As stress on plant growth, bio-
mass, photosynthesis, ROS production and antioxidant sys-
tem. However, supplementation of  H2S to As-treated plants 
reversed all the negative effects of As on the pea plants lead-
ing to improved plant growth, biomass as well as reduced 
As-induced oxidative damage. Lastly, the present study pro-
vides a conclusive evidence for the role of  H2S as a priming 
agent in mitigating As stress in pea and other such crops.
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