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Abstract
Nanotechnology now plays a revolutionary role in many applications; nanomaterials have experienced significant importance 
in both basic and applied sciences as well as in bio-nanotechnology. Zinc oxide nanoparticles (ZnO-NPs) have become one 
of the most important metal oxide NPs in biological applications due to their beneficial impacts. The purpose of this study 
was to explore the effects of ZnO-NPs in reducing Cd toxicity by studying the growth, photosynthesis reactions, antioxidant 
system, oxidative stress, and protein content in Lycopersicon esculentum (tomato). ZnO-NPs induced an upregulation of 
antioxidative enzymes which protect the photosynthetic apparatus in plants. Seeds of tomato were sown to create nursery. At 
20 days after sowing (DAS), seedlings were transferred to soil pots. Varied concentrations (0.4, 0.6 or 0.8 mM) of Cd were 
applied to the soil after 24 and 25 DAS. Zinc (Zn; 50 mg/L) and ZnO-NPs (50 mg/L) treatments were given continuously 
for 5 days from 31 to 35 DAS and sampling took place at 45 DAS. The results indicate that a Cd-generated oxidative burst 
in the form of elevated hydrogen peroxide  (H2O2) levels resulted in a decline in cell viability through enhanced activity of 
the antioxidant system and proline content; the data increased on follow-up treatment with ZnO-NPs. Foliar application of 
ZnO-NPs significantly enhanced plant height, fresh, and dry weight of plant, leaf area, SPAD chlorophyll, photosynthetic 
attributes, i.e., net photosynthetic rate (PN), transpiration rate (E), internal  CO2 concentration (Ci), and stomatal conductance 
(gs). Application of ZnO-NPs reduced the adverse effects generated by Cd and increased protein content, activities of nitrate 
reductase and carbonic anhydrase over the control in both stressed and non-stressed plants. Additionally, microscopic studies 
showed a marked increase in stomatal aperture after ZnO-NPs treatment in the presence or absence of Cd. This was associ-
ated with decrease in malondialdehyde and superoxide radical  (O2

−) levels. The present study suggests that ZnO-NPs can 
be effectively used to reduce the toxicity of Cd in tomato plants and may also be suitable for testing on other crop species.
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Introduction

In recent decades, significant concerns have arisen regard-
ing the adverse impacts of environmental contaminants on 
agricultural production; this includes both biotic and abiotic 
stresses. According to Godfray et al. (2010) and Lutz and 
Samir (2010), food production must be increased by 70 to 

100% to meet the nutritional demands of the growing global 
population, which is expected to reach 9 billion by 2050.

Cadmium (Cd) is one of the most important heavy metals 
in an environmental and public health context, as it induces 
a suite of toxic responses to biota and raises the risk of 
food contamination from consumption of plants (Irfan et al. 
2014). According to the report of the International Agency 
for Research on Cancer (IARC), Cd and its associated com-
pounds are carcinogenic to humans (Wang et al. 2018). Zhao 
et al. (2015) confirmed that Cd is one of the most widespread 
inorganic pollutants globally.

Plants take up Cd and translocate it to various parts, with 
potential negative effects to organisms consuming them. 
High Cd concentration in soil adversely affects cell functions 
that lead to plant death (Gratao et al. 2006; Liu et al. 2007; 
Hasan et al. 2009). Cd is considered an antimetabolite which 
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causes enzyme inactivation and dysfunction of various plant 
physiological and biochemical processes (Hayat et al. 2012). 
Excess Cd in plants reduces growth and increases oxidative 
stress by the production of reactive oxygen species (ROS) 
including  H2O2, MDA, and  O2

− in plants (Perez-Chaca et al. 
2014; Ali et al. 2015; Rizwan et al. 2016).

Nanotechnology has recently emerged as a new scientific 
discipline and is considered by many as an ideal solution for 
overcoming the destructive impact of metals on agricultural 
productivity. In recent years, the use of zinc oxide nanopar-
ticles (ZnO-NPs) has received great attention due its pur-
ported ability to increase nutrient accumulation by plants for 
enhancing the quality of the food crop (Hussain et al. 2018; 
Rizwan et al. 2019). Zinc (Zn) is an essential micronutrient 
and plays an important role in the activities of enzymes like 
dehydrogenases, tryptophan synthetase, aldolases, isomer-
ases, transphosphorylases, superoxide dismutase, and DNA 
and RNA polymerases (Auld 2001; Broadley et al. 2007). 
ZnO-NPs are now widely employed in agriculture; as com-
ponents of solar cells, sunscreens, wall paints, and ceramics; 
and in catalysis and biomedical applications (Suliman et al. 
2007; Santhoshkumar et al. 2017). The optical, physical, and 
antimicrobial activities of ZnO-NPs offer positive impacts to 
plants (Liu and Lal 2015; Hussain et al. 2016; Tripathi et al. 
2017) and serves to overcome the toxic effects of heavy met-
als such as Cd (Saxena et al. 2016; Rizwan et al. 2019). By 
virtue of their small size and massive surface area, ZnO-NPs 
easily penetrate contaminated zones of plant and possess a 
strong affinity to Cd (Khan et al. 2017). Wang et al. (2018) 
revealed that exogenous application of ZnO-NPs reduced Cd 
concentration in Sorghum bicolor. Similarly, in Triticum aes-
tivum, ZnO-NPs decreased Cd concentration and oxidative 
stress (Hussain et al. 2018). Furthermore, Venkatachalam 
et al. (2017) reported similar observations in Gossypium 
hirsutum.

In plants, production of ROS is a natural consequence 
of oxygen metabolism and holds a promising role in cell 
signaling and homeostasis (Ray et al. 2012). However, an 
excess of ROS creates oxidative stress, damages DNA, lipids 
and proteins, and finally leads to cell death (Tripathy and 
Oelmüller 2012). To overcome the toxic effects of oxidative 
stress, plants activate non-enzymatic (proline) and enzy-
matic (POX, SOD, and CAT) antioxidants (Sewelam et al. 
2016). These enzymes are the key components of the plant 
defense system (Andre et al. 2010).

Tomato is one of the most important ‘protective foods’ 
widely known for its outstanding antioxidant, antidiabetic, 
and anticancerous properties. The fruit contains large quanti-
ties of water, calcium, and niacin, all of which are significant 
in human metabolic function. Tomato is a highly nutritious 
plant food and contains vitamins A, C, and E, and miner-
als that protect the body against disease (Beecher 1998). 
Tomato not only has substantial nutritional value but also 

offers medicinal properties as it is a rich source of lyco-
pene, carotenoids, flavonoids, and potassium (Beecher 1998; 
Leonardi et al. 2000).

The present work was designed with the aim of investi-
gating the effects of foliage-applied ZnO-NPs on the physi-
ological and biochemical parameters of Cd-stressed Lyco-
persicon esculentum plants.

Materials and Methods

Plant Material

Tomato seeds, cv. PKM-1, procured from the National Seed 
Corporation Ltd., New Delhi, India, were surface sterilized 
with 0.01% mercuric chloride solution followed by repeated 
washings with double distilled water (DDW). The sterilized 
seeds were sown to create the nursery under natural condi-
tions in the net house of the Department of Botany, Aligarh 
Muslim University, Aligarh India.

Nanoparticle Preparation

ZnO-NPs were purchased from Sigma-Aldrich Chemicals 
Pvt. Ltd., India. An adequate volume (50 mg/L) of ZnO-
NPs was prepared by dissolving the required amounts of 
ZnO-NPs in 10 mL DDW in a 100 mL volumetric flask, and 
making to volume.

Experimental Design and Procedure

The experiment was carried out in a simple randomized 
block design with 27 earthen pots (6 inch diameter) filled 
with a sandy loam soil and mixed with farmyard (cattle) 
manure in a ratio of 6:1. A uniform basal starter dose of 
inorganic fertilizers (urea, single superphosphate and muri-
ate of potash) was added at a rate of 40, 138, and 26 mg, 
respectively, per kg of soil to maintain fertility. At 20 DAS, 
seedlings were transplanted to pots from the nursery. The 
27 pots were divided into nine sets of three pots each (rep-
licates) representing one treatment. The treatments were as 
follows:

Set I  control (-Cd and -NPs) at 31–35 DAS foliage was 
sprayed with DDW only.

Set II  at 31–35 DAS the foliage was sprayed with 
50 mg/L of Zn.

Set III  at 31–35 DAS foliage was sprayed with 50 mg/L 
of ZnO-NPs

Set IV  at 24 and 25 DAS the plants were exposed to 
0.4 mM of Cd solution, via soil.

Set V  at 24 and 25 DAS plants were exposed to 0.6 mM 
of Cd solution, via soil.



103Journal of Plant Growth Regulation (2021) 40:101–115 

1 3

Set VI  at 24 and 25 DAS plants were exposed to 0.8 mM 
of Cd solution, via soil.

Set VII  a combination of sets III and IV (50 mg/L ZnO-
NPs + 0.4 mM of Cd).

Set VIII  a combination of sets III and V (50 mg/L ZnO-
NPs + 0.6 mM of Cd).

Set IX  a combination of sets III and VI (50 mg/L ZnO-
NPs + 0.8 mM of Cd).

Each plant was sprayed three times and the nozzle of 
the sprayer was adjusted so that it pumped out 1 mL of Zn 
or ZnO-NPs in one spray. Plants from each treatment were 
uprooted at 45 DAS to assess selected parameters.

Measurement of Morphological Parameters

Plants were removed from the pots along with soil and 
dipped in tap water. Soils were removed gently and shoot 
and root lengths were measured using a meter scale. The 
plants were oven-dried at 80 ºC for 24 h and then weighed 
for dry biomass. Leaf area was calculated using a leaf area 
meter (ADC Bio scientific, Hoddesdon, UK).

Determination of Chlorophyll Content (SPAD Value)

A chlorophyll meter (SPAD-502; Konica, Minolta sensing, 
Inc., Japan) was used to measure the SPAD values of chlo-
rophyll in the leaves.

Evaluation of Gas Exchange

Gas exchange parameters (PN, gs, Ci, and E) were measured 
in entirely expanded leaves using a portable photosynthesis 
system (LI-COR 6400, LI-COR, Lincoln, NE, USA). Air 
temperature, relative humidity,  CO2 concentration, and pho-
tosynthetic photon flux density were maintained at 25 °C, 
85%, 600 ppm, and 800 µmol mol−2 s−1, respectively. All 
measurements were made between 11:00 and 12:00 h under 
clear sunlight.

Biochemical Determinations

Nitrate Reductase (NR) Activity

Activity of NR was computed by employing the method of 
Jaworski (1971). A mixture of newly formed leaf (0.1 g), 
phosphate buffer (pH 7.5),  KNO3, and isopropanol was 
placed in a incubator at 30 °C for 2 h. Sulfanilamide and 
N-1-naphthylethylenediamine hydrochloride mixture were 
then added to the incubated mixture. Absorbance was read 
on a UV–visible spectrophotometer (Spectronic 20D; Milton 
Roy, USA) at 540 nm.

Carbonic Anhydrase (CA) Activity

CA level in leaves was measured with the method of 
Dwivedi and Randhawa (1974). Leaves were cut into small 
pieces and transferred to a cysteine hydrochloride solution. 
They were blotted and transferred to a test tube containing 
4 cm3 of phosphate buffer (pH 6.8), followed by addition of 
0.2 M  NaHCO3, bromothymol blue, and methyl red indica-
tor. 0.5 N HCl was used for titrating.

Determination of Proline Content

The method of Bates et al. (1973) was adopted for identifica-
tion of proline content in leaves.

Protein Analysis

Protein in leaf samples was analyzed by the method of Brad-
ford (1976).

Determination of Activities of Antioxidant Enzymes

Antioxidant enzymes (CAT, POX, and SOD) were analyzed 
by the method proposed by Khan et al. (2015). Glutathione 
reductase (GR, 1.8.1.7) activity was estimated as per the 
method of Smith et al. (1988).

Oxidative Stress Markers

Determination of Lipid Peroxidation, Hydrogen Peroxide 
 (H2O2) and Superoxide Radical  (O2

–)

The rate of lipid peroxidation and concentrations of  H2O2 
and  O2

– were followed as described in Siddiqui et al. (2018).

Histochemical Detection of Lipid Peroxidation,  H2O2 
and  O2

–

Histochemical detection of lipid peroxidation,  H2O2, and 
 O2

– was followed as described in Fareen and Hayat (2019).

Stomatal Studies

Scanning Electron Microscopy

Stomatal apertures on the abaxial surface of plant leaves 
were observed under a scanning electron microscope (JEOL, 
JSM 6510). Fresh leaves were collected and fixed with 2% 
paraformaldehyde, 2.5% glutaraldehyde, and 0.1 M sodium 
cacodylate buffer (pH 7.3) for 2 h. The leaves were trans-
ferred to Petri plates to run through the ethanol graded series 
(50, 70, 80, 90, and 100%). After dehydrating, samples 
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Fig. 1  Transmission electron microscope (TEM) images of ZnO-NPs 
at 100  nm and 20  nm (a); effect of zinc and zinc oxide nanoparti-
cles on cadmium-induced changes in b shoot length, c root length 
and d  growth (image) of Lycopersicon esculentum at 45  days. All 
data are means of 3 replicates (n = 3); vertical bars show standard 

error (± SE). Letters indicate a significant difference between control 
and treatment (p < 0.05). T1 control, T2 Zn (50 mg/L), T3 ZnO-NPs 
(50 mg/L), T4 Cd (0.4 mM), T5 Cd (0.6 mM), T6 Cd (0.8 mM), T7 
Cd (0.4  mM) + ZnO-NPs (50  mg/L), T8 Cd (0.6  mM) + ZnO-NPs 
(50 mg/L), T9 Cd (0.8 mM) + ZnO-NPs (50 mg/L)
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Fig. 2  Effect of zinc and zinc oxide nanoparticles on cadmium-
induced changes in a shoot fresh mass, b root fresh mass, c shoot 
dry mass, d root dry mass, e leaf area, f SPAD chlorophyll of 
Lycopersicon esculentum at 45  days. (I), (II), (III), and (IV) rep-
resent control, cadmium (0.4  mM), ZnO-NPs (50  mg/L), and Cd 
(0.4  mM) + ZnO-NPs (50  mg/L) images, respectively. All data are 

means of 3 replicates (n = 3) and vertical bars show standard error 
(± SE). Letters indicate a significant difference between control and 
treatment (p < 0.05). T1 control, T2 Zn (50  mg/L), T3 ZnO-NPs 
(50 mg/L), T4 Cd (0.4 mM), T5 Cd (0.6 mM), T6 Cd (0.8 mM), T7 
Cd (0.4  mM) + ZnO-NPs (50  mg/L), T8 Cd (0.6  mM) + ZnO-NPs 
(50 mg/L), T9 Cd (0.8 mM) + ZnO-NPs (50 mg/L)
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were coated with gold–palladium in a sputter coater (JEOL 
JFC-1600).

Compound Microscopy

Compound microscopy was used for detection of stomatal 
activity (Li et al. 2013). At least three leaves were col-
lected per treatment and dipped in a NaOH (30%) solution 

Fig. 3  Effect of zinc and zinc oxide nanoparticles on cadmium-induced 
changes in a net photosynthetic rate, b stomatal conductance, c inter-
nal  CO2 concentration, d transpiration rate, e nitrate reductase activity, 
f carbonic anhydrase activity, g leaf protein content in Lycopersicon 
esculentum at 45  days. All data are means of 3 replicates (n = 3) and 
vertical bars show standard error (± SE). Letters indicate a significant 
difference between control and treatment (p < 0.05). T1 control, T2 Zn 
(50 mg/L), T3 ZnO-NPs (50 mg/L), T4 Cd (0.4 mM), T5 Cd (0.6 mM), 
T6 Cd (0.8  mM), T7 Cd (0.4  mM) + ZnO-NPs (50  mg/L), T8 Cd 
(0.6 mM) + ZnO-NPs (50 mg/L), T9 Cd (0.8 mM) + ZnO-NPs (50 mg/L)

◂

Fig. 4  Effect of zinc and zinc oxide nanoparticles on cadmium-
induced changes on the activity of a catalase, b peroxidase, c 
superoxide dismutase, d glutathione reductase, e leaf proline con-
tent of Lycopersicon esculentum at 45  days. All data are means of 
3 replicates (n = 3) and vertical bars show standard error (± SE). 

Letters indicate a significant difference between control and treat-
ment (p < 0.05). T1 control, T2 Zn (50  mg/L), T3 ZnO-NPs 
(50 mg/L), T4 Cd (0.4 mM), T5 Cd (0.6 mM), T6 Cd (0.8 mM), T7 
Cd (0.4  mM) + ZnO-NPs (50  mg/L), T8 Cd (0.6  mM) + ZnO-NPs 
(50 mg/L), T9 Cd (0.8 mM) + ZnO-NPs (50 mg/L)
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(for ease in removal of the epidermis). The abaxial surface 
was exposed under the cover slip to view in the micro-
scope (Nikon ECLIPSE Ci-E) interfaced with a Nikon 
digital camera (DS-Filc).

Transmission Electron Microscopy

Particle size and shape of ZnO-NPs were recorded using 
TEM (Fig.  1a). The phase formed was reconfirmed 
using transmission electron microscopy (TEM) (JOEL/
TEM2100).

Confocal Laser Scanning Microscopy

Cell viability tests were conducted using the method of 
Rattan et al. (2017). Roots were dipped in a solution con-
taining 25 µM propidium iodide for 10 min. The samples 
were then washed twice with DDW and placed on glass 
slides for viewing in a confocal laser scanning microscope 
(Zeiss, LSM 780) at × 20 magnification with maximum 
excitation of 535–617 nm.

Statistical Analysis

Data were computed to calculate analysis of variance 
(ANOVA) using SPSS, 17.0 for Windows (SPSS, Chicago, 
IL, USA). Least significant difference (LSD) was calcu-
lated to separate means.

Experimental Results

Growth Biomarkers

Compared to the control, Cd (0.4, 0.6 or 0.8 mM) sig-
nificantly reduced plant growth (shoot length, root 

length, shoot and root fresh mass, dry mass and leaf area) 
(Figs. 1b, c and 2a–e). Moreover, the highest concentration 
of Cd (0.8 mM) was most toxic and decreased the shoot 
length (28%), root length (31), shoot fresh mass (32%), 
root fresh mass (29%), shoot dry mass (28%), root dry 
mass (31%), and leaf area (32%), respectively, compared to 
the control. However, plants grown with ZnO-NPs experi-
enced better growth over the control and also successfully 
countered the damaging effects of Cd completely at 0.4 
and 0.6 mM and partially at 0.8 nM.

SPAD Chlorophyll

Exogenously applied ZnO-NPs significantly increased 
SPAD chlorophyll levels over the control (Fig. 2f). How-
ever, the presence of Cd caused a marked reduction in 
SPAD values. The foliar spray of ZnO-NPs reduced Cd 
toxicity in a concentration-dependent manner. The highest 
Cd concentration (0.8 mM) decreased the SPAD chloro-
phyll by 31% in comparison to the control.

Gaseous Exchange Parameters

Photosynthetic attributes (PN, Ci, E, and gs) declined sig-
nificantly in the plants exposed to Cd (Fig. 3a–d). How-
ever, application of ZnO-NPs to leaves increased values 
of PN (40%), gs (38%), Ci (32%), and E (41%) over the 
non-treated plants (Fig. 3a–d).

Biochemical Determinations

The activity of NR and CA increased with the application 
of ZnO-NPs; however, Cd significantly reduced their levels 
in a concentration-dependent manner (Fig. 3e, f). The tox-
icity generated by Cd was totally or partially eliminated by 
application of ZnO-NPs.

Leaf Protein Content

Exposure of the seedlings to Cd resulted in a significant 
loss in leaf protein content (Fig. 3g). However, protein lev-
els increased by application of ZnO-NPs, both in stressed 
and non-stressed plants. The plants subjected to ZnO-NPs 
showed subtle increase of protein content (11%) in compari-
son to control.

Fig. 5  Histochemical detection of a lipid peroxidation with Schiff’s 
reagent; the intensive pink color indicates a specific reaction for 
lipid peroxidation, b peroxide localization; stereomicroscopic 
images depicting peroxide localization as brown spots on leaf sur-
face, c superoxide localization; stereomicroscopic images depict-
ing superoxide localization as blue spots on leaf surface in Lyco-
persicon esculentum at 45  days. (I), (II), (III), and (IV) represent 
control, treated with cadmium (0.4  mM), ZnO-NPs (50  mg/L) and 
Cd (0.4  mM) + ZnO-NPs (50  mg/L) leaf images, respectively, and 
(V), (VI), (VII), and (VIII) represent roots of the above treatments. 
Data presented in the graph shows the effect of Zn and ZnO-NPs on 
cadmium-induced changes on a MDA, b  H2O2, c  O2

− content. The 
data are means of 3 replicates (n = 3) and vertical bars show standard 
error (± SE). Letter indicate a significant difference between control 
and treatment (p < 0.05). T1 control, T2 Zn (50 mg/L), T3 ZnO-NPs 
(50 mg/L), T4 Cd (0.4 mM), T5 Cd (0.6 mM), T6 Cd (0.8 mM), T7 
Cd (0.4  mM) + ZnO-NPs (50  mg/L), T8 Cd (0.6  mM) + ZnO-NPs 
(50 mg/L), T9 Cd (0.8 mM) + ZnO-NPs (50 mg/L)

◂
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Effect of ZnO‑NPs on Antioxidant Metabolism 
of Tomato Plants Under Cd Stresses

CAT activity in plants treated with ZnO-NPs was enhanced 
by 44% over the control (Fig. 4a). However, Cd (0.4, 0.6 or 
0.8 mM) decreased CAT activity in a concentration-depend-
ent manner. Follow-up treatment of the Cd-stressed plants 
with ZnO-NPs increased CAT levels in comparison to con-
trol as well as in plants supplemented with ZnO-NPs alone. 
The maximum increase (51%) in CAT activity occurred in 
plants treated with Cd (0.4 mM) and amended with foliar 
spray of ZnO-NPs. Application of ZnO-NPs increased POX 
activity by 47% (Fig. 4b). The ZnO-NPs had an additive 
effect on POX activity in Cd-stressed plants; therefore, 63% 
higher enzyme activity was recorded in plants dosed with 
0.4 mM Cd in association with the NPs over the control. 
SOD activity followed a rising pattern in response to both 
ZnO-NPs and Cd, in comparison to control plants (Fig. 4c). 
Cd-stressed plants (0.4, 0.6 or 0.8 mM) whose foliage also 
received ZnO-NPs as a follow-up treatment had 51, 46, or 
39% more SOD activity over control plants.

Application of ZnO-NPs significantly increased GR activ-
ity in both stressed as well as non-stressed plants (Fig. 4d). 
Maximum level (46% greater than control) was recorded in 
plants dosed with Cd (0.4) along with ZnO-NPs. Compared 
to the control, the proline content improved in plants treated 
with Cd or ZnO-NPs (Fig. 4e). Moreover, the cumulative 
effect of Cd + ZnO-NPs triggered maximum levels of pro-
line (23, 18, or 15% with the three respective levels of Cd, 
compared with the control).

Oxidative Stress Markers

On the basis of histochemical observations of leaves and 
roots, accumulation of MDA,  H2O2, and  O2

− content 
increased with dose of Cd. However, significant reduction in 
concentration (31% in MDA, Fig. 5a; 28% in  H2O2, Fig. 5b; 
and 31% in  O2

−, Fig. 5c) was determined in plants treated 
with ZnO-NPs.

Stomatal Response

Analysis of stomatal aperture revealed a clear-cut difference 
in response to ZnO-NPs, both in the presence and/or absence 
of Cd (Fig. 6a). Availability of Cd to plants reduced the 

opening of the stomata; however, foliar application of ZnO-
NPs alone and combined with Cd enlarged the stomatal ori-
fice (Fig. 6a). SEM images of stomata also show somewhat 
similar results (Fig. 6b).

Confocal Microscopy

Cell viability could be examined visually by observing 
nucleic acid staining. Viability shows antagonistic effects 
with stained nuclei. In the present study, Cd retards the via-
bility of the cell as compared to control (Fig. 6c). However, 
exogenous application of ZnO-NPs in the presence and/or 
absence of Cd increase the cell viability through staining 
lesser number of nuclei (Fig. 6c).

Discussion

The purpose of this study was to test the possibility of over-
coming the adverse effects of a notorious heavy metal (Cd) 
in Lycopersicon esculentum by employing ZnO-NPs as a 
foliar spray. Plants treated with Cd experienced poor growth 
(shoot length, root length, shoot and root fresh mass as well 
as dry mass and leaf area) in a concentration-dependent 
manner (Figs. 1b, c and 2a–e). Several studies have revealed 
that Cd is toxic to plants and reduces growth and develop-
ment (Abbas et al. 2017; Baycu et al. 2017; Qayyum et al. 
2017). The presence of Cd in soil causes water scarcity by 
disturbing the water balance, which is considered the prime 
factor associated with loss of growth (Ekmekci et al. 2008). 
ZnO-NPs impart positive effects on plant growth up to a 
certain concentration (Pullagurala et al. 2018; Faizan et al. 
2018). ZnO-NPs provide  Zn2+, an important micronutrient, 
which supports plant growth (Liu et al. 2015). The observed 
toxic effects of Cd can be neutralized by speeding the uptake 
of Zn and decreasing uptake of Cd in plants treated with 
ZnO-NPs (Sun et al. 2005; Hasan et al. 2008; Garg and 
Kaur 2013). Rizwan et al. (2019) reported that exogenously 
applied ZnO-NPs enhanced height and biomass of Triticum 
aestivum under Cd stress. Similar observations have been 
reported by Wang et al. (2018) and Hussain et al. (2018) in 
sweet sorghum and wheat, respectively.

The present investigation revealed that improved plant 
growth is the result of efficient photosynthetic machinery 
and enhanced chlorophyll content (Figs. 2f and 3a–d). Pho-
tosynthesis is one of the most important plant metabolic 
processes and is highly sensitive to environmental stresses 
(Khan et al. 2017). The presence of heavy metals (including 
Cd) imparted negative impacts on photosynthetic attributes 
and chlorophyll content, which are among the key symptoms 
of heavy metal toxicity in plants (Sharma and Dubey 2005; 
Malar et al. 2014; Manikandan et al. 2015). These symptoms 
may be caused by excessive production of  H2O2 (Fig. 7c) or 

Fig. 6  Figure represents a compound microscopic, b scanning elec-
tron microscopic images of stomata, c confocal micrographic images 
of root cell of 45-day-old plant of Lycopersicon esculentum; (I), (II), 
(III), and (IV) represent control, treated with cadmium (0.4  mM), 
ZnO-NPs (50 mg/L) and Cd (0.4 mM) + ZnO-NPs (50 mg/L) images, 
respectively, and (V), (VI), (VII), and (VIII) represent their respective 
magnified images

◂
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speeding up the destruction of chlorophyll by chlorophyl-
lase (Hasan et al. 2011). Exogenous application of ZnO-NPs 
improved chlorophyll concentration in several plant species 
under stresses imparted by different metals (Venkatachalam 
et al. 2017; Hussain et al. 2018; Pullagurala et al. 2018; 
Rizwan et al. 2019). The findings of this study showed 
increased activity of the photosynthetic machinery along 
with chlorophyll content after ZnO-NPs exposure in stressed 
and stress-free plants (Figs. 2f and 3a–d). NPs enhance pho-
tosynthetic rate by accelerating the photolysis of water and 
the electron transport chain (Pradhan et al. 2013). According 
to Gao et al. (2006), activity of ribulose-1, 5-bisphosphate 
carboxylase/oxygenase enhanced after NP exposure which 

was associated with increased photosynthetic rate. Our find-
ings are consistent with those of Rajiv et al. (2018), Latef 
et al. (2017), and Venkatachalam et al. (2017). A positive 
correlation between  PN with SPAD chlorophyll and CA 
activity further supported the regulation of photosynthesis 
by varied factors (Fig. 7a, b).

The presence of Cd in soil significantly reduced the activ-
ity of NR and CA in Lycopersicon esculentum in a concen-
tration-dependent manner (Fig. 3e, f). CA is a ubiquitous Zn 
metalloenzyme which catalyzes reversibly the conversion 
of  CO2 to  HCO3

− in plants. CA activity depends primar-
ily on availability of Zn, hormonal signaling, concentration 
of  CO2, photon flux density and the regulation of genetic 

Fig. 7  Correlation coefficient values of net photosynthetic rate  (PN) 
with a chlorophyll content, b carbonic anhydrase activity, c describes 
various processes regulated by ZnO-NPs application for overcoming 
metal toxicity in plants. RBO respiratory burst oxidase, ROS reactive 

oxygen species, MDA malondialdehyde, H2O2 hydrogen peroxide, 
O2

.− superoxide anion, CAT  catalase, POX peroxidase, SOD superox-
ide dismutase
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expression of the transcripts (Xin-Bin et al. 2001; Tiwari 
et al. 2005). The stress generated by Cd reduced intercel-
lular  CO2 concentration (Fig. 3c) and reduce the availabil-
ity of Zn that retard the CA activity (Fig. 3f). In contrast, 
ZnO-NPs increased stomatal conductance and intercellular 
 CO2 concentration, both in the presence and/or absence of 
Cd (Fig. 3b, c), favoring higher CA activity (Fig. 3f) (Sid-
diqui and Al-Whaibi 2014). Nitrate reductase catalyzes the 
NAD(P)H-mediated reduction of nitrate  (NO3

−) to nitrite 
 (NO2

−) (Campbell 1999) to ensure sufficient supply of 
nitrogen to plants for healthy growth (Srivastava 1995). Our 
observations demonstrate that ZnO-NPs enhanced activity of 
NR both in stressed and stress-free plants (Fig. 3e). Dubchak 
et al. (2010) demonstrated that, due to their high surface 
area, NPs interact with cellular biomolecules and speed up 
several biochemical pathways.

In the current study, Cd supplied to tomato plants resulted 
in reduced protein concentration (Fig. 3g). This could be due 
to a reduction in protein synthesis under Cd stress and the 
degradation of proteins by protease activity, leading to an 
enhanced degree of protein denaturation (Palma et al. 2002; 
Balestrasse et al. 2003). ZnO-NPs as foliar spray increased 
protein content compared with control plants and also over-
come the loss caused by the presence of Cd (Fig. 3g). Zinc 
is known to increase the capacity of ionic interconversions, 
which favors nitrogen uptake leading to higher protein con-
tent (Lawre and Raskar 2014). Similar observations have 
been reported earlier (Krishnaraj et al. 2012; Tripathi et al. 
2015).

Normal plant metabolism of  O2 generates ROS [super-
oxide  (O2

−), singlet oxygen (1O2), hydroxyl radical  (HO.), 
and  H2O2] as byproducts which hold promising roles in cell 
signaling and homeostasis (Ray et al. 2012). Therefore, in 
an oxidizing environment (particularly photosynthesis and 
respiration) ROS are produced continuously in peroxisomes, 
mitochondria, and chloroplasts. However, an excess in ROS 
causes oxidative stress, damage to DNA, proteins and lipids, 
and finally cell death (Tripathy and Oelmüller 2012). To 
overcome the toxic effects of oxidative stress plants acti-
vate enzymatic (CAT, POX, SOD, and GR) and non-enzy-
matic (proline) antioxidants (Tripathy and Oelmüller 2012; 
Sewelam et al. 2016) and (Fig. 4a–e) which comprise key 
components of the plant defense mechanism (Andre et al. 
2010). ZnO-NPs decreased the oxidative stress in Leucaena 
leucocephala plants under metal stress (Venkatachalam et al. 
2017). In the current study, application of ZnO-NPs to foli-
age in both stressed and stress-free environments enhanced 
the activity of antioxidant enzymes and increased proline 
content (Fig. 4). Lopez-Moreno et al. (2010) and Ghosh 
et al. (2016) also observed an improvement in the antioxi-
dant defense system under ZnO-NPs treatment, which is a 
consequence of the expression of genes (Nair and Chung 
2014) or its involvement in different oxidative processes 

(Hossain et al. 2015). Other plants respond similarly to 
ZnO-NPs by elevating efficacy of antioxidant systems and 
activities of CAT, POX, and SOD (Singh et al. 2013; Soli-
man et al. 2015; Latef et al. 2017; Kantabathini et al. 2018; 
Wang et al. 2018; Rizwan et al. 2019).

Levels of MDA,  H2O2, and  O2
− are key parameters which 

indicate the rate of oxidative damage in plants exposed to 
adverse environmental conditions. Increases in MDA, 
 H2O2, and  O2

− levels were observed in the Cd-doped plants 
(Figs. 5a–c and 7c) which indicates that the metal causes cel-
lular metabolic imbalance by increasing lipid peroxidation 
through formation of free radicals (Mahajan and Tuteja 2005). 
An important finding in the present study is that application of 
ZnO-NPs to foliage of stressed plants reduced MDA,  H2O2, 
and  O2

− content (Figs. 5a–c and 7c). This appears to be a 
reflection of the elevated activity of CAT, POX, and SOD 
(Figs. 4a–c and 7c). It may, therefore, be concluded from the 
above discussion and from the reports of Burman et al. (2013) 
and Pullagurala et al. (2018) that ZnO-NPs relieve tomato 
plants from severe damage from Cd stress.

Conclusion

Foliar application of ZnO-NPs reduces the negative impacts 
of Cd to tomato plants by enhancing production of photosyn-
thetic pigments, adjusting osmoregulation and decreasing 
contents of  H2O2, MDA, and  O2−. Furthermore, protection 
under Cd stress was achieved through successfully modi-
fied biochemical pathways and a robust antioxidant system. 
However, studies at the field level using different crops, soil 
types, and ZnO-NPs of various sizes are needed before rec-
ommendations can be confirmed.
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