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Abstract
University of California at Berkeley I or UCB-1 pistachio rootstock is propagated from the cross between Pistacia inte-
gerrima male × Pistacia atlantica female. So far, no report has been presented on the proteomic profile of Pistacia genus. In 
this research, 7-month-old UCB-1 rootstocks that were produced by tissue culture method and grown in pots containing 1/3 
perlite, 1/3 clay and 1/3 sand were exposed to the three different concentrations of NaCl including 0, 100 and 200 mM for 
30 days in the controlled conditions in the greenhouse. In the first step, under these three different concentrations of NaCl, 
the content of malondialdehyde and activities of guaiacol peroxidase, superoxide dismutase, catalase and peroxidase were 
evaluated. Malondialdehyde content increased up to 100 mM NaCl and then decreased. Activities of guaiacol peroxidase, 
superoxide dismutase and catalase increased with increasing concentration of NaCl, while peroxidase activity reduced. 
In the second step, 0 and 100 mM NaCl were selected to evaluate changes in the proteomic profile of this rootstock using 
MALDI-TOF/TOF method. In this study, ribonucleoside-diphosphate reductase small chain, polcalcin Phl p 7-like and golgin 
subfamily A member 5 were identified for the first time in response to salinity stress and have not been previously reported 
to be involved in the response of plant under abiotic stresses. Moreover, in this study, five unknown proteins were identified 
in UCB-1 pistachio under salinity stress.

Keywords  Salinity · UCB-1 pistachio rootstock · Proteomics · Two-dimensional electrophoresis · Lipid peroxidation · 
Antioxidant enzymes

Introduction

One of the most important members of Anacardiaceae fam-
ily is pistachio, which has at least 11 species; P. integerrima 
and P. atlantica are used as rootstocks for P. vera cultiva-
tion, while P. vera is solely an economic and cultivated 
species (Moazzzam Jazi et al. 2017). At the University of 
California at Berkeley, with a controlled pollination and 
cross between P. integerrima male × P. atlantica female, 
a hybrid pistachio rootstock was produced and was named 
UCB-1(Ahmad et al. 2005). UCB-1 is more resistant to cold 
(Epstein et al. 2004) and salt stresses (Ahmad et al. 2005; 
Ferguson et al. 2002; Akbari et al. 2018) and has a higher 
yield (Ferguson et al. 2002) and greater Verticillium toler-
ance (Morgan et al. 1992) than other pistachio rootstocks, 
and for these reasons, UCB-1 is the best rootstock for Cali-
fornia climates and likely the other areas in the world. Also, 
as regards the important role of rootstock in resistance to 
abiotic stresses, such as salinity in grafted plants, UCB-1 can 
be the most favorable rootstock for Pistacia genus (Akbari 
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et al. 2018). The United States of America, Iran, and Turkey 
are the main pistachio breeders in the world, and Iran has a 
3000–4000 year history of pistachio agriculture (Moazzzam 
Jazi et al. 2017). Also, leaf, flower, resin and seeds of pista-
chio have pharmacological attributes, such as antioxidant, 
antimicrobial and anti-inflammatory properties (Bozorgi 
et al. 2013; Tsokou et al. 2007).

Pistachio is classified as a salt-tolerant glycophyte type; 
however, under moderate and high salinity stresses, its 
yield is extremely decreased (Hajiboland et al. 2014; Moaz-
zam Jazi et al. 2016). In the last decades, lack of precipita-
tion, global warming and drought in Iran have extremely 
decreased the forest area of wild pistachio, and consequently 
increases in soil salt content, which is the most important 
reason for limitation in the growth and development of rain-
fed trees, such as pistachio, has happened (Ziya Motalebi-
pour et al. 2016; Moazzam Jazi et al. 2016). Therefore, there 
is an urgent need for conservation management of this root-
stock that warrants fertility, productivity and long growth in 
this valuable product (Ziya Motalebipour et al. 2016; Moaz-
zam Jazi et al. 2016). Responsive proteins in reaction to salt 
stress in this study using proteomic analysis can be used 
in modern breeding programs to produce a more resistant 
pistachio rootstock under unfavorable conditions of stress.

Agronomical yield, agricultural productivity and plant 
growth are extremely limited when plants are exposed to soil 
salinity (Schwarz et al. 2010). Soil salinity severely affects 
fruit trees; for example, under low concentration of 25 mM 
NaCl, almond shoot growth is extremely repressed by salt 
in the soil solution (Zrig et al. 2011). Therefore, research-
ers and scientists, via selection and breeding of different 
cultivars, are able to present a stress-resistant cultivar to 
minimize the effects of abiotic stresses, such as salinity and 
drought (Cuartero et al. 2006). Also, genetic complexity of 
resistance to salinity and drought stresses has compelled 
researchers to use classic methods for improvement of 
plants tolerance, such as selection of resistant rootstocks in 
grafted plants (Ashraf and Foolad 2007). It is now more than 
50 years that grafting has been used for decreasing destruc-
tive effects in plants under abiotic stresses to improve plants 
tolerance (Schwarz et al. 2010; Lee et al. 2010; Flores et al. 
2010). In the recent decade, valuable rootstocks have been 
widely available and have been used to reclaim destructive 
effects of salinity stress in woody fruit crops (Massai et al. 
2004; Colla et al. 2006). In 2016, a research demonstrated 
that resistant trees to soil salinity can be extremely recov-
ered by grafting onto resistant rootstocks (Zrig et al. 2016). 
Resistance to salinity stress is different between different 
species and severely depends on their root system (Moya 
et al. 2002). Furthermore, functional relation between root-
stock and scion in grafted plants is another ability of woody 
plants to become more resistant under salinity stress (Moya 
et al. 2002; Flores et al. 2010; Schwarz et al. 2010).

Resistance to salinity stress is a twisted process including 
biochemical, physiological and molecular reactions (Mostek 
et al. 2015). For a better understanding of the plants’ mecha-
nisms in reaction and response to different stresses such as 
cold, salinity and drought, plant proteomic analysis is quite 
necessary (Molassiotis et al. 2013). Plant proteomic analysis 
provides fundamental and important information about the 
expression of proteins and modifications of post-translation 
under different stresses (Barkla Bronwyn et al. 2013; Molas-
siotis et al. 2013).

Also, for identification of proteins that are involved in 
the plant resistance like VlWRKY3 in grape under different 
biotic and abiotic stresses (Guo et al. 2018), proline in barley 
under drought stress (Bandurska et al. 2017), NAM, ATAF, 
and CUC (NAC) transcription factor in rice under drought 
and salinity stresses (Hu et  al. 2006) and AtHAP5A in 
Arabidopsis under freezing stress (Shi and Chan 2014), sev-
eral new techniques are available (Ashoub et al. 2013; Cap-
riotti et al. 2014). Five main essential and important groups 
of proteins in plants have been identified under salinity stress 
and are directly related to salt resistance: (I) late embryo-
genesis abundant proteins (LEA proteins); (II) heat shock 
proteins (HSPs); (III) proteins involved in carbon metabo-
lism; (IV) enzyme scavengers of ROS; and (V) osmolyte 
biosynthetic enzymes (Passamani et al. 2017). Also, under 
salinity stress and in reaction to salt stress, proteins associ-
ated with protein synthesis/degradation, proteins associated 
with ion transportation and proteins associated with signal 
transduction are also involved in plants such as wheat (Triti-
cum durum L.) (Capriotti et al. 2014), rice (Oryza sativa) 
(Yan et al. 2005) and sugar beet (Beta vulgaris L.) (Wakeel 
et al. 2011). Also, Capriotti in 2014 proved that proteins that 
are identified in these studies can be used as molecular mark-
ers for breeding plans in the future (Capriotti et al. 2014).

It is specified that plants can be strongly affected by salin-
ity stress, and considerable information is available about the 
biochemical, cellular and molecular mechanisms of Pistacia 
genus under different stresses (Moriana et al. 2018; Akbari 
et al. 2018; Abbaspour et al. 2012; Chelli-Chaabouni et al. 
2010). Analysis of proteome in this study is able to help 
us to comprehend and identify the reacting mechanisms 
of UCB-1 pistachio rootstock to salt stress. Also, informa-
tion of this study about the responsive proteins of pistachio 
under salinity stress can be used in the modern and classical 
breeding programs (Agrawal et al. 2012). In the first step, 
this research was done to evaluate changes in the malondi-
aldehyde (MOD) content and guaiacol peroxidase (GPX), 
superoxide dismutase (SOD), catalase (CAT) and peroxi-
dase (POD) enzymes activities under three different NaCl 
concentrations in 7-month-old UCB-1 pistachio rootstock 
leaves after 30 days of exposure to treatment. In the second 
step, the proteomic profile of this rootstock under 100 mM 
NaCl was compared with 0 mM using MALDI TOF/TOF 
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method for better comprehension of mechanisms controlling 
reactions of UCB-1 rootstock to salinity stress.

Materials and Methods

Plant Materials, Growth Conditions and Induction 
of Salt Stress

Recently, one of the most important rootstocks for pista-
chio that has been extremely cultivated in the United States 
of America is UCB-1, which is severely tolerant to salinity 
stress (Akbari et al. 2018; Ferguson et al. 2002). UCB-1 
was produced by the University of California and is a hybrid 
cross between Pistacia integerrima male × Pistacia atlantica 
female (Ferguson et al. 2002). In this research, 6-month-
old UCB-1 uniform rootstocks that were produced by tissue 
culture method were prepared and transplanted into the pots 
containing 1/3 perlite, 1/3 clay and 1/3 sand. After 4 weeks 
preculturing UCB-1 rootstocks in pots and irrigating them 
every 4 days by 1 L of ½ Hoagland’s nutrient solution, three 
different concentrations of NaCl including 0 as control, 100 
and 200 mM were made using Hoagland’s complete nutri-
ent solution and were used to apply salinity stress. Irriga-
tion was performed for 30 days with an every 4 days irriga-
tion frequency (Akbari et al. 2018). To avoid the osmotic 
stress, different concentrations of salinity stress were gently 
applied, and 1 L of deionized water was used after every 
four irrigations to stop NaCl accumulation (Akbari et al. 
2018). 28 °C during the day and 18 °C at night, 70% rela-
tive humidity, and 16/8 h light/dark (450–550 lmol m−2 s−1 
flux density) were the green house conditions (Akbari et al. 
2018). 8-month-old UCB-1 rootstock leaves were collected 
and immediately put in an aluminum paper and frozen in 
liquid nitrogen and stored at − 80 °C for all analyses.

MDA Content

Thiobarbituric acid or TBA reaction was used to determine 
lipid peroxidation in UCB-1 rootstock under salinity stress 
(Heath and Packer 1968). Frozen samples were homogenized 
with two volumes of ice-cold 0.1% (w/v) TCA and centri-
fuged for 20 min at 16,000×g. Assay admixture containing 
1 ml of the supernatant and 2 ml of 0.6% (w/v) TBA in 20% 
(w/v) TCA was heated at 92 °C for 36 min and then quickly 
cooled in an ice bath. After centrifugation (12,000×g for 
15 min at 3 °C), the absorbance of the supernatant was read 
at 532 nm, and the quantities corresponding to nonspecific 
sorption (600 nm) were reduced. Lipid peroxidation crops 
were calculated as the quantity of TBA-reactive materials. 
The content of malondialdehyde was measured according to 
the molar extinction coefficient of 155/(mM cm).

Enzymes Extraction

UCB-1 fresh leaf samples were submersed for 3 min in liq-
uid nitrogen, then were kept at − 80 °C for further analyses. 
5 ml of extraction buffer, containing 50 mM K-phosphate 
buffer, 0.1 mM Na2-EDTA with pH 7.6 was used to extract 
enzymes from 0.5 g of leaf tissue using a mortar and a pestle. 
The homogenate was centrifuged at 16,000×g for 20 min, 
and the supernatant was used to assay different enzymes. All 
stages in the provision of enzyme extracts were done at 3 °C.

GPX Activity

In this study, the total GPX activity was assessed in 2 ml of 
reaction mixture, including 0.1 µmol L−1 EDTA, 100 mmol 
L−1 phosphate buffer (pH 7.0), 15.0  mmol L−1 H2O2, 
5.0 mmol L−1 guaiacol, and 50 µL enzyme extract. By 
appending enzyme extract, reaction began, and increase in 
absorbance was registered at 470 nm for 1 min. The activity 
of enzyme was quantified using the quantity of tetraguaiacol 
formed by its molar extinction coefficient (26.6 mmol L−1 
cm−1). The outcomes were shown as µmol H2O2 min−1 mg−1 
protein, taking into account that 4 mol H2O2 is decreased to 
generate 1 mol tetraguaiacol (Plewa et al. 1991).

SOD Activity

By using xanthine, cytochrome C and xanthine oxidase, 
McCord and Fridovich method was used to evaluate the 
SOD activity (McCord and Fridovich 1969). One unit of 
SOD was determined as the quantity of enzyme that prevents 
the speed of Ferricytochrome C reduction by 50%.

CAT Activity

By calculating the reduction at 240 nm for 1 min, due to 
H2O2 consumption, Aebi method was used to determine the 
activity of CAT (Aebi 1984).

POD Activity

In this study using pyrogallol as a substrate, Kwak method 
was applied to assay POD activity (Kwak et al. 1995). One 
unit of POD activity was determined as the quantity of 
enzyme essential to take 1 mg of purpurogallin from pyro-
gallol in 20 s, at 420 nm.

Data Analysis for MDA, GPX, SOD, CAT and POD

Three replicates were considered for each treatment in com-
pletely random designs. One-way ANOVA by SPSS package 
program (version 13.0) was used for the purpose of data 
analysis. Significant diversities between treatments were 
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evaluated using Duncan’s multiple range tests (P < 0.05). 
The results of this study were reported as mean val-
ues ± standard deviation (SD).

Protein Extraction and 2‑Dimensional Gel 
Electrophoresis (2D) Analysis

Three biological replicates were considered for this study. 
After 30 days of NaCl treatment, trichloroacetic acid (TCA)-
acetone method, modified from Hurkman and Tanaka (Hurk-
man and Tanaka 1986), was used to extract UCB-1 leaf pro-
teins, and for this purpose 500 mg of fresh leaves in liquid 
nitrogen were homogenized by a mortar and a pestle. The 
powder was put in a 1.5-mL microtube, and 1 mL of cold 
extraction buffer that contains 1 mM ethylenebis (oxyeth-
ylenenitrilo) tetraacetic acid (EGTA), 20 mM Tris–HCl 
(pH 7.5), 1 mM phenylmethyl sulfonyl fluoride (PMSF) 
and 1 mM dithiothreitol (DTT) was added to the tube. For 
90 min at 4 °C, the microtubes were incubated and then 
centrifuged at 20,000×g for 45 min. After centrifuging, the 
outcoming supernatant was carried over to a microtube, 
and with four volumes of cold acetone including 0.08% 
β-mercaptoethanol and 12% TCA at − 10 °C for 15 h was 
precipitated. The microtube again at 20,000×g for 45 min 
was centrifuged, and then the pellet was washed seven times 
using cold acetone including 0.08% β-mercaptoethanol at 
− 10 °C for 4 h. The protein was kept for 24 h to air-dry, and 
then by using a rehydration buffer containing 2 M thiourea, 
7 M urea, 4% 3-[(3-cholanidopropyl) dimethylammonio]-1- 
propanesulfonic acid (w/v), 0.01% (w/v) bromophenol blue, 
40 mM DTT and 0.5% (v/v) immobilized pH gradient (IPG) 
buffer 4–7 was rehydrated. Bradford method (Bradford 
1976) was used to quantify the concentrations of protein, 
and for drawing the standard curve bovine serum albumin 
(BSA) was applied.

For the first-dimensional, 17 cm IPG strips (Bio-Rad, 
USA) were applied to perform isoelectric focusing with pH 
4–7. Then, 400 µL of protein, containing 850 µg protein, was 
loaded to IPG strips for 14–18 h at 24 °C for identification 
of proteins, and then at 20 ◦C, IEF was done on an Ettan 
IPG-phor system (GE Healthcare, USA) using the follow-
ing position: 100 V for 1 h, 200 V for 2 h, 4000 V for 3 h, 
1000 V for 2 h, 4000 V for 1 h, and a gradient of 9000 V for 
2 h (50 µA per strip) (Yuan et al. 2016).

2D balance buffer [2% sodium dodecyl sulfate (SDS), 
6 M urea, 30% glycerol (v/v), 50 mM Tris–HCl, pH 8.8] 
including 1% DTT for 20 min and again identical 2D bal-
ance buffer including 2.5% iodoacetamide for 20 min were 
used to balance IEF strips. 13% polyacrylamide-SDS gels 
were prepared, and balance strips were put on them and 
sealed using 0.6% agarose dilution including bromophenol 
blue. Also, the EttanDaltSix electrophoresis system (GE 
Healthcare, USA) was used to perform second dimensional 

SDS–polyacrylamide gel electrophoresis (SDSPAGE), and 
Coomassie brilliant blue gel (CBB) R-250 (CBB; Sigma, 
USA) was used for visualization of spots.

Image and Data Analysis

Three replicates were considered for each treatment in com-
pletely random designs. The image scanner III (GE Health-
care, USA) was applied to visualize the image of gels and 
the gels were analyzed with version 7 Melani software. 
Also, the measurement of percentage volume (vol%) was 
used to evaluate plenty of each protein spot. The percentage 
volume of each protein spot in 0 and 100 mM NaCl con-
ditions was considered to assess the significant difference 
of each protein by t test method using SPSS 13.0 software 
(Student’s t test, P < 0.05). Protein spots were normalized as 
the proportion of the content of a single spot to the whole 
set of spots available in the gel. To measure the fold change 
of each protein spot, protein percentage volume data were 
transferred to an Excel file, and protein spots with consider-
able level (Duncan’s test at significant P < 0.05) and 1.5-fold 
change were applied for mass spectrometry. The level of fold 
change for each protein was calculated based on increasing 
or decreasing the percentage volume of each protein spot in 
100 mM NaCl compared to 0 mM. The results of the pro-
tein percentage volume were reported as mean values and 
percentage coefficients of variations (%CV) for each protein 
spot (in three replicates).

Protein Identification

Desirable protein spots were cut off from the gel, and wash 
solution including 50% acetonitrile/50 mM ammonium 
bicarbonate (NH4CHO3) was used to destain spots for 1 h at 
28 °C. After alkylation of protein, solution was taken, and 
spots at room temperature were left to dry. After drying the 
spots, trypsin solution was applied to digest proteins at 37 °C 
for one night. After digestion of proteins, 50% acetonitrile 
and 0.1% TFA in water were used for washing the peptides 
and were then put onto the MALDI target plate to dry. In the 
final step, peptides were handled for MALDI-TOF/TOF at 
University of York (England) by MALDITOF/TOF analyzer 
(Applied Biosystems, USA). Version 2.2 MASCOT software 
(Matrix Science, London, UK) was applied for analysis of 
the mass spectrometry data using the NCBI (http://www.
ncbi.nlm.nih.gov/) and NCBI protein databases (https​://
www.ncbi.nlm.nih.gov/refse​q/about​/nonre​dunda​ntpro​teins​/).  
Following criteria were considered in the databases for 
spectra search: trypsin as enzyme, carbamidomethylation 
of cysteine as fixed modification, MS/MS tolerance (0.8 Da), 
peptide tolerance (200 ppm) and variable modifications (oxi-
dation (M)) (Fatehi et al. 2012).

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
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Results

MDA Content

Lipid peroxidation in the leaves of UCB-1 pistachio root-
stock was measured as MDA content and is shown in Fig. 1. 
Increasing salinity from 0 to 100 mM NaCl led to an increase 
in MDA content, but this amount of MDA decreased at 
200 mM NaCl compared to the 100 mM (Fig. 1). Also, no 
significant difference was observed between 0 and 200 mM 
NaCl. 0.54, 0.84 and 0.58 µmol/g fr wt% were measured 
under 0, 100 and 200 mM NaCl, respectively (Fig. 1).

GPX Activity

In order to determine the response of GPX to salinity stress 
in UCB-1 pistachio rootstock, its activity was measured. 
With increasing NaCl concentrations, the activity of GPX 
increased. 0.012, 0.029 and 0.034 µmol H2O2 min−1 mg−1 
protein were calculated for GPX activity in UCB-1 pistachio 
rootstock leaf under 0, 100 and 200 mM NaCl, respectively 
(Fig. 2).

SOD Activity

As shown in Fig. 3, 100 and 200 mM NaCl treatments 
increased the activity of SOD in UCB-1 pistachio rootstock 
leaf compared to control. SOD activity was calculated 2.87, 
3.2 and 3.77 units/mg of protein under 0, 100 and 200 mM 
sodium chloride in UCB-1 rootstocks leaf, respectively 
(Fig. 3).

CAT Activity

CAT activity enhanced with increasing NaCl concentra-
tions. Under 0, 100 and 200 mM sodium chloride, 0.015, 
0.019 and 0.022 units/mg protein were calculated in leaf 
of UCB-1 pistachio rootstocks (Fig. 4).
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Fig. 1   The effect of different concentrations of NaCl on the MDA 
content in UCB-1 pistachio rootstocks leaf. Bars with different letters 
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Fig. 2   The effect of different concentrations of NaCl on the GPX 
activity in UCB-1 pistachio rootstocks leaf. Bars with different letters 
are significantly different at P < 0.01, according to Duncan’s multiple 
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POD Activity

The POD activity significantly decreased in the UCB-1 
rootstocks leaf at all stress concentrations. In UCB-1 root-
stock leaf, the amounts of 33.81, 28.92 and 26.41 units/mg 
of protein were estimated for POD activity under 0, 100 and 
200 mM NaCl, respectively (Fig. 5).

Analysis of Two‑Dimensional Gel Electrophoresis

The proteome maps of UCB-1 pistachio leaf in different 
NaCl conditions were produced from two-dimensional gel 
electrophoresis (2-DE), as shown in Fig. 6. The protein 

spots were spread from pH 4–7, and their molecular masses 
ranged from 10 to 100 kDa. More than 406 protein spots 
were detected on gels. Of these spots, 25 protein spots had 
1.5-fold variations between 100 and 0 mM NaCl environ-
ments and these spots were selected for MALDI TOF/TOF 
analysis (Table 1 and Supplementary Table 1). Of these 25 
spots, 15 spots were up-regulated, and 10 spots were down-
regulated by the salinity stress (Fig. 6, Table 1, Supplemen-
tary Table 1).

MALDI‑TOF/TOF Identification and Classification 
of Responsive Proteins

Twenty-five salinity-responsive proteins which had 1.5-fold 
variations between 100 and 0 mM NaCl environments were 
selected for MALDI-TOF/TOF mass spectrometry identi-
fication. Mass data were analyzed by Mascot schedule and 
NCBI non-redundant protein database. All identified salin-
ity responsive proteins by MALDI TOF–TOF are listed in 
Table 1 and supplementary data for these 25 responsive pro-
teins are listed in Supplementary Table 1. Generally, these 
responsive spots represented 20 unique proteins, which 
were classified into nine functional categories: photosyn-
thesis (20%), enzymatic antioxidant defense system (12%), 
replication and repair of DN (4%), energy pathway (12%), 
non-enzymatic antioxidant defense system (4%), transpor-
tation of material (16%), calcium-binding proteins (4%), 
transcription factor (4%) and chaperone (4%), as shown in 
Fig. 7 and Table 1. Also, 5 unknown function proteins (20%) 
were determined under salinity stress in UCB-1 pistachio 
(Fig. 7, Table 1). The photosynthetic related proteins con-
sist of the 50S ribosomal protein L13 chloroplastic (spot 
337), ribulose-1.5-bisphosphate carboxylase/oxygenase 
large subunit (spot 446), ribulose bisphosphate carboxylase 
small chain (spot 229), ribulose bisphosphate carboxylase/
oxygenase activase 1 (spot 66) and PREDICTED: phospho-
ribulokinase chloroplastic (spot 161) (Table 1). The enzy-
matic antioxidant defense system-related proteins consist of 
superoxide dismutase [Cu–Zn] isoform X1 and X2 (spots 
261 and 81) and Catalase 2 (spot 326) (Table 1). Ribonucle-
oside-diphosphate reductase small chain A was recognized 
as the only protein involved in the replication and repair of 
DNA (spot 76) (Table 1). As shown in Table 1, proteins 
involved in the energy pathway included ATP synthase CF1 
epsilon subunit plastid (spot 64), external NADH-ubiqui-
none oxidoreductase 2 mitochondrial-like protein (spot 
243) and ADP-glucose pyrophosphorylase (AGPase) small 
subunit (spot 198). Phytoene synthase 2 was detected as 
the only protein involved in the non-enzymatic antioxidant 
defense system (spot 243) (Table 1). As shown in Table 1, 
the transportation of material related proteins consisted of 
the Vesicle-associated membrane protein (VAMP) 722- and 
724-like (spots 96 and 188), Golgin subfamily A member 
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5 (spot 303) and PREDICTED: ABC transporter C fam-
ily member 12-like (spot 104). The protein involved in 
calcium-binding proteins was recognized as polcalcin Phl 
p 7-like (spot 336) (Table 1). One protein was determined 
as transcription factor entitled PREDICTED: nascent poly-
peptide-associated complex subunit alpha, muscle-specific 
form-like isoform X2 (spot 112) (Table 1). Stromal 70 kDa 
heat shock-related protein, chloroplastic (spot 30), was deter-
mined as chaperon (Table 1). 5 unknown function proteins 
were identified under salinity stress including uncharacter-
ized protein LOC107620721, PREDICTED: uncharacter-
ized protein LOC105974023, PREDICTED: uncharacterized 
protein LOC109219975 partial, PREDICTED: uncharac-
terized protein LOC109178037 and hypothetical protein 
CISIN_1g0462972 mg partial (spots 596, 201, 335, 216 and 
206), respectively (Table 1).

Discussion

One of the most important abiotic stresses is soil salinity, 
which reduces water potential and causes nutrients to be 
unbalanced in plants, and they adversely affect plant devel-
opment and growth (Mansour and Salama 2004; GENC et al. 
2007). One of the actions that can be performed to decline 
the destructive effects of different stresses is usage of root-
stock and grafting in plants. Selection of a tolerant rootstock 
is mandatory in most plants and hence, usage of grafting 
method to choose a salt resistant root system as rootstock 
may enhance salt resistance in plants (Zhang et al. 2018). In 
grafted plants, rootstock root system is responsible for 

resistance in response to salinity stress. In this procedure, if 
the rootstock is effectively chosen, it will strengthen water 
and nutrient absorption (Kumar et al. 2018), enhance nitro-
gen and carbon metabolism (Shahid et al. 2018) and conse-
quently enhance salt resistance in plants. Grafting technique 
not only enhances the tolerance of plants in different stress 
conditions, but also preserves good strains of seeds and sta-
bilizes heterosis (Penella et al. 2014). For example, grafted 
tomato decreased transportation of Cl− and Na+ by roots to 
aerial sections under salinity stress (Estan et al. 2005) and 
precipitated absorption of K+ by roots to adjust itself to unfa-
vorable conditions of salinity stress (Fan et al. 2011). In this 
example, a grafted tomato enhanced photosynthetic ability 
and improved salt resistance by enhancement of the antioxi-
dant enzymes activity (He et al. 2009). In leaves of grafted 
cucumber, the level of photoinhibition was significantly 
declined under salinity stress (Huang et  al. 2011), and 
metabolism ability of nitrogen was elevated (Liu et al. 2013). 
Also, it is specified that grafted seedlings absorbed more 
phosphorous and nitrogen under salinity stress in water-
melon (Uygur and Yetisir 2009). Accordingly, understanding 
the molecular basis of salt stress resistance mechanisms in 
rootstocks is necessary for genetic engineering and breeding 
programs of salt resistance in plants. In spite of intensive 
studies on plants’ response to salt stress, there have not been 
any studies on the proteomic profile of Pistacia genus or 
Anacardiaceae family with proteomic method. In this study, 
the 8-month-old UCB-1 rootstocks that were exposed to 0, 
100 and 200 mM NaCl for 30 days were used as experimen-
tal samples. All analyses were performed using the 8-month-
old UCB-1 rootstock leaves. The MDA content and GPX, 

Fig. 6   Proteome maps of UCB-1 pistachio rootstock leaf. Responsive protein spots to NaCl stress are marked. a UCB-1 rootstock under the con-
trol condition; b UCB-1 rootstock under the NaCl condition. The pH range, molecular weight (MW), and IPG length are shown on the gels
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Table 1   Identified salinity responsive proteins using MALDI TOF-TOF in UCB-1 pistachio rootstock

Identity Spot ID agi|Number bExpression change cCoverage % dMS score eThe pI/MW(kDa) fExp pI/MW(kDa)

Photosynthesis
 50S ribosomal protein L13, 

chloroplastic [Auxeno-
chlorella protothecoides]

337 gi|760449171 −11.24 28 70 10.12/25.571 6/57

 Ribulose-1,5-bisphosphate 
carboxylase/oxygenase 
large subunit, partial 
(chloroplast) [Irvingia 
malayana]

446 gi|667480396 −2.75 30 85 5.01/16.604 5.92/34

 Ribulose bisphosphate 
carboxylase small chain 
1, chloroplastic [Solanum 
lycopersicum]

229 gi|822092500 2.73 35 75 7.57/20.522 4.99/15

 Ribulose bisphosphate 
carboxylase/oxygenase 
activase 1, chloroplastic 
[Ananas comosus]

66 gi|1035955400 −1.6 24 91 5.45/56.863 5.15/20

 PREDICTED: phosphori-
bulokinase, chloroplastic 
[Ricinus communis]

161 gi|255555933 −2.75 31 95 5.83/45.221 5.66/66

Enzymatic antioxidant 
defense system

 PREDICTED: superox-
ide dismutase [Cu–Zn] 
isoform X1 [Elaeis 
guineensis]

261 gi|743856149 −119.61 33 52 5.86/15.689 6.37/20

 PREDICTED: superox-
ide dismutase [Cu–Zn] 
isoform X2 [Elaeis 
guineensis]

81 gi|743856159 −78.45 38 56 5.52/13.608 6.19/20

 Catalase-2 [Arabidopsis 
lyrata subsp. lyrata]

326 gi|1190998802 2.283 27 85 6.63/57.206 4.60/58

Replication and repair of 
DNA

 Ribonucleoside-diphos-
phate reductase small 
chain A [Ipomoea nil]

76 gi|1109197042 −166.12 26 66 4.99/39.924 5/20

Energy pathway
 ATP synthase CF1 epsilon 

subunit (plastid) [Pistacia 
vera]

64 gi|1206251589 3.11 51 68 5.41/14.875 5.15/21

 External NADH-ubiqui-
none oxidoreductase 2, 
mitochondrial-like protein 
[Corchorus olitorius]

243 gi|1137217082 −142.84 41 64 9.30/6.845 4.41/19

 ADP-glucose pyrophos-
phorylase small subunit 
(chloroplast) [Hordeum 
vulgare subsp. vulgare]

198 gi|27464770 1.82 32 62 5.79/55.030 6.50/71

Non-enzymatic antioxidant 
defense system

 Phytoene synthase 2, partial 
[Solanum nigrum]

240 gi|808787572 −90.96 19 67 5.03/17.382 4.43/18
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a Number in NCBI, SWISS Prot
b  + and − indicate protein spots whose abundance increase (+) or decrease (−)
c Percentage of predicated protein sequence covered by matched sequences
d Statistical probability of true positive identification of the predicted protein calculated by MASCOT
e TpI/TMW: isoelectric point of predicted protein/molecular mass of predicted protein
f EpI/EMW: isoelectric point of protein on gel/molecular mass of protein on gel

Table 1   (continued)

Identity Spot ID agi|Number bExpression change cCoverage % dMS score eThe pI/MW(kDa) fExp pI/MW(kDa)

Transportation of material
 PREDICTED: vesicle-

associated membrane 
protein 722-like [Populus 
euphratica]

96 gi|743944410 5.56 44 73 8.94/25.100 4.37/81

 Vesicle-associated mem-
brane protein 724-like 
[Durio zibethinus]

188 gi|1269876990 −30.36 49 72 8.84/25.503 6.43/69

 Golgin subfamily A mem-
ber 5 [Setaria italica]

303 gi|514767116 2.73 40 76 6.22/38.813 4.52/58

 PREDICTED: ABC trans-
porter C family member 
12-like [Gossypium 
arboreum]

104 gi|1050628876 2.18 17 74 8.48/176.086 4.69/55

Calcium-binding proteins
 Polcalcin Phl p 7-like [Den-

drobium catenatum]
336 gi|1179503649 2.87 43 63 6.56/11.085 6.45/12

 Transcription factor
 PREDICTED: nascent 

polypeptide-associated 
complex subunit alpha, 
muscle-specific form-like 
isoform X2 [Nelumbo 
nucifera]

112 gi|720021779 2 35 78 11.42/56.554 4.85/48

Chaperone
 Stromal 70 kDa heat shock-

related protein, chloro-
plastic [Ananas comosus]

30 gi|1147605449 2.53 31 214 5.40/75.595 4.86/100

Unknown function
 Uncharacterized protein 

LOC107620721 [Arachis 
ipaensis]

596 gi|1021574340 1.85 28 50 8.72/26.348 5.66/76

 PREDICTED: unchar-
acterized protein 
LOC105974023 [Eryth-
ranthe guttata]

201 gi|848912603 2.95 9 57 9.01/59.381 6.05/51

 PREDICTED: unchar-
acterized protein 
LOC109219975, partial 
[Nicotiana attenuata]

335 gi|1111066705 2.29 19 53 6.51/32.860 5.83/62

 PREDICTED: unchar-
acterized protein 
LOC109178037 [Ipomoea 
nil]

216 gi|1109217218 1.85 54 61 6.51/11.470 6.51/100

 Hypothetical protein 
CISIN_1g0462972 mg, 
partial [Citrus sinensis]

206 gi|641832128 6.05 23 74 5.67/25.887 5.94/45



617Journal of Plant Growth Regulation (2020) 39:608–630	

1 3

CAT, SOD and POD activities were calculated under these 
three different stress. Also, under 100 mM NaCl, changes in 
the leaf proteomic profile of this rootstock were compared 
to 0. The results of this study showed that MDA increases 
under salinity stress in leaves of UCB-1 pistachio rootstock 
up to 100 mM NaCl, and then decreases. In citrus plants, 
MDA increased under salinity stress (Tanou et al. 2009). In 
a research in 2008, Yaser and coworkers showed that in 
green bean, MDA content increases under salinity stress, 
significantly (Yasar et al. 2008). Also, another study in cow-
peas showed that under salinity stress plants’ growth 
reduces, while MDA content increases (Cavalcanti et al. 
2004). ROS generation under salinity stress is unavoidable 
(Abogadallah 2010), and ROS causes membrane lipid per-
oxidation and membrane fluidity reduction. Lipid peroxida-
tion is measured as MDA, which is a product of lipid peroxi-
dation (Dhindsa and Matowe 1981; Wise and Naylor 1987). 
The content of MDA is a significant pattern in evaluating the 
resistance of plants under stress situations. The results of a 
study showed that salt-tolerance genotypes have less lipid 
peroxidation (Taïbi et al. 2016), and this result is quite simi-
lar to our result under 200 mM NaCl. In this study, increas-
ing MDA content under 100 mM NaCl compared to 0 mM 
is an oxidative damage of salinity on UCB-1 pistachio root-
stock, while decease in the content of MDA under 200 mM 
NaCl compared to 100 mM may indicate the adaptive reac-
tion of this rootstock under salinity stress. In this study, with 
increasing the concentrations of NaCl, GPX, CAT, and SOD 
activities increased in all samples. Several previous studies 

showed that GPX enzyme activity in soybean under drought 
stress (Moloi et al. 2016) and in pearl millet under salinity 
application at reproductive and vegetative stages (Heidari 
and Jamshidi 2011), CAT activity in pearl millet at repro-
ductive and vegetative stages under salinity stress (Heidari 
and Jamshidi 2011), and SOD activity in salt-sensitive and 
salt-tolerance genotypes of colza (Brassica napus L.) under 
sodium chloride stress (Jalali-e-Emam et al. 2011) increase, 
significantly. Also, Ahmad et al. in several studies showed 
that CAT and SOD enzymes activity along with the content 
of MDA increases under salinity stress in different plant spe-
cies, significantly (Ahmad et al. 2016; Ahmad et al. 2017; 
Ahmad et al. 2018; Ahmad et al. 2019). It is proved that 
different abiotic stresses produce reactive nitrogen species 
(RNS) and reactive oxygen species (ROS), resulting in nitro-
sative and oxidative stress in plants (Molassiotis and Foto-
poulos 2011), but on the other hand, Molassiotis et al. con-
cluded that RNS and ROS are able to coordinately adjust 
plant stress responses to harmful environmental conditions 
(Molassiotis et al. 2016). The concentration of alkyl hydrop-
eroxides or H2O2 and other reactive oxygen species or ROSs, 
such as hydroxyl radical (OH·), superoxide radical (O2·−), 
and singlet oxygen (1O2) can be enhanced either by their 
decreased activity of the defense system or enhanced pro-
duction (Foyer et al. 1997; Bela et al. 2015). ROSs may hurt 
intracellular biomacromolecule, resulting in enzyme deac-
tivation, membrane lipid peroxidation, and DNA damage 
(Abogadallah 2010). Also, stability and synthesis of protein 
can be affected by ROSs (Abogadallah 2010). Under 

Fig. 7   Functional distribution of identified responsive proteins in UCB-1 pistachio under NaCl
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oxidative stress conditions, the activities of antioxidant 
enzymes such as catalase (CAT), superoxide dismutase 
(SOD), and guaiacol peroxidase (GPX) are commonly 
increased in plants. For example, SOD and POD enzymes 
activity increased in the leaves and stems of apple rootstock 
under NaCl stress (Molassiotis et al. 2006). Also, the activity 
of the aforementioned enzymes generally has a correlation 
with enhanced resistance (Foyer et al. 1997). The functions 
of GPX, SOD, and CAT are not completely understood. One 
of the most important peroxidase enzymes is guaiacol per-
oxidase located in the cytosol, apoplast, vacuole, and cell 
wall (Uarrota et al. 2016). It is proved that under salinity 
stress, guaiacol peroxidases enzyme is involved in the detox-
ification of induced ROS in plants (Uarrota et al. 2016). 
GPXs protect cells from stress induced by oxidative damage 
and are involved in plant development and growth. Detoxi-
fication of organic hydroperoxides and H2O2 is the main role 
of GPX isoenzymes in plants. Under salinity stress in UCB-1 
rootstock pistachio, GPX may increase to protect cells from 
oxidative damage and enhance plant development and 
growth. Superoxide dismutases or SOD, which is an antioxi-
dant enzyme, has the main role in preventing oxidative stress 
caused by extreme superoxide anion or O−2 (Smirnoff 1993). 
This enzyme catalyzes the dismutation of O−2 with excellent 
performance, resulting in the generation of O2 and H2O2 
(Smirnoff 1993). Increasing SOD under salinity stress in our 
study may enhance the ability of UCB-1 rootstock to scav-
enge ROS under this stress and lead to normal growth. CAT, 
which is an antioxidant enzyme in various plant tissues 
(Chawla et al. 2013), reacts with H2O2 straightly to form 
oxygen and water (Smirnoff 1993). Also, CAT is mostly 
related to an enhanced resistance to salinity stress (Mittova 
et al. 2004). Inthis study, CAT may increase to reduce the 
destructive effects of salinity, including ROSs, and to 
enhance the resistance of this rootstock under NaCl stress. 
In this research, POD activity decreased with increasing the 
concentration of NaCl in UCB-1 pistachio rootstock leaf. 
Previous studies reported the reduction of POD activity in 
carrot (Bano et al. 2014) and salt-tolerant variety Pokkali 
(Oryza sativa L.) (Dionisio-Sese and Tobita 1998) under 
salinity stress. The produced hydrogen peroxide is scavenged 
by a variety of peroxidases (Dionisio-Sese and Tobita 1998), 
and this enzyme catalyzes H2O2 by oxidation of co-sub-
strates, such as antioxidants and/or phenolic compounds 
(Dionisio-Sese and Tobita 1998). Plants use multiple iso-
forms of antioxidant enzymes to scavenge the produced ROS 
by salinity stress (Kim et al. 2005b), and it is specified that 
NaCl stress can either inhibit or stimulate the expression of 
the isoforms of many antioxidant enzymes (Kim et  al. 
2005b). For example, in potato, new SOD and POD isoen-
zymes emerged in response to salinity stress (Rahnama and 
Ebrahimzadeh 2005). In a previous study, POD enzyme 
activity decreased in the Broussonetia papyrifera leaves 

under 100 and 150 mM NaC1 treatment compared to the 
normal condition, while POD isoenzyme activity increased 
in the leaves of this plant (Zhang et al. 2013) and this matter 
can be the main reason of POD enzyme activity decreasing 
in the leaves of this rootstock. Also, since the metabolic 
responses to the salinity stress are a complex process, under 
salinity stress, many processes such as growth, energy 
metabolism, accumulation of compatible osmolytes, ion par-
titioning, and carbon metabolism are modified (Bohnert and 
Sheveleva 1998). At the cellular level, it is specified that 
salinity stress affects the cell wall by the increment in the 
polymerization of monolignols of the root (Cruz et al. 1992) 
and reduction in cell expansion (Iraki et al. 1989). Also in 
plants, peroxidases are involved in the biosynthesis of cell 
wall (Negrel and Lherminier 1987), including suberization 
and lignification (Polle et al. 1994; Espelie et al. 1986). In 
several plant systems, a reverse relationship was reported 
between POD enzyme activity and growth rate (Lee and Lin 
1995; Gardiner and Cleland 1974; Carpita and Gibeaut 
1993; Chen and Kao 1995), and in this study, decreasing 
POD enzyme activity can be reversely related to the growth 
rate of UCB-1 pistachio rootstock under salinity stress.

In recent decades, proteomics method has emerged as a 
valuable tool to identify potential biomarkers in plants in 
response to different environmental conditions (Molassiotis 
et al. 2013). For example, in a research and using proteomics 
method, Tanou et al. (Tanou et al. 2009) discovered 85 leaf 
proteins under salinity stress in Citrus aurantium, most of 
the researches in plants have been done on this family using 
proteomics method (Tanou et al. 2010). For the most part, 
changing environmental conditions causes rapid changes 
in the structure, level and composition of different protein 
and RNA molecules, and these changes lead to the stress 
acclimation or signal transduction events in plants (Beckers 
and Conrath 2007). For example, Molassiotis and colleagues 
showed that ROS (in the form of H2O2), which is the produc-
tion of salinity stress in plants (Tanou et al. 2012) and acts 
as the key component of redox homeostasis (Lounifi et al. 
2013), in the first step is able to change many genes expres-
sion levels and proteins abundance and consequently is able 
to alter photosynthesis pattern in plants (Molassiotis et al. 
2016). For these reasons, in the present research, compara-
tive proteomics was conducted to investigate changes in the 
proteomic profile of UCB-1 pistachio rootstock under NaCl 
stress to recognize the main proteins involved in response 
to salinity stress. According to the results of this study, 25 
proteins and their families that are listed below were identi-
fied in response to salinity stress in this rootstock.

Proteins Involved in the Photosynthesis

In response to 100 mM NaCl stress, some fundamental 
proteins of the photosynthesis were detected in the UCB-1 
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pistachio rootstock compared to the normal condition, 
including 50S ribosomal protein L13, chloroplastic (spot 
337), ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO) large subunit (spots 446), ribulose bisphosphate 
carboxylase small chain (RBCS, spots 229), ribulose bis-
phosphate carboxylase/oxygenase activase 1 (RCA 1, spot 
66) and phosphoribulokinase, chloroplastic (spot 161). In 
two previous studies in whitetop (Lepidium draba L.) and 
Aegilops tauschii and in response to exogenous glucose 
and moisture stress, it was determined that 22 and 28.5% of 
changes in the proteomic profile of these two plants belonged 
to the photosynthesis-related proteins, respectively (Rezaee 
et al. 2018; Nazari et al. 2018). Tanou et al. proved that the 
largest category (44.7%) of the NaCl-responsive proteins 
was associated with photosynthesis (Tanou et al. 2009).

50S Ribosomal Protein L13, Chloroplastic

11.24-fold downregulation was observed for this protein 
under salinity stress in UCB-1 rootstock. Under short term 
of salinity in soybean, a research showed that 50S riboso-
mal protein L12-3 decreases significantly (Sobhanian et al. 
2010), but another study reported that this protein increases 
under long-term salinity stress in barley (Fatehi et al. 2012). 
Ribosomal proteins (RPs), which have large and small subu-
nits, have the main role in sustaining the durability of the 
ribosomal complex and in mediating synthesis of protein 
(Moin et al. 2016). In this study, decreasing 50S ribosomal 
protein L13 demonstrates the inhibitory effect of sodium 
chloride on UCB-1 protein biosynthesis and likely leads to 
a reduction in plant development.

Ribulose‑1.5‑bisphosphate Carboxylase/Oxygenase 
(RuBisCO) Large Subunit

Our results showed that RuBisCO large subunit was down-
regulated 2.75-fold under 100 mM NaCl, while in Sorghum 
under 100 mM NaCl, RuBisCO large subunit increased 
110%, which was reported by Ngara et al. (2012). Zhang 
and colleagues reported that in cotton diploid wild spe-
cies, eight RuBisCO subunits down-regulated significantly 
(Zhang et al. 2016). One of the main enzymes that has an 
essential role in the assimilation of photosynthetic carbon 
is RuBisCO, and plants can produce better yield by increas-
ing the assimilation of photosynthetic carbon (Raines 2011). 
RuBisCO plays the main role in photorespiratory and pho-
tosynthetic response paths, and RuBisCO affinity for CO2 
in different plants on the proportion of their carboxylase to 
oxygenase activities is accessible (Yeoh et al. 1980). There-
fore, under abiotic stress such as salinity, plants can improve 
their tolerance along with better yield by higher amount of 
RuBisCO. Most likely, in this study, RuBisCO downregula-
tion occurs because of the light response inactivation or CO2 

influx reduction. Also, it can be concluded that reduction 
in RuBisCO activity may be clarified by loss of RuBisCO 
protein when the rootstock was under salinity stress (Parry 
et al. 2002).

Ribulose Bisphosphate Carboxylase Small Chain

In this study, RuBisCO small chain was up-regulated 2.73-
fold under salinity stress in UCB-1 rootstock. A previous 
study showed that this protein up-regulated 1.14-fold under 
late salinity stress in rice (Lakra et al. 2018). One of the 
main proteins in the stroma of chloroplasts is RuBisCO, 
which exists in plants as a complex of 8 small and 8 large 
subunits. Ribulose bisphosphate carboxylase is a small sub-
unit of ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Pichersky et al. 1986). It is specified that RuBisCO subunits 
are sensitive to fragmentation under moisture stress situa-
tions. This event leads to producing the isoforms of various 
isoelectric points and molecular weights, and enhancing in 
the number of rubisco subunit (Salekdeh et al. 2002; Guo 
et al. 2016; Budak et al. 2013).

Ribulose Bisphosphate Carboxylase/Oxygenase 
(RuBisCO) Activase 1

RuBisCO activase 1 was down-regulated 1.60-fold in 
response to 100 mM NaCl. Increasing 1.7- and 2.5-fold 
of RuBisCO activase was reported by Parker in rice under 
short- and long-term salinity, respectively (Parker et al. 
2006), while the proteomic analysis of diploid and tetra-
ploid black locust under salinity stress showed that in 
4X plants, RuBisCO activase content decreased by 20% 
(Wang et al. 2013). One of the members of AAA​+ fam-
ily is RuBisCO activase, which has various chaperone-like 
functions (Bhat et al. 2017). Preservation of the catalytic 
activity of RuBisCO is the principal role of the activase. 
Activase, through the removal of inhibitory sugars from the 
energetic position of carbamylated RuBisCO and uncarba-
mylated, preserves the catalytic activity of RuBisCO (Por-
tis 2003). Direct decrease in stomatal conduction followed 
by low CO2 concentrations may be induced under salinity 
stress, and subsequently increasing activase activity may 
happen (Parker et al. 2006). In this study, RuBisCO activase 
content downregulation may cause a reduction in Calvin-
Benson cycle activity. This would hold a suitable assimila-
tion valency of photosynthetic CO2 by lightening energy 
consumption to intensify salinity resistance.

Predicted: Phosphoribulokinase, Chloroplastic

In this study, a significant 2.75-fold downregulation of 
phosphoribulokinase protein was observed under 100 mM 
NaCl in UCB-1 pistachio rootstock. Also, Srivastava and 
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colleagues observed that phosphoribulokinase decreases 
after 1 and 24 h of 150 mM NaCl treatment (Srivastava 
et al. 2008). Furthermore, under salinity stress in Arabi-
dopsis, Seki et al. (2002) reported that phosphoribuloki-
nase decreases significantly (Seki et al. 2002). A necessary 
photosynthetic enzyme that catalyzes the ATP-dependent 
phosphorylation of ribulose 5-phosphate into ribulose 
1,5-bisphosphate is phosphoribulokinase, its principal 
function is regeneration of ribulose 1,5-bisphosphate, 
which is the primary substrate and CO2-acceptor molecule 
of the Calvin Cycle (Miziorko 2000). Under NaCl stress, 
downregulation of phosphoribulokinase points toward 
inhibition of the Calvin cycle and pentose phosphate path-
way, thereby explaining the decline in NADPH content 
(Srivastava et al. 2008).

Proteins Involved in the Enzymatic Antioxidant 
Defense System

Superoxide Dismutase [Cu–Zn] Isoform X1 and X2

[Cu–Zn] superoxide dismutase (SOD) isoforms X1 and 
X2 were illustrated to decrease after 30 days growing 
under 100 mM NaCl. Cu–Zn SOD isoforms X1 and X2 
decreased 119.61- and 78.45-fold, respectively. Parker 
and coworkers in 2006 showed that chloroplast [Cu–Zn] 
SOD in rice increased 1.7-fold after 7 days of treatment 
by 50 mM NaCl (Parker et al. 2006). Also, Hernandez 
and coworkers illustrated that in NaCl-susceptible vari-
ety, Cu–Zn SOD activity reduced 35%, while in the NaCl-
resistant plants, Cu–Zn SOD remained fixed (Hernández 
et al. 2001). In Vigna unguiculata L., and under 100 mM 
NaCL, mitochondrial and cytosolic Cu–Zn SOD I and pro-
toplasts Cu–Zn SOD II decreased remarkably (HernÁNdez 
et al. 1994). Also, the transcripts of copper-zinc SOD in 
underground stems’ organs of Polygonum sibiricum were 
significantly down-regulated after 3% NaHCO3 stress (Qu 
et al. 2010). Reactive oxygen species (ROSs) are produced 
as a result of abiotic stresses, such as salinity and drought. 
The first line of cell advocacy versus ROSs is SODs fam-
ily. Copper-zinc SOD (Cu–Zn SOD), iron-SOD (Fe-SOD), 
and manganese-SOD (Mn-SOD) are three different kinds 
of SODs, which are placed in various plant sub-cellular 
organelles (Grene 2002; Hernandez and Almansa 2002). 
A section of an enzymatic detoxification system is engen-
dered by SOD to scavenge ROSs (Asada 1999; Parker 
et al. 2006). When the concentration of CO2 decreases in 
the stroma, SOD [Cu–Zn] activity increases to maintain 
electron flux in the thylakoids. In this study, downregula-
tion of Cu–Zn SOD isoforms X1 and X2 may be related to 
the results of H2O2-products of Cu–Zn SOD.

Catalase 2

Catalase 2 was up-regulated 2.28-fold in response to 
100 mM NaCl. Under salinity stress, and in bread wheat, 
catalase was up-regulated significantly, which was 
reported by Peng in 2009 (Peng et al. 2009). Also, Molas-
siotis et al. showed that enzymatic and non-enzymatic anti-
oxidant activities as well as contents of H2O2 increased in 
leaves and stems of apple rootstock under different abiotic 
stresses (Molassiotis et al. 2006). In cells, H2O2 detoxifi-
cation is done with glutathione peroxidase, ascorbate per-
oxidase, thioredoxin peroxidase, and catalase (Mehlhorn 
et al. 1996). Under stress situation, a remarkable enhance-
ment in CAT activity in leaves can preserve chloroplasts 
and give a sustained electron flow (Foyer and Shigeoka 
2011). When plants are exposed to water deficiency of 
salinity stress, increasing CAT activity of leaves allows 
the removal of photorespiratory H2O2, which is produced 
under violent abiotic stresses (Sofo et al. 2015).

Proteins Involved in the Replication and Repair 
of DNA

Ribonucleoside‑Diphosphate Reductase Small Chain A

In this research, ribonucleoside-diphosphate (RDP) reduc-
tase decreased 166.12-fold under salinity stress. No report 
about the RDP reductase under abiotic stresses is available. 
RDP reductase, which brings the ribonucleotide diphosphate 
reduction to deoxy-ribonucleotide, is an enzyme containing 
Fe and is a major enzyme in DNA synthesis. RDP reduc-
tase or ribonucleotide reductase (RDR) is a main target of 
the DNA damage checkpoint pathways in mammals, higher 
plants, and yeasts (Huang et al. 1998). The reduction of all 
four ribonucleotide diphosphates (NDPs) into their corre-
sponding deoxyribonucleosides (dNDPs) is done by RDP 
reductase (Kolberg et al. 2004). RDP reductase contains two 
large subunits (R1) and two small subunits (R2) (Wang and 
Liu 2006). The R1 subunit is the aim of feedback adjust-
ment, which warrants that dNTPs are not overproduced in 
cells, and ensures that enough NDPs are left for synthesis 
of RNA (Wang and Liu 2006). The R2 subunit is neces-
sary for the reduction of NDP to dNDP (Wang and Liu 
2006). In mammal and yeast, it is indicated that damaged 
RDP reductase frequently leads to p53-dependent apoptosis, 
growth delay, and cell cycle arrest. Also, higher mutation 
rate happens when RDP reductase activity increases (Wang 
and Liu 2006). Forasmuch as increasing RDP reductase 
activity increases mutation rate, most likely in this study, 
RDP reductase small chain decreases for decreasing RDP 
reductase activity to reduce mutation rate in UCB-1 root-
stock under salinity stress.
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Proteins Involved in the Energy Pathway

ATP Synthase CF1 Epsilon Subunit (Plastid)

In this study, ATP synthase CF1 epsilon subunit (plas-
tid) was up-regulated 3.11-fold under 100 mM sodium 
chloride. ATP synthase CF1 increased in cotton under 
drought stress (Deeba et al. 2012), in rice (Kim et al. 
2005a), and in the roots and shoots of maize under salin-
ity stress (Zuther et al. 2004), significantly. One of the 
main enzymes in energy transduction in mitochondria 
and chloroplasts is ATP synthase, which decreases the 
destructive effect of stress in plants. Water stresses such 
as salinity and drought reduce CO2 assimilation by reduc-
tion of the net ATP value (Tezara et al. 1999). Also, ATP 
synthesis induction assists plants to enhance their resist-
ance to abiotic stresses (Zhang et al. 2008). Furthermore, 
when ATP synthase was overexpressed in Arabidopsis, 
greater resistance was observed under drought stress 
(Zhang et al. 2008). In this study, similarly, this protein 
was up-regulated to enhance the resistance of UCB-1 pis-
tachio rootstock under salinity stress by increasing energy 
transduction.

External NADH‑Ubiquinone Oxidoreductase 2, 
Mitochondrial‑Like Protein

Decreasing 142.84-fold was calculated for external 
NADH-ubiquinone oxidoreductase 2, mitochondrial-like 
protein in UCB-1 pistachio rootstock under salinity stress. 
Also, Witzel and coworkers showed that in barley and 
under salinity stress, (NADH)-ubiquinone oxidoreduc-
tase decreased significantly (Witzel et al. 2014). Com-
plex I or NADH-ubiquinone oxidoreductase is the first 
enzyme in the electron transition chain (Walker 1992), 
and is associated with the inner membrane of mitochon-
dria with their NADH reaction position facing either 
internal alternative NADH-ubiquinone oxidoreductases 
(the mitochondrial matrix) or external alternative NADH-
ubiquinone oxidoreductases (the cytoplasm). Little infor-
mation is available about the external NADH-ubiquinone 
oxidoreductases. The internal mitochondria membranes 
have three multi-subunit enzyme complexes that act to 
transmit electrons from NADH to oxygen (Walker 1992). 
Ripening-induced proteins and abscisic acid are involved 
in abiotic stress responses (Zhang et al. 2015), and these 
proteins increase under abiotic stresses such as drought 
and salinity (Zhang et al. 2015). Ripening-induced pro-
teins are able to bind to a wide number of respiratory 
electron transport chain genes and affect decreasing 
NADH-ubiquinone oxidoreductase.

ADP‑Glucose Pyrophosphorylase (AGPase) Small Subunit

The result of our research showed that under salinity stress, 
this protein was up-regulated 1.82-fold in UCB-1 pista-
chio rootstock. Yin and colleagues reported that AGPase 
increases during the early development stages under salinity 
concentration (160 mM NaCl) in tomato (Yin et al. 2010). 
One of the most important regulatory enzymes in starch 
biosynthesis is AGPase, which catalyzes the transformation 
of glucose-1-phosphate and ATP to ADP-glucose. AGPase, 
which is a heterotetramer, has two B and two S subunits (Li 
et al. 2002). It can be concluded that most likely, AGPase 
small subunit increases in order to increase AGPase for 
adjustment of starch synthesis under salinity stress.

Protein Involved in the Non‑enzymatic Antioxidant 
Defense System

Phytoene Synthase 2

In our study, the expression of phytoene synthase (PSY) 2 
decreased 90.96-fold under salinity stress. A previous study 
reported that PSY2 is significantly induced under ABA and 
salinity stresses in Daucus carota (Simpson et al. 2018). 
Phytoene synthase is the first enzyme and one of the most 
important points of adjustment in carotenoid biosynthesis 
path (Simpson et al. 2018). Carotenoids synthesis can be 
adjusted by sequestration and reposition in various kinds of 
plastids (Deruere et al. 1994; Vishnevetsky et al. 1999) at 
the epigenetic surface and even at the post-translational area 
(Cazzonelli et al. 2009). Carotenoids, which in plants inter-
cede abiotic stress resistance responses, are abscisic acid 
precursors (Simpson et al. 2018). The synthesis of abscisic 
acid precursors occurs through induction of PSY expression 
(Simpson et al. 2018). Previous studies showed that salt 
stress induces the PSY expression in the root of A. thaliana 
(Meier et al. 2011; Ruiz-Sola et al. 2014), and the expres-
sion of PSY3 in the roots of maize and rice, whereas PSY1 
and PSY2 are only induced in the leaves of maize and rice 
by light (Welsch et al. 2008; Li et al. 2009). Also, a previ-
ous study on carrot showed that PSY1 is expressed in leaves, 
while PSY2 expression is higher during root development 
(Fuentes et al. 2012). Another research showed that Daucus 
carota PSY2 gene expression is induced by ABA in roots of 
carrot, which is associated with the attendance of ABREs 
in its promoter. ABA-responsive element binding proteins, 
which are induced by ABA and abiotic stresses such as salin-
ity and drought, are the mediators of PSY2 induction under 
salinity stress through ABA in Daucus carota (Simpson et al. 
2018). The same research showed that three ABREs are nec-
essary for the ABA response, and most likely, Daucus carota 
AREB3 is the mediator of Daucus carota PSY2 induction 
under salt stress through ABA. Carotenoids function as 
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collectors of light energy for photosynthesis and also act as 
quenchers of triplet O2 and chlorophyll (Demmig-Adams 
and Adams 2002). In addition, carotenoids dissipate addi-
tional energy through the xanthophyll cycle and can function 
as the strong chloroplast membrane stabilizers, which are 
divided between the lipid phase of thylakoid membranes 
and light-harvesting complexes, decreasing susceptibility to 
lipid peroxidation and membrane fluidity (Demmig-Adams 
and Adams 2002). Therefore, decrease in carotenoid content 
under salt stress shows that the conservation by carotenoid 
is not an important mechanism in plants (Taïbi et al. 2016).

Proteins Involved in the Transportation of Materials 
(Endocytosis and Exocytosis)

Vesicle‑Associated Membrane Protein (VAMP) 722‑ 
and 724‑Like (Exocytosis)

VAMPs 722- and 724-like were up- and down-regulated 
5.56- and 30.36-fold under 100 mM NaCl, respectively. A 
previous study reported that VAMP 722 is down-regulated 
under abscisic acid application in Arabidopsis (Yi et al. 
2013). Also, they observed more growth inhibition in Arabi-
dopsis by abscisic acid, which is an abiotic stress hormone 
and the plant growth barrier (Yi et al. 2013). Another study 
reported that VAMP 722 is up-regulated at 4 and/or 24 h 
of salt treatment in cotton (Peng et al. 2014). Also, VAMP 
722 may become activated in response to pathogen attack 
(Sup Yun et al. 2013). A strong upregulation was recog-
nized under salinity stress for VAMP 724 in Ginkgo biloba 
by Mohanta et al. (2012). VAMP 721/722 are involved in 
plant development, immunity, and growth (Yi et al. 2013), 
and specifically have a main role in plant development and 
growth because the VAMP 721/722-silenced plants are 
dwarf and the vamp 721/722 plants are lethal (Zhang et al. 
2011; Kwon et al. 2008). Because of the smaller cell size 
in VAMP 721/722-silenced plants (Kwon et al. 2008), it is 
proved that VAMP 721/722 vesicles are employed in the 
default secretory pathway (Yi et al. 2013), which transports 
essential materials required for cell development and acts as 
a plant advocacy response (Yi et al. 2013). It is proved that 
ABA increases under salinity stress (Jia et al. 2002), and 
ABA suppresses plant growth by reducing the VAMP 722 
abundance (Yi et al. 2013). Most likely, UCB-1 pistachio 
rootstock increases VAMP 722 level to enhance plant devel-
opment and growth under salinity stress via transportation 
of molecules related to the plant growth and development 
such as lipids (Ichikawa et al. 2015) in the plasma membrane 
and cell wall (Yi et al. 2013). VAMP 724 forms a complex 
that is known as soluble N-ethylmaleimide-sensitive-factor 
attachment protein receptor or SNARE, which plays a main 
role in vesicle trafficking to vacuoles and transfers molecules 
to their goals. The main role carried out by VAMP 724 is 

to move ROS from endosomes to vacuoles. Suppression of 
vesicle VAMP 724 expression in Arabidopsis plant inhib-
its assimilation of H2O2 containing vesicles with vacuoles 
(Leshem et al. 2006; Mohanta et al. 2012). Downregula-
tion of this protein could be justified by the inability of this 
rootstock to move produced ROSs under salinity stress from 
endosomes to vacuoles.

Golgin Subfamily A Member 5 (Endocytosis and Exocytosis)

This protein was up-regulated 2.73-fold under salinity stress. 
In this study, this protein is reported for the first time in 
response to abiotic stresses, such as salinity stress. In the 
secretory pathway, Golgi apparatus partakes in glycosylation 
and transportation of lipids and proteins (Gillingham et al. 
2002). In plant cells, protein N-glycosylation in the endo-
plasmic reticulumin and in Golgi apparatus is a necessary 
process (Kang et al. 2008). Also, N-glycosylation pathway 
in the endoplasmic reticulumin regulates protein quality con-
trol, cellulose biosynthesis, and salt tolerance (Kang et al. 
2008). Interplays between the microtubules and Golgi are 
significant for the reorganization of the Golgi during mitosis 
(Gillingham et al. 2002). Golgins, which are long coiled-coil 
proteins and are well conserved in evolution, are present 
on the Golgi (Munro 2011). Golgins have roles in Golgi 
structure and membrane traffic, but their accurate function is 
unknown in most instances (Munro 2011). Golgins are goals 
of modification during apoptosis and mitosis, which are two 
operations involved in Golgi fragmentation (Munro 2011). 
According to the aforementioned issues, it can be concluded 
that most likely, Golgin subfamily A member 5 increases 
in response to salinity stress to increase glycosylation and 
transportation of lipids and proteins.

PREDICTED: ABC Transporter C Family Member 12‑Like 
(Endocytosis)

Our results showed enhancement of 2.18-fold for this protein 
under salinity stress. In transgenic tobacco under salt and 
osmotic stresses, ABC transporter C family is up-regulated 
(Singh et al. 2016), and under 200 mM NaCl in cotton roots, 
this protein increased, significantly (Li et al. 2015). Ter-
penoids, alkaloids, quinines, and polyphenols, which are 
stress-related secondary metabolites, are transported by 
ABC transporters (Theodoulou 2000). Lee and coworkers 
showed that ABC transporter affected Na+/K+ homeostasis 
in Arabidopsis and elicited a salt stress reaction (Lee et al. 
2004). Upregulation of an ABC transporter C family mem-
ber 12-like in UCB-1 pistachio rootstock suggests that it may 
have a main role in salt stress responses. Probably, expres-
sion of this protein under salinity stress surges to increase 
transportation of stress-related secondary metabolites.
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Calcium‑Binding Proteins

Polcalcin Phl p 7‑Like

In this study, polcalcin Phl p 7-like protein was up-regulated 
2.87-fold under salinity stress. No report is available from 
the response of this protein under abiotic stresses. Polcal-
cins, which have two ‘‘EF-hand’’ motifs and range from 
77 to 84 residues in length, are small Ca2+-binding proteins 
(Ledesma et al. 1998; Rozwadowski et al. 1999; Suphioglu 
et al. 1997). The characteristic structural base of the great-
est type of intracellular Ca2+-binding proteins is EF-hand 
(Grabarek 2006; Kretsinger and Wasserman 1980; Gifford 
et al. 2007). Calcium has a main role in tube growth and pol-
len germination (MalhÓ et al. 2000). Polcalcin may act as a 
calcium reservoir and is also thought to be involved in intra-
cellular signaling (Grote et al. 2008). Many studies proved 
that Ca2+ is able to directly reduce Na+ toxicity and also 
indirectly improve K-alleviation of Na+ toxicity (Shabala 
and Cuin 2008; Cramer 2002; Demidchik and Tester 2002). 
Many mechanisms in plants are controlled by sodium-cal-
cium interactions (changes in the balance of sodium-calcium 
ions), such as photosynthesis, growth, mineral nutrition, 
ionization, and watering (Cramer 2002). Under salinity 
stress in two different pistachio cultivars, Ca2+ decrement 
was recorded by Rahneshan et al. (2018). According to the 
discussions above and because of the decrease in amount of 
Ca2+ under NaCl stress, most likely, UCB-1 pistachio root-
stock increases polcalcins to reduce the destructive effects 
of Na+ in response to salinity stress.

Transcription Factors

Predicted: Nascent Polypeptide‑Associated Complex (NAC) 
Subunit Alpha, Muscle‑Specific Form‑Like Isoform X2

Our results showed that this protein was up-regulated two-
fold under 100 mM NaCl. Yan and colleagues in 2005 
reported that in response to salinity stress in rice root, 
α-NAC was down-regulated significantly (Yan et al. 2005), 
while other studies showed that in response to salinity, NAC 
subunit alpha-like 3 in barley (Fatehi et al. 2012) and NAC 
in tomato (Chen et al. 2009) up-regulated significantly. 
NAC or nascent polypeptide-associated complex, which 
is involved in protein translocation and sorting (Yan et al. 
2005; Chen et al. 2009), attaches to eukaryotic ribosomes 
and is the first cytosolic protein to contact nascent polypep-
tide fetters appearing from ribosome (Rospert et al. 2002). 
It is specified that NAC prevents mistargeting of nascent 
polypeptide fetters to the endoplasmic reticulum (Rospert 
et al. 2002). NAC is a heterodimeric complex of β chain 
and α chain (Yan et al. 2005). α-NAC acts as a transcrip-
tional coactivator (Moreau et al. 1998; Yotov et al. 1998). If 

α-NAC protein rate decreases, it probably affects the NAC 
function; changes in NAC function affect the processes of 
protein translation and gene transcription and ultimately lead 
to an erratic metabolism (Yan et al. 2005; Chen et al. 2009). 
Therefore, plants probably enhance the α-NAC protein con-
centration to reduce their own metabolism disorder under 
salinity stress.

Chaperon

Stromal 70 kDa Heat Shock‑Related Protein, Chloroplastic

Under salinity stress in UCB-1 rootstock leaf, this protein 
was up-regulated 2.53-fold. Many reports are available in 
response to this protein under different situations, such as 
exposure to cold, UV light, biotic stresses, wound healing or 
tissue remodeling (Boston et al. 1996; Lindquist and Craig 
1988; Vierling 1991). Also, Wang in 2004 showed that this 
protein is a key protein in response to abiotic stresses (Wang 
et al. 2004). Furthermore, the role of heat shock proteins 
under abiotic stresses using proteomic method was proved 
by Timperio et al. (2008). HSPs or heat shock proteins are 
proteins found in animal and plant cells. Heat shock proteins 
respond to a broad diversity of stresses (Park and Seo 2015). 
In eukaryotic and prokaryotic cells, HSPs are essential parts 
contributing to cellular homeostasis under detrimental and 
optimal growth situations (Wang et al. 2004; Lindquist and 
Craig 1988). Also, HSPs have the main role in protein fold-
ing, translocation, assembly, and depression during normal 
cellular development and growth (Lindquist and Craig 1988; 
Wang et al. 2004). Furthermore, under stress conditions, 
HSPs play a role in proteins’ stabilization and assist refold-
ing of proteins (Hüttner and Strasser 2012; Sitia and Braak-
man 2003). In animals and plants, there are five main fami-
lies of HSPs, such as small HSP (sHSP), HSP60, HSP70, 
HSP90, and HSP100 (Wang et al. 2004; Gupta et al. 2010; 
Kotak et al. 2007). 70 kDa heat shock proteins or Hsp70 s 
function as molecular chaperones involved in fundamental 
cellular processes, such as protein transportation and folding 
(Latijnhouwers et al. 2010). Also, Hsp70s play a role in the 
cell’s reaction to a diverse range of stress situations (Latijn-
houwers et al. 2010). In plants, the protein involved in chap-
erone is represented by Stromal 70 kDa heat shock-related 
protein (Latijnhouwers et al. 2010), and one mechanism to 
obtain stress resistance is to synthesize Hsp70 as a response 
to a stressor factor (Lyytinen et al. 2012; Yocum 2001).

Unknown Function Proteins

Unknown (Hypothetical) Proteins

5 proteins in UCB-1 pistachio rootstock were found 
without any function by our results. Uncharacterized 
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protein LOC107620721, PREDICTED: uncharacterized 
protein LOC105974023, PREDICTED: uncharacterized 
protein LOC109219975 partial, PREDICTED: uncharac-
terized protein LOC109178037, and hypothetical protein 
CISIN_1g0462972 mg were up-regulated 1.85-, 2.95-, 2.29-, 
1.85-, and 6.05-fold, respectively.

Conclusion

According to our results, MDA content increased at 100 mM 
NaCl compared to normal condition, while it decreased at 
200 mM in comparison with the 100 mM. Decreasing con-
tent of MOD at 200 mM NaCl compared to the 100 mM 
in UCB-1 pistachio rootstock can indicate its adaptation 
ability in response to salinity stress. Based on our results, 
GPX, SOD, and CAT enzymes activity increased with 
increasing concentrations of salinity stress in all samples. 
Likely, increasing activity of GPX, SOD, and CAT enzymes 
occurred to scavenge produced ROS under salinity stress, 
and most likely, these enzymes have a fundamental role in 
protecting the UCB-1 pistachio rootstock under unfavorable 
conditions of salinity stress. Proteins play a main role in 
the response of plant stress which leads to stress-adapted 
reactions. Differential expression of 25 salt stress responsive 
proteins in this study reveals the considerable effect of salt 
stress on the leaf proteome of tolerant UCB-1 pistachio root-
stock. In the tolerant UCB-1 pistachio rootstock, proteins 
involved in photosynthesis including 50S ribosomal pro-
tein L13, ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO) large subunit, ribulose bisphosphate carboxylase 
small chain, ribulose bisphosphate carboxylase/oxygenase 
activase 1 and phosphoribulokinase assigned themselves the 
highest amount of protein expression variations in response 
to 100 mM NaCl. These results show that proteins involved 
in the photosynthesis can be considered as biomarkers in 
the breeding programs to increase the tolerance of other 
pistachio rootstocks to salinity stress. Also, these proteins 
are probably of particular significance in the adaptation of 
UCB-1 pistachio rootstock to salinity stress conditions. In 
addition to these results, the changes in proteomic profile 
observed in UCB-1 pistachio rootstock induced by 100 mM 
NaCl suggest the presence of a sophisticated antioxidant 
defense system that fine-tunes and regulates the activities 
of different enzymes to retain ROS homeostasis. Ribonu-
cleoside-diphosphate reductase small chain, polcalcin Phl 
p 7-like and Golgin subfamily A member 5 are three pro-
teins that were detected for the first time in response to abi-
otic stresses, and most likely, they are the key proteins in 
response of this rootstock to salinity and likely participate 
in plant resistance to NaCl stress. Based on our results, 5 
unknown (hypothetical) proteins were found in the UCB-1 
pistachio rootstock, which would be very valuable proteins 

in response to salinity stress. These proteins should be fur-
ther studied and other different bioinformatics surveys are 
needed to specify the function of these unknown proteins. 
The proteins identified in this research provide new informa-
tion regarding the tolerance of UCB-1 pistachio rootstock to 
salinity stress.
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