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Abstract
Quantifying plant carbon (C) allocation among different pools is critical for understanding and predicting how C turnover 
responds to global climate change in terrestrial ecosystems. A field experiment with increasing warming and nitrogen (N) 
was established to investigate interactive effects on plant C allocation in alpine meadows. Open-top chambers (OTCs) were 
used to simulate warming. In OTCs, daytime air and soil temperature at 5 cm depth increased by 2.0 and 1.6 °C, respectively, 
compared with ambient conditions, but soil moisture at 5 cm depth decreased by 4.95% (v/v) from 2012 to 2014. Warming 
reduced aboveground biomass by 38, 36, and 43% in 2012, 2013, and 2014, respectively, and increased belowground bio-
mass by 64% and 29% in 2013 and 2014, respectively, and the root-to-shoot ratio was significantly increased. Specifically, 
warming increased the proportion of plant roots in the deep layers (10–20 cm). Both N addition and its combination with 
warming substantially enhanced belowground biomass. Pulse-labeling experiments for 13C revealed that warming reduced 
the translocation of assimilated C to shoots by 8.8% (38.7% in warming, and 47.5% in the control [CK]), and increased the 
allocation to root by 12.2% (55.5% in warming, and 43.3% in CK) after 28 days labeling. However, N addition increased 
the proportion of assimilated C allocated to shoots by 6.5% (54.0% in N addition, and 47.5% in CK), whereas warming 
combined with N addition reduced this proportion by 10.9%. A decline in soil water content in the surface layer may be the 
main cause of plants allocating more newly fixed photosynthate to roots. Therefore, plants promoted root growth to draw 
water from deeper soil layers (10–20 cm). We concluded that climate warming will change the allocation patterns of plant 
photosynthates by affecting soil water availability, whereas N addition will increase plant photosynthates aboveground in 
alpine meadows and thus will significantly affect C turnover under future climate change scenarios.
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Introduction

Knowing carbon (C) allocation over different time scales 
is crucial for evaluating variations in ecosystem productiv-
ity and C balance in terrestrial ecosystems (Rice and others 
2004; Luo and others 2009). Changes in the proportion of 
plant photosynthate to different plant organs and feedback to 
plant growth will notably affect plant life histories, commu-
nity structure, resource acquisition, and utilization strategies 
(Niklas and Enquist 2002). On short time scales, the change 
in plant photosynthate allocation to different organs affects 
the relative growth rate of each organ (Lacointe 2000). On 
long time scales, changes in plant photosynthate alloca-
tion patterns will affect plant leaf area index, nutrient and 
water absorption, root C turnover, and plant growth and may 
thereby have profound effects on community species com-
position (Jackson and others 2000; Malhi and others 2004). 
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However, studies on the allocation mechanism of plant pho-
tosynthate are far behind those on plant photosynthesis, res-
piration, and leaf growth (Cannell and Dewar 1994; Grechi 
and others 2007). Consistent conclusions on plant photo-
synthate allocation patterns still have not been drawn from 
previous studies. This severely hinders the accurate assess-
ment of terrestrial ecosystem productivity and C balance 
(Friedlingstein and others 1999; Litton and others 2007).

Plant photosynthate partitioning is influenced by several 
environmental factors such as temperature, soil water con-
tent, and nutrient condition (Domisch and others 2001; Sigee 
and others 2007). Generally, warming can lead to an increase 
of evapotranspiration and other environmental factors, which 
inevitably changes plant photosynthate distribution patterns. 
At an individual level, warming is reported to reduce the 
accumulation of plant assimilation products, increase pho-
tosynthate to shoots, and thus reduce the root-to-shoot ratio 
(Andrews and others 2001). The effect of photosynthate 
fraction is mainly determined by plant growth (Farrar and 
Williams 1991; Peng and Dang 2003) and nutrient condi-
tions (Andrews and others 2001; Vogel and others 2008). At 
the ecosystem level, these effects are more uncertain. Previ-
ous studies have reported that elevated temperature reduced 
plant biomass allocation to roots in grassland ecosystems 
(Mokany and others 2006; Fan and others 2009). In addition, 
a global synthesis found that the response of plant photosyn-
thate to temperature was different in different regions (Litton 
and Giardina 2008). In temperate and tropical regions, the 
ratio of plant biomass distribution to roots increased with 
annual mean temperature, whereas in northern forests, this 
ratio showed the opposite trend (Litton and Giardina 2008). 
This may be attributable to the increase of soil N mineraliza-
tion and nutrient supply in response to annual temperature 
increase, resulting in a decrease in the ratio of plant photo-
synthate to belowground organs in northern forests (Vogel 
and others 2008). In swamp meadows and alpine meadows 
on the Qinghai-Tibet Plateau, both aboveground and root 
biomass increased under warming treatment in two mead-
ows, and the biomass allocation pattern changed signifi-
cantly from the upper soil to the deeper soil layers in warmer 
plots (Li and others 2011). However, in semi-arid and arid 
grasslands, plant production was strongly restricted by soil 
water availability, and the decrease of soil water content in 
response to warming may have different effects on plant bio-
mass allocation compared with other ecosystem types. To 
date, the effects of warming on plant biomass allocation are 
far from clear, especially in semi-arid and arid grasslands.

Soil nutrient availability is another important factor that 
influences plant photosynthate allocation. At an individual 
level, soil nutrient [mainly nitrogen (N)] shortages could 
increase the proportion of plant photosynthate allocated to 
roots, while the plant could distribute more photosynthate to 
leaves in nutrient-rich conditions. This pattern is consistent in 

various vegetation (shrubs, herbs, or woody plants) and plant 
life (annual or perennial plants) types (Cronin and Lodge 2003; 
Vanninen and Makela 2005; Muller-Landau and others 2006; 
Grechi and others 2007). Under future global change scenar-
ios, knowing how plant photosynthate allocation responds to 
atmospheric N deposition will be essential for understanding 
terrestrial ecosystem C cycle. However, studies on the effects 
of N addition on photosynthetic product allocation at different 
time scales are still lacking, especially in alpine ecosystems.

The Tibetan Plateau has an average altitude of more than 
4000 m and covers about 2.5 million  km2, 35% of which is 
widely covered with alpine meadows (Zheng and others 1979). 
Alpine meadow ecosystems play important roles in both C 
uptake and storage as well as the maintenance and develop-
ment of livestock husbandry (Kato and others 2006; Yang 
and others 2009). Over the past several decades, the Tibetan 
Plateau has experienced a pronounced warming (Yu and oth-
ers 2010; Zhang and others 2013). Although atmospheric N 
deposition is relatively low on the Qinghai-Tibetan Plateau, 
ranging from 8.7 to 13.8 kg N ha−1 year−1 in the northeast (Lü 
and Tian 2007) and 10 kg N ha−1 year−1 in Damxung County 
(Zong and others 2016), the N deposition rate has shown an 
increasing trend in the past decades (Jia and others 2014). 
Alpine ecosystems are particularly susceptible to continued 
N deposition in the long term because of the thin soils and low 
biological buffering capacity (Williams and others 1996; Wil-
liams and Tonnessen 2000; Bowman and others 2006). Our 
previous study indicated that warming could result in a decline 
in soil water content, and soil water content was considered 
as one of the key factors regulating ecosystem processes in 
this semi-arid ecosystem (Zong and others 2013; Shen and 
others 2015). Thus, to examine the responses of plant photo-
synthate allocation to elevated temperature and N deposition, 
we conducted a manipulative experiment including warming 
and N addition using an in situ 13CO2 pulse-labeling experi-
ment over a diurnal time scale and biomass allocation over an 
annual time scale in an alpine meadow ecosystem. We hypoth-
esized that (1) warming could increase the proportion of plant 
photosynthate to roots, as the effect of elevated temperature 
was regulated by soil water content decline under a warming 
treatment, (2) N addition alone could reduce the proportion of 
plant photosynthate allocated to roots as nutrient availability 
improved, and (3) the effects of warming and additional N can 
be complementary for plant photosynthate allocation.

Materials and Methods

Site Description and Experimental Design

This study was performed in an alpine meadow in the 
Damxung grassland station on the south-facing slope of the 
Nyainqentanglha Mountains, approximately 3 km north of 
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Damxung County, Tibet Autonomous Region (91°05′ E, 
30°29′ N, 4333 m a.s.l). Climate in this site is characterized 
as a semi-arid continental type, with a mean annual tem-
perature of 1.3 °C and mean annual precipitation of 477 mm 
(Zong and others 2016). Precipitation mainly occurs in the 
growing season, with 85% falling from June to August. 
Annual potential evapotranspiration is 1725.7 mm (Shi and 
others 2006), and the aridity index is 3.6 (annual potential 
evapotranspiration divided by annual precipitation). The 
soil is classified as Mat-Gryic Cambisol, corresponding to 
Gelic Cambisol, with a depth of approximately 0.3–0.5 m. 
Detailed soil properties can be found in the study by Zong 
and others (2014). This alpine meadow is dominated by 
the sedges Kobresia pygmaea C.B. Clarke var. pygmaea 
and Carex montis-everestii, and the grass Stipa capillacea 
Keng, with total coverage of 30–50%. Total atmospheric 
inorganic N deposition at this study site is approximately 
10.0 kg N ha−1 y−1 (Zong and others 2016).

This was a factorial experiment with two levels of warm-
ing (control and year-round warming) and two levels of N 
(control and 4 g N m−2 year−1). Four treatments (control 
(CK), N addition (N), Warming (W), and + Warming + N 
addition (W + N) treatments) were organized in a rand-
omized block design with five replicates for each treatment. 
We followed the method of the International Tundra Experi-
ment (ITEX) and applied ten open-top chambers (OTCs) 
(Henry and Molau 1997), a passive warming device to gen-
erate artificially warmed conditions for five controls (warm-
ing alone) and five N addition plots (combination treatment 
of warming and N addition). The OTCs, with a 100-cm-
diameter top opening, 140-cm-diameter bottom, 40 cm in 
height, and a bottom area of 1.54 m2, were made of 3-mm-
thick polycarbonate plastic. This material has high solar 
transmittance in visible and ultraviolet wavelengths (about 
90%) (De Frenne and others 2010). In N addition plots, we 
applied a pulse of aqueous ammonium nitrate  (NH4NO3) at 
a rate of 2 g N m−2 year−1 at the beginning and peak grow-
ing season in early-June and early-August, respectively. This 
N addition rate was designed to approximate the projected 
increases in atmospheric deposition in this region by the year 
of 2050 (Galloway and others 2004).

We set up the warming plots in early July 2010 and 
synchronously monitored the warming effects on year-
round air temperature, soil moisture, and temperature at 
5 cm depth using a HOBO weather station on half-hour 
frequency (Onset Inc., Bourne, MA, USA). The buffer-
ing distance between each replicate was at least 3 m. The 
warming device significantly increased air temperature and 
soil surface (0–5 cm) temperature, but decreased soil sur-
face (0–5 cm) moisture (Figs. S1 and S2 in Online Appen-
dix). From June 2012 to September 2014, the OTC warm-
ing devices increased air and soil temperature by 1.6 and 
1.4 °C, respectively, and reduced soil moisture by 4.7% (v/v) 

(Figs. S1A–C, S2A–C in Online Appendix). Therefore, the 
warming devices created warmer but dryer conditions. Pre-
cipitation levels were 312.8, 332.5, and 431.9 mm in the 
2012, 2013, and 2014 growing seasons (from June to Sep-
tember), respectively (Fig. S2D in Online Appendix).

13C Pulse‑Labeling

The 13CO2 labeling experiment was conducted at 11:00 in 
the morning on 14 August 2014: three replicate plots were 
labeled in each treatment. The 13CO2 pulse was applied 
simultaneously (within 2–3 min) into each chamber. The 
chambers were 50 cm long, 50 cm wide, and 10 cm high and 
consisted of four timber bars covered with transparent poly-
ethylene film with more than 90% transmittance of photo-
synthetically active radiation. In the center of each chamber, 
a 15-cm-high timber bar was inserted into the soil. To avoid 
gas losses, the film was buried into the soil and additionally 
sealed with wet soil afterwards (Hafner and others 2012).

The 13CO2 gas was produced by injecting 8 mL of 4 M 
sulphuric acid  (H2SO4) into a solution of distilled water con-
taining 0.8 g sodium carbonate  (Na2

13CO3) enriched with 
13C to 99 at.%. Plastic tubes containing the  Na2

13CO3 solu-
tion were fixed to timber bars in the center of each cham-
ber. The chamber was then closed and  H2SO4 was carefully 
injected into the  Na2

13CO3 solution using syringes, to ensure 
complete evolution of 13CO2 into the chamber atmosphere. 
The tiny hole left by the injection was covered with scotch 
tape to avoid gas leakage. To guarantee a uniform distribu-
tion of 13CO2, a 5-volt fan was used inside the chamber. The 
labeling chambers were kept closed for 5 h (Wu and others 
2010).

Plant Tissue and Soil Sample Collection and Analysis

Shoot, root, and soil samples were collected on the labeling 
day (coded as 0 day) and the following 2, 7, 14, and 28 days 
after labeling. Plant aboveground parts of all species were 
harvested and pooled as shoot samples by clipping at the 
soil surface. Soil cores (5 cm in diameter) were taken to 
15 cm depth. All roots and soil in the cores were carefully 
extracted and sieved with a 2-mm sieve. Soil samples passed 
through the sieve were air-dried for total C and 13C analysis. 
The sampled roots were carefully washed by wet sieving 
through a 0.5-mm sieve to remove attached soil and debris. 
Shoot and root samples were oven-dried at 65 °C for 48 h.

Annual plant aboveground biomass was estimated 
by a non-destructive sampling method (Lin and oth-
ers 2011; Wang and others 2012). Briefly, the average 
height and cover of vegetation canopy were measured 
using a 50-cm × 50-cm quadrat divided into twenty-five 
5 cm × 5 cm sub-squares in each plot on August 15 in 
each year from 2012 to 2014. In 2012, we also carried out 
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this process in a nearby alpine meadow by measuring the 
mean height and cover of the vegetation canopy, harvest-
ing, oven-drying, and weighing plant materials. The equa-
tion that was used to simulate the relationship between 
aboveground biomass (AGB) and vegetation height (H) 
and cover (C) was AGB = 0.269 + 3.466  C + 0.752  H 
(R2 = 0.658, P < 0.001, N = 80). Plant community inves-
tigation was conducted every year and we modified the 
equation every year according to the investigation. We 
also used a soil drill sampler (5 cm in diameter) to take 
0–10-cm and 10–20-cm soil samples in mid-August and 
these root samples were immediately washed, separated, 
oven-dried at 65 °C for 48 h, and weighed.

Plant tissues and soil samples were ground to a homo-
geneously fine powder manually using a MM 200 steel 
ball mill (Retsch GmbH, Haan, Germany), packed in tin 
cups, and combusted in an elemental analyzer. Carbon 
content and 13C/12C ratio were measured with a MAT 253 
stable isotope ratio mass spectrometer system (Mat 253, 
Finnigan MAT, Bremen, Germany).

Calculations and Data Analysis

The natural abundance of 13C in samples was expressed as 
δ13C ‰ units relative to Pee Dee Belemnite. To facilitate 
comparisons with other studies, we also calculated the 
enrichment values as 13C at.% excess, the increase in 13C 
atoms due to pulse-labeling expressed as the percentage 
of total C atoms in the sample using the following equa-
tions (Wu and others 2010; Hafner and others 2012):

where Rsample is the isotope ratio of sample 13C/12C, and 
0.011237 is the ratio of 13C/12C in Pee Dee Belemnite. 13C 
at.% represents the percent of 13C atoms in total C atoms.

To estimate the amount of 13C incorporated into vari-
ous plant and soil pools, the following equation was used 
(Hafner and others 2012; Wu and others 2010):

where C pool size is the C content in shoots, roots, and soil, 
and was assumed to be constant during the whole tracing 
period. Atmospheric background was corrected using 13C 
at.% excess instead of δ13C as in the above equation.

Rsample =

(

�
13C

1000
+ 1

)

× 0.011237,

13C atom% =

(

Rsample

Rsample + 1

)

× 100,

13C at.% excess = 13C at.% of samples − 13C at.% of natural abundance,

13C amount (mgm−2) = 13C at.% excess × C pool (gm−2) × 10,

Statistical Analysis

Statistical analysis was performed using the SPSS 16.0 soft-
ware package (SPSS, Chicago, IL, USA). A two-factor anal-
ysis of variance (ANOVA) followed by Duncan’s multiple 
comparisons was used to detect the effects of warming and 
N addition on aboveground and belowground plant biomass 
as well as the proportion of deep-layer parts to total root bio-
mass. Linear regression was used to analyze the relationship 
between the change in δ13C in plant root and the differences 
in soil temperature and water content under warming and 
ambient conditions. Statistical significance was P < 0.05. All 
the figures were produced using Origin Pro 8.0 (OriginLab 
Corporation, Northampton, MA, USA).

Results

Allocation Patterns of Plant Production 
between Aboveground and Belowground

Compared with the control, warming significantly reduced 
aboveground biomass by 38, 36, and 43%, whereas N addi-
tion significantly increased aboveground biomass 22, 30, 
and 55% from 2012 to 2014, respectively (Fig. 1A). Above-
ground biomass was increased by the coupling treatment 
with N addition and warming in 2012, but not significantly 
affected in the following 2 years (Fig. 1A). Belowground 
biomass was not affected by warming in 2012, but signifi-
cantly increased with treatment time (Fig. 1B). Both N addi-
tion and its interaction with warming substantially enhanced 
belowground biomass (Fig. 1B).

The belowground/aboveground biomass ratio increased 
in warming treatments including warming alone and its 
interaction with N addition from 2013 on (Fig. 1C). Further 
analysis indicated a distinct increase in deeper layer root 
biomass ratio at the depth of 10–20 cm compared with the 
total profile in warming and its interaction with N addition 
treatments (Fig. 1D). The addition of N alone only increased 
the ratio of deeper layer root biomass (10–20 cm) in 2012, 
but had no significant effects on root biomass distribution 
(Fig. 1D).

Dynamics of Plant Assimilate Partitioning 
in Different Pools

The δ13C values in shoot samples under warming were mark-
edly enriched after labeling (314‰) compared with unla-
beled controls (− 27‰). In the following 2 days, these val-
ues decreased by 54.8% and stayed between 50 and 100‰ 
(Fig. 2A). The addition of N tended to decrease the propor-
tion of newly fixed C allocation to shoots, whereas warming 
tended to slightly increase δ13C in shoots (Fig. 2A).
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13C pulse-labeling also increased the values of δ13C in 
plant roots and these values exhibited a gradual increase in 
labeling. Warming delayed the time of newly fixed C allo-
cation to plant roots (Fig. 2B). The maximum δ13C value 
in roots under N addition occurred in 7 days after labeling, 
whereas under warming and W + N treatments the peak of 
δ13C was postponed to 14 days. At the end of the labeling 
period, the δ13C values in plant roots under control condi-
tions were higher than those under other treatments 28 days 
after labeling (Fig. 2B).

13C Allocation within the Plant–Soil System 
during the Labeling Period

13C contents in plant–soil system were obtained by calcu-
lating δ13C allocation to each pool. The proportion of plant 
newly fixed photosynthate allocated to leaves decreased 
gradually, but increased in allocation to plant roots. The 
amount of 13C allocated to soil increased at the beginning 
and then declined (Fig. 3).

In the control, the proportion of plant photosynthate 
allocated to plant leaves decreased from 87.1 to 47.5% 
during the tracing period, and those in warming and 
W + N treatments were significantly lower than the control 
(Fig. 3A). The proportion of plant photosynthate to roots 
increased gradually from 11.0 to 49.4% at the beginning 
of labeling, with significantly higher values in warming 
and W + N treatments than in the control, and N addition 
alone (Fig. 3B). The distribution ratio of photosynthate to 
soil increased at the beginning and then decreased, but the 
proportion under warming was the highest in the tracing 

period (mean value was 4.0%). The proportions for the 
control, N addition, W + N treatments were 3.0, 2.8, and 
2.8%, respectively (Fig. 3C).

The dynamic curve of δ13C in plant tissues showed a 
sharp decreasing trend in the first 48 h of labeling and 
then tended to be stable (Fig. 3). Therefore, the period 
of 28 days after labeling was enough to reach a state of 
equilibrium of plant photosynthetic C distribution in 
this experiment. During the tracing period, 37.2% of the 
newly fixed C was allocated to plant shoots, 38.6% to plant 
roots, and only 2.4% to the soil C pool (Table 1). Com-
pared with the control, the W + N treatment significantly 
reduced newly fixed C loss to only 9.3%. Treatments of 
warming and W + N significantly increased newly fixed 
C to roots, whereas N addition alone allocated less C to 
roots (Table 1).

Factors Regulating Plant Assimilate and Production 
Allocation

From analysis of the relationship between δ13C and envi-
ronmental factors, the change of δ13C was not correlated 
with soil temperature (Fig. 4A), but significantly decreased 
with soil water content in warming and ambient condition 
(Fig. 4B). A greater difference of soil moisture inside and 
outside the warming device led to more plant photosyn-
thetic C being allocated to the root system, indicating that 
the decrease in soil water was the main reason for more C 
allocation to plant roots.

Fig. 1  Effects of warming and 
N addition on plant above-
ground (AGB, A), belowground 
biomass (BGB, B), the ratio 
of BGB to AGB (C), and the 
proportion of deep-layer (10–
20 cm) to total root biomass 
(D). Different lowercase letters 
in the same year represent sig-
nificant differences among treat-
ments. Mean ± SE are shown in 
the figure (N = 4). Abbreviations 
of CK, N, W, and W + N rep-
resent the control, N addition, 
warming, and combination of N 
addition with warming, respec-
tively, and below is the same
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Discussion

The OTCs in our study site created a warmer but drier 
microclimate. Warming significantly reduced aboveground 
biomass, but increased belowground biomass. This was 
consistent with our first hypothesis that the effects of warm-
ing were regulated by the decline of soil water content. The 
addition of N significantly increased aboveground biomass, 
but did not decrease belowground biomass, which was not 
consistent with our second hypothesis. The third hypoth-
esis was partly supported by the results, as the complemen-
tary effects of warming and N addition were only verified 
in aboveground biomass. Over short time scales, warming 
reduced the allocation of plant newly fixed carbohydrates 
to shoots, but increased the translocation of assimilated C 
to roots. So the allocation patterns of plant biomass under 
warming and N addition were verified at diurnal time scales. 
This result indicated that the greater the difference in soil 
moisture between the inside and outside of the warming 
device, the more plant photosynthetic C would be allocated 
to the root system, suggesting that the decrease of soil water 
was the main reason for more C allocation to plant roots.

Allocation Patterns of Plant Newly Fixed C in Alpine 
Meadow

Generally, plants have three ways to allocate newly synthe-
sized C, including assimilation into plant shoots, release into 
the atmosphere as  CO2, and transfer belowground as plant 
roots and soil organic matter (Wu and others 2010). The 
plant shoot δ13C value tended to be stable after 48 h, which 
confirmed that a part of the new photosynthesis C was stored 
in plant shoots and 28 days after labeling was enough to 
reach a state of equilibrium of plant photosynthetic C dis-
tribution in this experiment. The δ13C value in plant shoots 

Fig. 2  Temporal variations of C isotope composition soil C during 
the 28-day trace period. Mean values (N = 3) and standard devia-
tions are given. BV represents the background values of δ13C in soil. 
Abbreviations of treatments can be seen from this figure

Fig. 3  Temporal changes of 13C distribution among different treatments after labeling in plant shoot (A), root (B), and soil (C) C pool (%). 
Abbreviations of treatments are the same with Fig. 2
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decreased rapidly by 54.8% within 48 h after labeling in the 
control. Ostle and others (2000) showed that δ13C of plant 
tissue decreased by 77.4% in 48 h in a field experiment in 
hilly grassland, whereas over the 28-day tracing period of 
this study, 63.6% of the photosynthetic C was exported from 
the shoots in the control treatment, in the range of 30–90% in 
grasslands (Baxter and Farrar 1999; Dilkes and others 2004; 
Wu and others 2010). In the first 48 h, the plant assimilate 
output from plant shoots accounted for 50.7% of total output 
during the whole tracing period (Fig. 2), indicating that the 
transport of the newly fixed photosynthetic C was very rapid, 
and mostly completed within 1 or 2 days.

Effects of Warming on Allocations of Plant 
Assimilate C

Compared with the control, warming significantly reduced 
aboveground biomass, but increased belowground bio-
mass, which was consistent with the first hypothesis. This 
was similar to other studies. A transect study in temperate 
grasslands reported that the proportion of belowground bio-
mass increased as temperature decreased (Fan and others 
2009), whereas in swamp meadow and alpine meadow on 
the Qinghai-Tibet Plateau, both plant aboveground and root 

biomass increased under warming treatment in these two 
meadows (Li and others 2011). These different responses 
may be attributed to ecosystem types and soil water avail-
ability, as soil moisture is a key limiting factor in grassland 
ecosystems, especially in semi-arid and arid types (Niu and 
others 2008). However, in semi-arid and arid grasslands, 
plant production is strongly restricted by soil water avail-
ability and warming effects on plant biomass allocation may 
be different in other ecosystem types. The decrease of soil 
water content under warming treatments could lead plant 
production to be more severely limited by soil water avail-
ability, and plants may allocate more biomass to roots to 
obtain enough water to maintain growth. Previous studies 
also found that warming could enhance soil nutrient avail-
ability (Rustad and others 2001; Turner and Henry 2010), 
and plants generally allocated less biomass to belowground 
in fertile soil (Reynold and Thornley 1982). However, the 
change of biomass allocation patterns in this study was not 
caused by an increase in soil nutrient availability, because 
our previous study found that warming did not significantly 
change soil N content (Zong and others 2013). Thus, this 
change should be mainly attributed to the decline of soil 
water content. This was also verified by the short time of 
photosynthetic product allocation.

Table 1  Allocation of newly fixed C to plant shoots, roots, and soil pool in the plant–soil system after labeling for 28 days

a The unit of labeled C was mg m−2. Abbreviations of treatments can be seen in Fig. 2
b Calculated as the difference between total assimilated C and total C remaining in the system on the 28th day

Destination of C CK N W W + N

Labeled  Ca Partitioning 
rate (%)

Labeled C Partitioning 
rate (%)

Labeled C Partitioning 
rate (%)

Labeled C Partition-
ing rate 
(%)

Total amount 245.8 100 220.2 100 192.5 100 197.0 100
Total  lossb 53.5 21.8 48.7 22.1 40.1 20.8 18.3 9.3
Shoots 91.4 37.2 92.6 42.0 59.0 30.7 65.4 33.2
Roots 94.9 38.6 74.3 33.8 84.6 43.9 109.1 55.4
Soil 5.9 2.4 4.6 2.1 8.7 4.5 4.3 2.2

Fig. 4  Dependence of change 
of δ13C in plant root on the dif-
ferences of soil temperature (A) 
and water content (B) between 
warming treatment and ambient 
condition
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In the control, the proportion of photosynthate distrib-
uted to plant aboveground parts decreased from 87.1 to 
47.5% during the whole tracing time, significantly higher 
than that in the warming treatment (Fig.  3), indicating 
that warming was not conducive to C distribution to plant 
shoots. This result was contrary to other studies (Farrar and 
Williams 1991; Andrews and others 2001), because the 
effects were confounded by the decline of soil water con-
tent under warming treatments. Studies have shown that the 
effect of warming on ecosystem processes was regulated by 
soil moisture (Niu and others 2008; Hutchison and Henry 
2010). Hutchison and Henry (2010) reported that the effect 
of warming on plant production was closely related to inter-
annual variability of rainfall. Warming in arid years had 
no effect on plant production, whereas in wet years both 
winter warming and annual warming and N addition dou-
bled plant aboveground productivity (Hutchison and Henry 
2010). When plant growth is restricted by water availability, 
plants always allocate more photosynthate to roots to pro-
mote water absorption (McConnaughay and Coleman 1999; 
Ngugi and others 2003). In addition, we found that δ13C 
in plant roots gradually increased from 11.0 to 49.4% in 
the control, whereas the δ13C value in roots under warming 
treatment was significantly higher than that in the control 
and N addition treatments (Fig. 3B). Warming, especially 
under N addition, facilitated more photosynthetic C alloca-
tion to plant roots (Table 1). This result corresponded to the 
allocation pattern of plant biomass at an annual time scale. 
In the semi-arid alpine meadow, soil moisture is an impor-
tant factor limiting plant production, and warming will lead 
to a decrease in the soil water content in the surface soil. To 
absorb enough soil water to maintain plant production and 
growth, plants allocated more C to deep soil layers. Thus, 
we concluded that under warming treatments, the effects of 
soil water content decline on plant photosynthate allocation 
were more significant than temperature increases.

Effects of N Addition on Plant Assimilate C 
Allocation

The addition of N significantly increased aboveground bio-
mass, which was consistent with the second hypothesis and 
verified by the 13C labeling experiment (Fig. 3B). Previous 
studies have shown that plants generally distributed more 
photosynthate to leaves in nutrient-rich conditions (Rey-
nold and Thornley 1982), whereas soil nutrient (mainly N) 
shortages could increase the proportion of plant photosyn-
thate to roots in different vegetation types (shrubs, herbs, 
or woody plants) (Cronin and Lodge 2003; Vanninen and 
Makela 2005; Grechi and others 2007). Generally, N short-
ages can reduce cytokinin transportation from plant roots 
to shoots and slow down the cell division rate, and result in 
the decrease of sucrose delivery from phloem to stem (Ping 

and others 2010). This delivery block causes the accumula-
tion of sucrose around the phloem and an increase in leaf 
pressure. Cell division in plant roots continues, while cell 
swelling does not change, which results in a swelling gra-
dient between the source (leaf) and the sink (root) and the 
allocation of relatively more photosynthetic products to roots 
(Ping and others 2010).

In addition to the direct effect, we also found that N 
addition and warming have complementary effects on plant 
biomass allocation at different time scales, especially for 
aboveground biomass. At a short-term scale, the 13C labe-
ling experiment showed that N addition could promote the 
effects of warming on the allocation of plant newly fixed 
photosynthate to roots (Fig. 3B). At inter-annual time scales, 
plants allocated more biomass to belowground under the 
combination treatment of N addition with warming than 
warming treatment alone (Fig. 1). Further analysis showed 
that warming significantly decreased soil inorganic N after 
the winter warming period (Zong 2015), and this indicated 
that the winter warming process would lead to soil N loss, 
consistent with other studies (Hutchison and Henry 2010; 
Turner and Henry 2010). Increased N mineralization in cold 
seasons at a time when plant roots are largely inactive, cou-
pled with a frequency increase of soil freeze–thaw cycles, 
may increase soil N losses by leaching or gas emission (Hob-
bie and Chapin 1996; Matzner and Borken 2008; Turner and 
Henry 2010). The addition of N compensated for soil N loss 
due to warming, so N addition and warming have comple-
mentary effects on plant biomass allocation.

Conclusions

In this study, the investigation of plant carbon allocation at 
different time scales indicated that warming significantly 
changed the allocation patterns of newly fixed assimilates 
between aboveground and belowground. Warming reduced 
the allocation of carbohydrates to shoots, but increased the 
translocation of assimilated C to plant roots, and specifically 
increased the proportion of plant roots in the deep layers to 
draw water from the deeper soil. However, warming under 
N addition can increase the proportion of assimilated C allo-
cated to stems and leaves. A decline in the soil water content 
at the surface might be the main cause for more plant newly 
fixed photosynthate allocation to roots. Climate warming in 
future global change scenarios will lead plants to allocate 
more biomass to belowground and thus affect C turnover and 
storage in these alpine meadows; however, this pattern also 
depends on atmospheric N deposition and the seasonality 
and amounts of precipitation.
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