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Abstract The study was conducted at the grain-filling

stage to elucidate the physiological and molecular mech-

anisms of the root to enhance yield under alternate wetting

and drying (AWD) compared with conventional irrigation.

Measurements of root dry weight (RDW), seed setting rate,

total kernel weight, and grain yield were determined along

with 2D electrophoresis to detect altered protein expression

in response to moderate soil drying (MD) and the subse-

quent recovery phase as moderate wetting (MW) under

AWD compared with continuous wetting under CI. We

found significant enhancement in RDW as well as 14.30 %

increase in inferior spikelets, seed setting and 10.32 g m-2

increase in final yield. Among the total 55 differentially

expressed proteins, 26 proteins were differentially expres-

sed under both MD treatment and MW treatment, whereas

14 proteins under MD and 15 proteins under MW showed

distinct expression. Differentially expressed proteins were

involved in redox homeostasis, signaling, defense, energy,

photoassimilate remobilization and included 14-3-3

proteins, cysteine-rich receptor-like protein kinase, mon-

odehydroascorbate reductase, ascorbate peroxidase, glu-

tathione S-transferases, translationally controlled tumor

protein, remorin C-terminal domain containing protein,

protein disulfide isomerase, DnaK family protein, cysteine

synthase, aminotransferase, phosphoglycerate mutase,

pyruvate phosphate dikinase, ATP synthase, and abscisic

acid stress ripening (ASR1). The differential expression

ratio of the signaling, redox, and defense group proteins

was almost the same under MD and MW. ABA signaling,

amino acid synthesis, and N remobilization were upregu-

lated under MD, and the enzymes involved in carbohy-

drate, energy, and transportation metabolism were

upregulated under MW. In conclusion, at the rice grain-

filling stage, AWD is a potential technique to trigger sig-

naling and the enzymatic protein network for systematic

senescence initiation, root enlargement for maximum

nutrient uptake, and maximize photoassimilate remobi-

lization for yield enhancement.

Keywords Rice (Oryza sativa) � Root � Alternate wetting
and drying irrigation � Grain filling

Introduction

Rice is one of the most important food crops in the world,

and a primary source of food for more than half the world’s

population (Khush 2005). At present, this population fig-

ure is estimated to be 7.1 billion which is expected to cross

9 billion in 2050 (Godfray and others 2010). Water short-

age and land scarcity are constraints to producing enough

food for this rapid population growth (Von Braun 2007).

Asia is the most populated area of the world, where the

traditional rice production system (CI) has been practiced
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through irrigated puddled soil for several centuries (Cass-

man and Pingali 1995). To grow rice through CI, water

demand is two to three times more than the other important

cereals such as wheat and maize. According to one esti-

mate, up to 3000 L of water are required to produce 1 kg

rice (Bouman and others 2007).

However, the scarcity of fresh water has resulted in a

serious threat to the sustainability of the irrigated rice

system in Asia (Carruthers and others 1997). Due to a

looming water crisis, we must look for alternative water

saving methodologies for sustainable rice production. A

small savings of water due to a change in the current

practice can result in a significant reduction in the total

water consumption for rice farming (Bouman 2002). In the

Philippines and China, alternative wet and moderate drying

(AWD) trials at the grain-filling stage reduced water con-

sumption from 13 to 30 % of the total water required under

CI, with no yield decline (Cabangon and others 2001;

Belder and others 2002).

Along with water savings, AWD during the mid- and

late-grain-filling stages could enhance grain filling. Con-

ventionally, it was thought that poor grain filling is the

consequence of carbon source limitation. But, recent

studies have shown that at the initial grain-filling stage,

plants have adequate sucrose so carbohydrate supply

should not be the major problem. The low activities of key

enzymes in carbon metabolism can be the major reason for

poor grain filling. Proper field practices, such as AWD can

activate key enzymes to enhance systematic whole-plant

senescence and accelerate the grain-filling rate (Yang and

Zhang 2006). Further studies are needed using molecular

approaches to investigate the AWD pathway including

signaling, hormonal, defense, senescence, remobilization

of specific gene expression, and the biochemical processes.

The root being the soil water status sensor (SWS) has a

dramatic role at the grain-filling stage to enhance yield.

The root functions as the primary SWS, and directly trig-

gers a network regulating the stress response of the whole

plant including reduced photosynthesis in the canopy and

increased water and nutrient uptake through the root (Yang

and others 2004a). So, the root is an important player to

enhance rice yield under AWM (Patel and others 1984;

Osaki and others 1997; Yang and others 2004b; MingMing

and others 2010).

To explore the underlying mechanism of rice root sys-

tem responses to AWD treatment as compared with CI at

the grain-filling stage, a comparative proteomics approach

was adopted based on a differential protein expression

pattern along with monitoring the physiological responses

of roots. AWD induced protein expression changes to

trigger root growth, systematic senescence, remobilization

of reserves from sheath-stem to grain pools and thus

enhanced grain yield.

Materials and Methods

Research Material

Pot experiments were carried out in the experimental field

of Agricultural Ecological key laboratory, Fujian Agricul-

ture and Forestry University, Fuzhou, Fujian, China, during

April to October, 2013. A large-panicle rice cultivar (Oryza

sativa l. SSP. Indica) ‘‘Jin Hui 809’’ was used as research

material. Plastic buckets 0.3 m length and 0.23 m bottom

diameter were used. The soil was sandy loam with avail-

able nitrogen, phosphorus, and potassium at 190.60,

126.60, and 201.60 mg kg-1, respectively. Fertilizer

application throughout the growth period was according to

the dosage of 225 kg hm-2 converted into a barrel, the

fertilizer proportion of N:P:K = 1:0.5:0.8, including 6:4

nitrogen ratio of basal dressing for tillers to top dressing for

spike grains. The conventional irrigation method was used

throughout the growing period until anthesis. At 6 days

after anthesis, two different water irrigation treatments

were adopted: alternate wetting and drying irrigation

(AWD) and conventional irrigation (CI). Under AWD, the

pots were not irrigated until the soil water potential reached

–25 kPa at 15–20 cm depth, and then pot soil was irrigated

up to 2–3 cm, this irrigation pattern was repeated until

1 week before the rice was harvested. Under CI, the soil

was kept flooded with 2–3 cm water depth in the pots until

1 week before the rice was harvested. Each sampling,

either at harvesting or before harvesting, was done in three

replicates both from AWD and CI pots based on a ran-

domized design and means were tested by the least sig-

nificant difference at P\ 0.05 (LSD0.05) following

analysis of variance (ANOVA) using SPSS.

Root Dry Weight Measurement

The roots were sampled every 5 days from flowering stage

through maturity (5, 10, 15, 20, 25, 30, and 35 day) in four

replications from AWD and CI. For sampling, plants were

taken out from plastic buckets. Each bucket contained three

plants and was considered as one replication. After care-

fully removing soil, roots were washed with water, paper

dried, and blanched in oven at 105 �C for 30 min, then,

dried at 80 �C for 48 h until constant weight and RDW was

calculated.

Yield Measurement

The first and second kernels of each panicle were desig-

nated as superior and the third and fourth as inferior ker-

nels. Four replications were performed for each parameter

and each replication was the average of four measurements.
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Panicles having at least five solid grains were denoted as an

effective panicle. At harvesting, the number of effective

panicles (panicles m-2), grain number per panicle, seed

setting percentage of superior and inferior spikelets were

measured from both AWD and CI rice plants. Then, grains

per sampled plant were dried at 70�C up to a constant

weight, dehulled and the thousand-kernel weight (TKW)

(g) and yield (g m-2) were measured.

Protein Extraction

Sampling was done at two stages with three biological

replicates for protein extraction; 1st at moderate soil drying

(MD), when the soil water potential reached -25 kPa at

15–20 cm depth and the 2nd at moderate soil wetting

(MW), when the soil water potential reached 0 kPa at

15–20 cm depth (almost 48 h after irrigation). Sampling

was also done from CI as control at the same time on both

stages. For sampling, plants were taken out from plastic

buckets. Soil was removed and roots were washed thor-

oughly with water, paper dried, cleaned roots were cut into

equal pieces, homogenized well into 5.0 g samples, frozen

immediately in liquid nitrogen, and stored at -80 �C prior

to protein extraction. The protein extraction protocol was

followed with some modifications from Wang (2006).

Briefly, 5 g of freeze-dried roots mixed with a little poly-

vinyl pyrrolidone (PVP) and liquid nitrogen, were ground

into fine powder. The sample was resuspended in 10 mL

100 % acetone followed by centrifugation at 16,0009g for

30 min. This step was repeated thrice until the supernatant

was achromatic. Then, the protein pellet was lyophilized in

a vacuum centrifuge. The lyophilized powder was again

resuspended in 10 mL precooled buffer containing 30 %

sucrose, 1.5 % SDS, 4 % b-mercaptoethanol using 1.5 M

Tris–Hcl (pH 8.8) as solvent, and 10 mL of Tris

(dimethylaminomethyl) phenol, then, sonicated with

occasional vortexing for 1 h, subsequently centrifuged at

16,0009g for 30 min at 4 �C. The upper phenol phase was
dissolved in five times the volume of precooled 0.1 M

ammonium acetate methanol-solution using 100 %

methanol as solvent and kept at -20 �C overnight. The

thawed sample was centrifuged at 16,0009g for 30 min at

4 �C. After supernatant decanting, the precipitant was

washed by the precooled, 100 % acetone containing

0.07 % b-mercaptoethanol. This step was repeated 2–3

times until the supernatant became transparent. Finally, the

protein pellet was vacuum-dried and this powdered protein

was dissolved in a lysis buffer (pH 8.0) containing 8 M

urea, 4 % CHAPS, 40 mM Tris, and 65 mM DTT. The

mixture was homogenized for 1 h by ultra-sonification and

centrifuged at 16,0009g for 30 min under 4 �C. The

supernatant fluid was collected and stored at -80 �C for

proteomic analysis. Protein concentration was measured

through Bradford method using the BSA (bovine serum

albumin) as a standard (Bradford 1976).

2-D Electrophoresis and Protein Spots Selection

The extracted root proteins were separated by 2D-PAGE

using isoelectric focusing (IEF) gel strips (linear, 24 cm

long, immobiline dry, pH 4–7) for the first dimension and

SDS-PAGE (26 cm 9 20 cm) for the second dimension.

The 2D electrophoresis process was carried out in a 2D-

Electrophoresis Apparatus (GE Healthcare). Protein

(1.3 mg) was loaded in each IEF strip. A series of elec-

trophoreses were performed such as gradient to 500 V for

1 h; gradient to 1000 V for 2 h; gradient to 8000 V for 3 h;

hold at 8000 V for 3 h; and gradient to 1000 V protection

voltage for 24 h. The strips were equilibrated in an equi-

libration buffer (0.1 M Tris–HCl pH 8.8, 6 M urea, 30 %

(v/v) glycerol, and 2 % (w/v) SDS) on a shaking table two

times. At the first time, the strips were equilibrated in

equilibration buffer I (65 mM DTT) and kept shaking for

15 min. At the second time, they were treated in equili-

bration buffer II (2.5 % (w/v) IAA) and kept shaking for

15 min. The second dimension electrophoresis was per-

formed on SDS-PAGE comprising 12 % (v/v) polyacry-

lamide gels at 15 mA current per gel until the end of

electrophoresis. The gels were stained with Colloidal

Coomassie Blue G-250 for at least 12 h. Protein gels were

scanned with the GE Image scanner III, and reproducible

differential protein spots were detected using Imagemaster

5.0 software.

In-Gel Protein Digestion

Differential protein spots were transferred into 1.5 mL

Eppendorf tubes. Each protein sample was washed twice

with deionized water for 10 min, destained twice with

100 lL of acetonitrile (ACN) (50 %)/100 mM NH4HCO3

(50 %) for 10 min, and dehydrated with 100 % ACN.

Finally, samples were digested with 20 lL of trypsin

(12.5 lg/mL) using 50 mM NH4HCO3 as solvent for

30 min on ice and then, incubated at 37 �C overnight. The

termination reaction was carried out with 0.2 % v/v formic

acid and after centrifugation the supernatant was used for

LC–ESI–MS/MS analysis.

LC–ESI–MS/MS Analysis and Protein Identification

The parameters of equipment were performed by the pro-

tocol of Zhang and others (2012). Briefly, high-perfor-

mance liquid chromatography: Thermo Scientific Accera

System; Chromatographic Column: BioBasic C18 Column

(100 9 0.18 mm, the particle size: 5 lm); Loading quan-

tity of sample: 10 lL; Mobile phase: Solvent A was 0.1 %
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HCO2H (formic acid) mixed in water, and Solvent B was

0.1 % HCO2H mixed in ACN; Gradient: held at 2 %

Solvent B for 2 min, and increased linearly up to 90 %

Solvent B over the course of 60 min. The peptides were

eluted from a C18 column at a flow rate of 160 lL/min and

then electro-sprayed directly into an LTQ mass spectrom-

eter using a spray voltage of 3.5 kV and a constant capil-

lary temperature of 275 �C.

Data Analysis

Data acquisition was performed under data-dependent MS/

MS scanning mode. Mass spectrometry analysis of the raw

data obtained in Proteome Discoverer1.2 relative quanti-

tative analysis software and database retrieval was per-

formed through UNIPROT database (http://www.uniprot.

org/ download the Oryza sativa. Fasta protein libraries 2.6

Software Analysis). For functional analysis and character-

ization of proteins, Mapman software Version 3.6.0RC1

was used. For graphical analysis, Origi 8.0 was used.

Results

AWD Effect on RDW and Yield

Figure 1 showed that under AWD and CI, dry matter of

rice roots declined as the grain-filling process proceeded

toward the harvest stage due to progressive metabolite

mobilization from root to grain. The RDW under AWD

was significantly higher than that of CI from 10 DAF up to

35 DAF. Consistent with more RDW, Table 1 showed that

the rice seed setting rate in inferior spikelets was also

enhanced up to 14.30 %, the thousand-kernel weight was

increased up to 2.98 %, and ultimately the yield was

increased up to 10.32 % under AWD as compared with CI.

This increasing yield trend indicated a promising role of

AWD at the grain-filling stage. Yet, we did not find any

significant difference in some measurements like the

effective panicle (panicles m-2), grain number per pani-

cles, and seed setting rate in superior spikelets (Table 1).

AWD Effect on Root Proteins Expression

To further understand the underlying mechanism on a

molecular basis, we subsequently carried out a compre-

hensive proteomic analysis. Root proteins extracted from

two stages, moderate drought (MD at -25 kPa), and 48 h

after moderate wetting (MW at 0 kPa) along with well-

watered pots (CI) as control, were separated by 2-DE

technique. Gels are presented in Fig. 2. Through Image

master 5.0 software; 72 reproducible, differential protein

spots (Fig. 3) were screened based on ]1.5 as upregula-

tion and ^0.5 as downregulation parameters and finally

LC–ESI–MS/MS identified 71 proteins (Table 2). Some

proteins were detected as fragments of the same proteins

(Table 3; SD). Finally, 55 screened differentially expressed

root proteins were analyzed through Venn graph (Fig. 4).

Proteins (47.3 %, 26/55) were differentially expressed

under both MD and MW stages, whereas 25.5 % (14/55)

and 27.3 % (15/55) of proteins were distinctly expressed

under MD and MW, respectively. Among 26 reproducible

proteins, 10 proteins were upregulated and 16 were

downregulated under MD, whereas 14 proteins were

upregulated and 12 were downregulated under MW

(Fig. 4). Up- and downregulation trends among distinctly

expressed proteins were almost the same under MD and

WD (Fig. 4).

A total of 55 screened differentially expressed root

proteins were analyzed by MapMan Software Version

3.6.0RC1 using Loc IDs (Table 4; SD) for their functional

annotation. On the basis of MapMan ontology, differential

proteins were categorized into twelve groups (Fig. 5). All

groups including stress/redox defense response (21.82 %),

signaling proteins (9.09 %), hormone (3.64 %), carbohy-

drate metabolism (20 %), energy metabolism (9.09 %),

transportation (5.4 %), and alcoholic fermentation

(5.45 %) were important in regulation of grain filling.

Some proteins functionally uncharacterized by MapMan

such as prefoldin subunit 4 (loc_os03g43020.1) were found

to be involved in root structural and enzymatic protein

stability based on previous reports (Fig. 6).

Alternative cycles of MW and MD highly upregulated

redox, defense, and signaling group proteins. Among the

signaling group, cysteine-rich receptor-like protein kinase

(loc_os04g56430.1) and 14-3-3 protein (loc_os02g36974.1)

Fig. 1 Graphical demonstration of root dry weight (g) trend from

anthesis to grain-filling stage under the alternative wetting and drying

(AWD) in comparison with conventional irrigation (CI). Each point

represents the mean ± SE of three independent experiments. Anal-

ysis of variance showed a significant increase in RDW under AWD

(P\ 0.005)
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were upregulated, whereas kinase pfkB family

(loc_os02g41590.1) and WD repeat-containing protein

(loc_os01g49290.1) were downregulated. Among the redox

and stress defense group, two isoforms of glutathione S-

transferase (loc_os03g04240.1, loc_os03g04240.1) were

only upregulated under MD, no differential expression was

found under MW. Two isoforms of ascorbate peroxidase

(loc_os03g17690.1, loc_os07g49400.2) were only upregu-

lated in MW but not under MD. Of the two isoforms of

monodehydroascorbate reductase, one (loc_os08g44340.1)

was upregulated under MD and other (loc_os09g39380.1)

was upregulated under MW. Disulfide isomerase was

upregulated in both stages, salt stress root protein

(loc_os01g13210.1) was upregulated in MD but downregu-

lated in MW. DnaK family protein (loc_os02g53420.1) was

upregulated in both, whereas dirigent (loc_os10g18820.1,

loc_os10g18870.1) was only upregulated in MD.

MD stress upregulated proteins involved in protein

synthesis network stability including remorin C-terminal

domain protein (loc_os04g45070.1, loc_os10g36000.1)

Table 1 Yield and crop components from anthesis to maturity under the alternative wetting and drying (AWD) in comparison with conventional

irrigation (CI)

Manage The effective panicles (panicles m-2) Grain number per panicle Setting percentage (%) TKW (g) Yield (g m-2)

Inferior grain Superior grain

CI 149.3a 290.3a 49.95b 88.64.a 27.54b 848.82b

AWD 149.6a 288.3a 64.25a 87.74a 28.36a 936.35a

Increase (%) – – 14.30 – 2.98 10.32

TKW thousand-kernel weight. All data were analyzed through SPSS using analysis of variance (ANOVA). The least significant difference

(P\ 0.05) was used for mean analysis. a, a represent non-significant difference; a, b represent significant difference

Fig. 2 Representative 2-DE gel

electrophoresis images of the

rice root proteome sampled at

10D, 20D, and 30D after

anthesis at moderate drying

(MD), moderate wetting (MW)

stages under the alternative

wetting, and drying (AWD) in

comparison with conventional

irrigation (CI). Extracted

proteins were separated by 2D-

SDS-PAGE and stained using

Coomassie brilliant blue. The

MW (in kiloDalton) and pI

(isoelectric point) of the

proteins are shown on the left

and at the top, respectively
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involved in RNA regulation and aminotransferase (loc_

os10g25130.1), ketol-acid reductoisomerase (loc_os01g4

6380.1), cysteine synthase (loc_os01g74650.3), involved in

amino acid metabolism. Among hormone metabolism-re-

lated proteins, abscisic stress-ripening protein (loc_os11g06

720.1) and kelch repeat protein (loc_os09g07460.1) were

upregulated under MD. Glutamine synthetase (loc_

os03g12290.1) involved in N-metabolism was also upregu-

lated.

Following the MD cycle (protein synthesis network), the

MW cycle resulted in upregulation of important enzymatic

proteins involved in carbohydrate, energy, and transporta-

tion metabolism. Carbohydrate metabolism-related proteins

included phosphoglycerate kinase (loc_os06g45710.1),

phosphoglycerate mutase (loc_os01g60190.1), and jacalin-

like lectin (loc_os01g24710.4); energy and transportation

metabolism proteins included ATP synthase (loc_os09g089

10.1, loc_os06g37180.1), succinyl-CoA ligase (loc_os02g40

830.2), lactate/malate dehydrogenase (loc_os05g49880.1,

loc_os10g33800.1), transketolase (loc_os06g04270.1), and

transaldolase (loc_os01g70170.1).

Discussion

AWD treatment (Fig. 1) significantly enhanced RDW,

consistent with a previous report that low water potential

induces downstream signals through enhanced root growth

for maximum water and nutrient uptake (Saab and others

1990). We also detected that AWD treatment at the grain-

filling stage increased the yield up to 10.32 % with a

significantly enhanced seed setting rate in inferior spikelets

up to 14.30 % and TKW up to 2.98 g (Table 1), consistent

with the report that moderate drought stress at the grain-

filling stage enhances reallocation of prestored carbon to

the grains and accelerates the grain-filling rate especially in

inferior spikelets as compared to the well-watered condi-

tion (Yang and others 2001b). Water deficit during grain

filling also induces systematic senescence to maximize the

remobilization of carbon into grains (Yang and others

2001a). In this paper, we have investigated the molecular

mechanism for the observed effects of AWD. Our proposed

model based on the involvement of significantly altered

protein expression profile is shown in Fig. 7 and discussed

below.

AWD treatment activated important signaling molecules

in root cells including 14-3-3 protein (loc_os02g36974.1),

cysteine-rich receptor-like protein kinase (RLKs;

loc_os04g56430.1), and abscisic stress-ripening protein

(ABA; loc_os11g06720.1). RLKs (loc_os04g56430.1)

transmit stress signals into cells interior machinery through

coordination of a membrane spanning segment and an

extracellular cytoplasmic domain (Walker 1994). In addi-

tion, 14-3-3 proteins (loc_os02g36974.1) generally act as

activators, repressors, adapters, or chaperones which

interact physically with target (client) proteins to execute

signal transduction (Chung and others 1999; Sehnke and

others 2002). ABA (loc_os11g06720.1) hormonal signaling

in root triggers root cell growth to maximize water and

nutrient uptake (Saab and others 1990; Schoonheim and

others 2007). Through long-distance signaling, ABA reg-

ulates stomatal conductance, decreases transpirational

water loss (Zhang and Davies 1991; Schroeder and others

2001), and represses expression of certain photosynthesis-

related gene families to inhibit photosynthesis and initiates

programmed cell death (Bartholomew and others 1991).

Along with signaling activation, root cell longevity was

also upregulated through redox homeostasis and the

defense network. Key antioxidant defense enzymes

involved in the plant cell detoxification system such as the

cytosolic/mitochondrial glutathione S-transferases (GSTs;

EC 2.5.1.18; loc_os10g38489.1, loc_os03g04240.1) and

monodehydroascorbate reductase (MDAR; loc_os08g

44340.1) were upregulated under moderate drying. This

upregulated antioxidant defense network detoxifies toxic

products of lipid oxidation and S-glutathiolated proteins

generated by oxidative stress (Awasthi and others 2005;

Dixon and others 2002). In addition to redox homeostasis,

these enzymes have also been involved in signal trans-

duction pathways by interacting with important signaling

proteins in a non-enzymatic way (Dixon and others 2002;

Laborde 2010).

Under MW, upregulation of monodehydroascorbate

reductase (MDAR; loc_os09g39380.1) and ascorbate

Fig. 3 A representative 2-D gel electrophoresis image with 72

differentially expressed labeled protein spots extracted from rice root

in response to the alternative wetting and drying irrigation (AWD)

listed in SD Table 2
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Table 2 List of differential root proteins identified by liquid chro-

matography/electrospray ionization tandem mass spectrometry (LC–

ESI–MS/MS) analysis in response to moderate soil drying (MD) and

subsequent recovery phase as moderate wetting (MW) under the

alternative wetting and drying (AWD) irrigation in comparison with

conventional irrigation (CI) along with biological function catego-

rization based on Mapman Software Version 3.6.0RC1 analysis

Bin code Locus ID ANb Coverage MPc Mr (kDa)/pId Scoree Protein name MD MW

Signaling

23.3.2.1 loc_os02g41590.1 34 65.98 15 37/5.16 215.91 Kinase, pfkB family DR DR

30.2.99 loc_os04g56430.1 24 36.43 6 27.3/5.15 123.49 Cysteine-rich receptor-like kinase UR UR

30.5 loc_os01g49290.1 55 49.4 11 36.2/6.44 124.64 WD Repeat-containing protein DR –

30.7 loc_os02g36974.1 46 48.09 10 29.7/4.77 200.13 14-3-3 Protein UR UR

Redox and stress

20.1 loc_os10g18820.1 67 23.53 2 22.1/5.07 21.44 Dirigent UR –

20.1 loc_os10g34920.1 43 59.78 8 19.5/4.7 92.68 Secretory protein UR –

20.1 loc_os12g38120.1 31 14.35 2 23/5.44 30.2 Thaumatin family DR DR

20.1 loc_os10g18870.1 63 18.44 2 19.9/5.64 49.82 Dirigent UR –

20.2.1 loc_os02g53420.1 37 30.49 13 72.9/5.59 267.63 DnaK family protein UR UR

20.2.1 loc_os11g47760.1 39 34.05 14 71.1/5.21 248.14 DnaK family protein – UR

20. 2.3 loc_os01g13210.1 17 63.73 7 21.8/4.92 109.56 Salt stress root protein UR DR

20.2.3 loc_os01g13210.1 18 45.59 4 21.8/4.92 67.64 Salt stress root protein UR –

21.1 loc_os11g09280.1 10 46.68 17 56.82/5.12 336.33 Protein disulfide isomerase UR UR

21.2 loc_os08g44340.1 6 40.23 10 46.7/5.47 199.29 Monodehydroascorbate reductase UR –

21.2 loc_os09g39380.1 53 35.35 10 47.9/5.71 137 Monodehydroascorbate reductase – UR

21.2.1 loc_os03g17690.1 20 58.8 10 27.14/5.65 249.97 Ascorbate Peroxidase – UR

21.2.1 loc_os07g49400.2 19 53.78 10 27.1/5.36 293.3 Ascorbate peroxidase – UR

26.9 loc_os03g04240.1 61 31.56 6 25.6/7.18 151.04 Glutathione S-transferase UR –

26.9 loc_os03g04240.1 62 29.33 3 25.6/7.18 59.41 Glutathione S-transferase UR –

26.9 loc_os10g38489.1 60 16.31 3 25.3/5.99 91.76 Glutathione S-transferase UR –

Hormone metabolism

35.2 loc_os11g06720.1 28 39.86 2 15.5/6.7 15.33 Abscisic stress-ripening UR DR

17.7.3 loc_os09g07460.1 25 28.92 6 34.4/5.2 61.89 Kelch repeat protein UR DR

17.7.3 loc_os09g07460.1 26 10.54 2 34.4/5.2 25.07 Kelch repeat protein – DR

17.2.3 loc_os04g27060.1 29 42.25 9 38.2/5.97 103.67 Oxidoreductase – DR

17.7.1.5 loc_os06g11240.1 30 18.68 6 42.41/6.34 73.46 12-Oxophytodienoate reductase DR DR

Carbohydrate metabolism

2.2.1.1 loc_os01g66940.1 11 66.56 19 34.70/5.19 330.17 Kinase, pfkB family DR DR

4.1 loc_os09g38030.1 71 14.71 5 51.7/5.59 68.63 UTP-glucose-1-phosphate DR –

4.8 loc_os01g05490.1 69 64.82 13 27/5.49 160.71 Triosephosphate isomerase – DR

4.10 loc_os06g45710.1 72 29.93 7 42.3/6.61 93.15 Phosphoglycerate kinase DR UR

4.11 loc_os01g60190.1 8 49.02 14 60.75/5.68 372.37 Phosphoglycerate mutase – UR

4.12 loc_os10g08550.5 44 39.24 10 45.8/5.54 151.74 Enolase – DR

6.5 loc_os03g31750.2 65 4.67 2 79.7/5.36 33.05 Phosphate dikinase DR UR

6.5 loc_os03g31750.1 7 46.79 24 96.49/5.60 472.71 Phosphate dikinase – DR

6.9 loc_os04g31700.1 54 35.22 7 41.3/5.85 186.06 Methylisocitrate lyase DR –

26.16 loc_os01g24710.4 35 70.8 6 14.3/5.12 77.76 jacalin-like lectin DR UR

Energy metabolism

1.1.4 loc_os09g08910.1 48 29.67 10 55.3/6.34 144.88 ATP synthase – UR

1.1.4 loc_os06g45120.1 9 62.42 33 68.43/5.34 638.8 ATP synthase DR –

1.3.8 loc_os06g04270.1 49 29.48 15 80/6.58 172.75 Transketolase – UR

8.1.6 loc_os02g40830.2 52 45.93 15 44.6/6.32 218.42 Succinyl-CoA ligase DR UR

8.1.9 loc_os05g49880.1 15 62.06 13 35.41/8.10 182.4 Lactate/malate dehydrogenase DR UR

8.1.9 loc_os05g49880.1 16 42.35 10 35.41/8.10 208.88 Lactate/malate dehydrogenase – UR
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peroxidase (APx; EC, 1.11.1.11; loc_os07g49400.2,

loc_os03g17690.1) enzymes may regulate the glutathione-

ascorbate cycle (GAC) to detoxify ROS (H2O2 into H2O)

in root cells. The coupling of APx and MDA reductase can

scavenge H2O2 using ascorbate as a specific electron donor

(Bloom and others 2004; Teixeira and others 2006;

Leterrier and others 2005).

Protein disulfide isomerase (PDI; loc_os11g09280.1)

was upregulated under both MD and MW plays an

important role in nascent protein disulfide formation, the

rearrangement of incorrect disulfides, and thiol-dependent

redox reactions (Lundstrom and Holmgren 1990; Freedman

and others 1998). It also works as an essential folding

catalyst and chaperone (Laboissiere and others 1995).

Upregulation of PDI and DnaK family/70 kDa hsp stress-

specific proteins (loc_os02g53420.1, loc_os11g47760.1)

Table 2 continued

Bin code Locus ID ANb Coverage MPc Mr (kDa)/pId Scoree Protein name MD MW

8.2.9 loc_os10g33800.1 1 42.17 9 35.5/6.09 185.18 Lactate/malate dehydrogenase DR UR

Amino acid metabolism

13.1.1.3.1 loc_os10g25130.1 58 9.11 3 52.6/6.65 122.97 Aminotransferase UR –

13.1.1.3.1 loc_os10g25130.1 59 38.51 12 52.6/6.65 119.75 Aminotransferase UR –

13.1.4.1 loc_os01g46380.1 47 36.83 15 62.8/6.67 165.08 Ketol-acid reductoisomerase UR DR

13.1.5.3.1 loc_os01g74650.3 45 46.45 13 41.8/6.7 144.45 Cysteine synthase UR –

13.2.3.2 loc_os08g09250.2 56 13.75 3 32.5/5.67 48.63 Glyoxalase – UR

Transportation

34.1 loc_os06g37180.1 12 33.4 11 54.02/5.19 298.43 ATP synthase – UR

34.1 loc_os06g37180.1 13 44.67 13 54/5.19 260.4 ATP synthase DR DR

7.2.2 loc_os01g70170.1 40 12.5 3 46.4/6.44 91.48 Transaldolase – UR

Fermentation

5.2 loc_os05g39310.1 27 34.21 12 65.1/6.23 109.19 Thiamine pyrophosphate enzyme – UR

5.2 loc_os05g39320.1 4 35.37 12 65.08/6.25 137.92 Thiamine pyrophosphate enzyme DR UR

5.3 loc_os11g10510.1 2 36.68 9 41.18/6.46 140.86 Dehydrogenase DR DR

5.3 loc_os11g10510.1 3 29.55 9 41.18/6.46 85.95 Dehydrogenase DR UR

Lipid metabolism

11.8 loc_os01g57570.1 51 52.71 6 21.7/6.54 140.48 NADPH-dependent FMN reductase DR DR

N-metabolism

12.2.2 loc_os03g12290.1 70 43.42 10 39.2/6.07 104.39 Glutamine synthetase UR DR

12.2.2 loc_os02g50240.1 57 8.43 2 39.2/5.73 39 Glutamine synthetase – DR

RNA regulation

27.3.99 loc_os04g45070.1 23 41.26 7 22.40/5.50 145.4 Remorin C-terminal domain protein UR DR

27.3.99 loc_os10g39270.1 64 17.13 5 41.5/5.64 49.44 Nucleoid DNA-binding DR DR

27.3.99 loc_os10g36000.1 21 42.69 8 18.65/6.14 142.8 Remorin C-terminal domain UR DR

Unknown

35.1 loc_os11g43900.1 33 35.12 4 18.9/4.68 81.96 Translationally controlled tumor UR –

35.1 loc_os03g43020.1 66 40.48 4 14.7/4.67 77.78 Prefoldin subunit UR –

a Protein spot numbers correspond to 2-DE gels shown in Fig. 3. bAccession number. cMP, number of query matched peptides. dTheoretical Mr

(kDa) and pI values. Mr, molecular weight; pI, isoelectric point. eScore, ions score of identified proteins. UR corresponds to upregulated. DR

corresponds to downregulated

Fig. 4 Venn diagram analysis of the differentially expressed proteins

of rice root (Oryza sativa l. SSP. Indica) ‘‘Jin Hui 809’’ under

moderate drying (MD) and moderate wetting (MW). The ‘‘? ‘‘and

‘‘-‘‘indicate up- and downregulated proteins, respectively
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Fig. 5 Biological functional

categorization of identified

differential root proteins

described in SD Table 4 based

on MapMan 3.6.0RC1 analysis

under the alternative wetting

and drying irrigation (AWD)

through pie graph

Fig. 6 Comparative description of the functional proteins groups

expressed under the moderate wetting (MD) and the moderate drying

(MW) through pie and bar graphs. The pie diagram shows the

differential proteins classification based on biological function

between MD and WD. The bar graph shows functional classification

of differential proteins based on up- and downregulated protein

groups
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may assist maintenance of root cell proteins in their func-

tional conformations and avoid the aggregation of non-

native proteins (Wang and others 2004). Being a 70 kDa

hsp distinct multidomain structure (ATP-binding site, the

peptide recognition and binding site), it also plays a reg-

ulatory role in energy metabolism (Kiang and Tsokos

1998) through protein translocation, signal transduction,

and transcriptional activation (Vierling 1991; Miemyk

1997; Bukau and Horwich 1998). As a molecular chaper-

one, prefoldin protein (loc_os03g43020.1) upregulation

may further promote protein network stability (Smith and

others 2000).

Increased expression of enzymatic and non-enzymatic

antioxidant defense pathways including MDAR, APx,

GSTs, and PDI as discussed above, may scavenge exces-

sive ROS and maintain redox homeostasis. ROS at con-

trolled levels serve as second messengers in signal

transduction cascades during sensing of environmental

change. This results in appropriate adjustments to gene

expression, metabolism, and physiology (Foyer and Noctor

2005) as part of root cell defense.

Amino acid concentration is positively correlated with

the rate of N uptake and remobilization (Lalonde and

others 2004), AWD treatment upregulated mitochondrial

cysteine synthase (loc_os01g74650.3), and ketol-acid

reductoisomerase (loc_os01g46380.1) enzymes involved in

important amino acid biosynthesis cysteine, valine, leucine,

isoleucine etc. (Lithgow and others 2004; Tyagi and others

2005). Glutamine synthetase (loc_os03g12290.1) upregu-

lation enhances synthesis of glutamine (Gln), the pre-

dominant free amino acid in phloem for N remobilization

(Simpson and Dalling 1981). This shift in amino acid

balance has the potential to trigger programmed N uptake

and the remobilization network (Good and others 2004;

Herrera-Rodriguez and others 2006). Aminotransferase

(loc_os10g25130.1) further catalyzed transamination

reactions and triggered amino acids remobilization (Beatty

and others 2009). The cysteine-containing molecules also

contribute to enhance root antioxidant defense properties

(Carmel-Harel and Storz 2000; Bulaj and others 1998).

Induction of MW after MD stress induced upregulation

of phosphoglycerate mutase (PGM; loc_os01g60190.1),

phosphoglycerate kinase (loc_os06g45710.1), and pyruvate

phosphate dikinase (PPDK; loc_os03g31750.1) involved in

glycolysis and gluconeogenesis, respectively. In addition to

the glycolysis and gluconeogenic pathway protein

Fig. 7 The proposed metabolic

pathway of rice root (Oryza

sativa l. SSP. Indica) ‘‘Jin Hui

809’’ to enhanced grain filling in

response to the alternative wet

and moderate drying irrigation

(AWD)
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upregulation, we also detected jacalin-like lectin (JRLs;

loc_os01g24710.4) upregulation under the MW cycle.

JRLs have a carbohydrate binding site and are located in

the cytoplasm and vacuole (Van Damme and others 2002).

The b-sheet of JRLs is non-covalently bound to the barrel
which enlarges the sugar-binding pocket, thus facilitating

the entrance of larger sugar moieties (Van Damme and

others 2002; Arockia Jeyaprakash and others 2005), pro-

moting remobilization. Lectins have been proposed as major

storage proteins, however, many lectins in plant defense are

well-documented as important components of plant innate

immunity (Fernandez-del-Carmen and others 2013). Under

MW, C remobilization triggered through coordinative

expression of PGM, PPDK, and JRLs, might be partly

responsible for greater grain size and higher yield.

Under AWD, a feedback on Calvin cycle activity due to

inhibited photosynthesis causes soluble carbohydrate

accumulation (Mirzaei and others 2013). ATP provides the

energy for remobilization of these assimilates to the grain.

In our studies, we found upregulation of ATP synthase (EC

3.6.3.14; loc_os09g08910.1, loc_os06g37180.1), as well as

TCA cycle enzymes such as lactate/malate dehydrogenase

(loc_os05g49880.1, loc_os10g33800.1) and succinyl-CoA

ligase (loc_os02g40830.2).

The ATPase activity has a significant positive correla-

tion with the accumulation of grain photoassimilates in the

form of starch and total sugar contents in wheat (Zhou and

others 2009), and rice grain filling (Qiyu and Zhiqiang

1989). In root, H?-ATPase abundance in epidermal,

endodermis, and phloem cells (Parets-Soler and others

1990; Jahn and others 1998) establishes the proton gradient

for the membrane energization used for transport processes

including root nutrient uptake and photoassimilate remo-

bilization. During grain filling, upregulation of the TCA

cycle may lead to improved uptake and transport of

metabolites to grains.

The TCA cycle can also provide energy for the activated

H?-ATPase detected in our results. This enzyme extrudes

protons and decreases the apoplastic pH activating enzymes

involved in cell wall loosening (Hager 2003). Further, ABA

(abscisic stress-ripening protein) also triggers auxin trans-

port in the root tip which activates proton secretion in the

root tip to maintain root elongation and root hair develop-

ment under moderate water stress (Xu and others 2013).

The transported auxin also activates the plasma membrane

H?-ATPase to release more protons along the root tip and

trigger cell growth (Xu and others 2013).

Dirigent (78 kD native protein) upregulation triggers the

stereoselective bimolecular phenoxy radical coupling,

especially in lignin and lignan biosynthesis (Davin and

Lewis 1995; Davin and others 1997). Lignin strengthens the

cell wall structure along with secondary cell wall formation

to maintain functional stability under stress and assists long-

distance water conductance (Denness and others 2011).

Secretory protein (loc_os10g34920.1) also supports the

synthesis of many complex cell wall components (Bassham

and others 2008). The TCA cycle and root hormonal acti-

vation as discussed above through MD and MW alternation

might improve root ATP energy level, respiratory network,

secondary cell wall synthesis, and root dry weight accu-

mulation (Fig. 1), along with uptake of metabolites.

A switch from central carbon metabolism to alcoholic

fermentation may be important for starch synthesis and

accumulation during grain development (Xu and others

2008). Upregulation of dehydrogenase (loc_os11g10510.1)

and thiamine pyrophosphate enzyme (loc_os05g39310.1;

loc_os05g39320.1) transitioned from cell growth and dif-

ferentiation to starch synthesis.

Abscisic acid stress ripening (ASR1; loc_os11g06720.1)

is also proposed to have a role in re-routing the metabolites

from source to sink leading to the senescence of the source

organs as it can serve as a transcription factor of the gene

encoding a hexose transporter during ripening (Fillion and

others 1999). MD upregulated grain setting defect 1

(GSD1), encodes a putative remorin protein

(loc_os10g36000, loc_os04g45070). The expression level

of GSD1 may serve as a means by which the distribution of

photoassimilates among different tissues is regulated,

having important implications for improving rice yield

(Gui and others 2014). These proteins serve as the traffic

control centers of the phloem in directing the transport of

photoassimilates (Oparka and Turgeon 1999).

In conclusion, adoption of the AWD treatment at the

grain-filling stage resulted in improved grain yield. We

hypothesis that the underlying molecular mechanism of

yield enhancement is based on upregulation of GF14-3-3,

ABA, and RLKs signaling molecules which directly or

indirectly induced root growth through downstream sig-

naling and triggered systematic senescence through long-

distance signaling. Dirigent and secretory protein activa-

tion maintained structural defense of root cells through

secondary cell wall synthesis. Redox homeostasis triggered

by the antioxidant defense proteins may protect root cell

membrane lipids, proteins, and DNA/RNA. Protein disul-

fide isomerase and 70 kDa heat shock protein may stabilize

root protein functional conformation. A feedback on the

Calvin cycle activity due to inhibited photosynthesis may

upregulate glycolysis and gluconeogenesis to enhance

soluble carbohydrates accumulation and remobilization

through jacalin-like lectin upregulation. In addition, cys-

teine synthase, ketol-acid reductoisomerase, glutamine

synthetase, and aminotransferase activation may shift the

amino acid balance and exploit N uptake. ATP synthase,

lactate/malate dehydrogenase, and succinyl-CoA ligase

activation may increase the energy available in root cells

for these C, N assimilates remobilization. Abscisic acid
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stress ripening, grain setting defect 1 (GSD1), and dirigents

may serve as the traffic control centers of the phloem in

directing photoassimilate transport from source to sink,

especially toward inferior spikelet grain filling, which

might have helped to increase rice yield up to 10.23 g m-2

(Table 1) under AWD as compared to CI.
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