

Exogenous Abscisic Acid Alleviates Cadmium Toxicity by Restricting Cd^{2+} Influx in *Populus euphratica* Cells

Yansha Han^{1,2} • Shaojie Wang¹ • Nan Zhao¹ • Shurong Deng¹ • Chenjing Zhao¹ • Nianfei Li¹ · Jian Sun³ · Rui Zhao¹ · Huilan Yi² · Xin Shen¹ · Shaoliang Chen¹

Received: 4 June 2015 / Accepted: 4 January 2016 / Published online: 26 February 2016 - Springer Science+Business Media New York 2016

Abstract Abscisic acid (ABA), a widely known phytohormone involved in the plant response to abiotic stress, plays a vital role in mitigating Cd^{2+} toxicity in herbaceous species. However, the role of ABA in ameliorating Cd^{2+} toxicity in woody species is largely unknown. In the present study, we investigated ABA restriction on Cd^{2+} uptake and the relevance to Cd^{2+} stress alleviation in Cd^{2+} -hypersensitive *Populus euphratica*. ABA (5 μ M) markedly improved cell viability and growth but reduced membrane permeability in CdCl₂ (100 μ M)-stressed *P*. euphratica cells. Moreover, ABA significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), contributing to the scavenging of Cd^{2+} -elicited H_2O_2 within *P. euphratica* cells during the period of CdCl₂ exposure (100 μ M, 24–72 h). ABA alleviation of Cd²⁺ toxicity was mainly the result of ABA restriction of Cd^{2+} uptake under Cd^{2+} stress. Steady-state and transient flux recordings showed that ABA inhibited Cd^{2+} entry into

Yansha Han, Shaojie Wang, and Nan Zhao contributed equally to this work.

Electronic supplementary material The online version of this article (doi:[10.1007/s00344-016-9585-2\)](http://dx.doi.org/10.1007/s00344-016-9585-2) contains supplementary material, which is available to authorized users.

& Rui Zhao ruizhao@bjfu.edu.cn

- ¹ College of Biological Sciences and Technology, Beijing Forestry University, Box 162, No.35 Tsinghua East Road, Haidian District, Beijing 100083, People's Republic of China
- ² School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, People's Republic of China

 Cd^{2+} -shocked (100 µM, 30 min) and short-term-stressed P. euphratica cells $(100 \mu M, 24-72 h)$. Non-invasive micro-test technique data showed that H_2O_2 (3 mM) stimulated the Cd^{2+} -elicited Cd^{2+} influx but that the plasma membrane (PM) Ca^{2+} channel inhibitor LaCl₃ blocked it, suggesting that the Cd^{2+} influx was through PM Ca^{2+} -permeable channels. These results suggested that ABA up-regulated antioxidant enzyme activity in Cd^{2+} stressed P. euphratica and that these enzymes scavenged the Cd²⁺-elicited H₂O₂ within cells. The entry of Cd²⁺ through the H_2O_2 -mediated Ca^{2+} -permeable channels was subsequently restricted; thus, Cd^{2+} buildup and toxicity were reduced in the Cd^{2+} -hypersensitive species, P. euphratica.

Keywords ABA \cdot Antioxidant enzyme \cdot H₂O₂ \cdot NMT \cdot Cd^{2+} influx \cdot *Populus euphratica*

Introduction

Cadmium (Cd) is one of the most toxic heavy metals for herbaceous (DalCorso and others [2008](#page-9-0)) and woody plants (Elobeid and others [2012](#page-9-0); Polle and others [2013](#page-9-0)). It exerts adverse effects on various physiological processes such as photosynthesis, respiration, nitrogen metabolism, and nutrient uptake, leading to growth retardation and even plant death (di Toppi and Gabbrielli [1999](#page-9-0); DalCorso and others 2008). Cd²⁺ is suggested to enter plant cells through non-selective cation channels and Fe^{2+} , Ca^{2+} , and Zn^{2+} transporters/channels such as iron-regulated transporter (IRT) 1, zinc-regulated transporter/IRT-like protein, and natural resistance-associated macrophage protein family transporter (Clemens [2006](#page-9-0); Lux and others [2011;](#page-9-0) Zhu and others [2012](#page-10-0); Sasaki and others [2012\)](#page-9-0). Excessive Cd^{2+} in

the cytoplasm usually promotes a burst of reactive oxygen species (ROS), for example, superoxide (O_2^-) and hydrogen peroxide (H_2O_2) (Gallego and others [2012](#page-9-0); Chmielowska-Bak and others [2014\)](#page-9-0). ROS accumulation can lead to oxidative stress within the cells, including harmfully changing protein structures, destroying phospholipids, and eventually causing membrane damage and enzyme inactivation (Gallego and others [2012\)](#page-9-0). In contrast, initially produced ROS also can be signaling molecules that regulate a large network in the cellular response to cadmium toxicity (Sandalio and others [2009](#page-9-0); Rodríguez-Serrano and others 2009). We previously found that H_2O_2 activates plasma membrane (PM) Ca^{2+} channels, thus enhancing entry of Cd^{2+} into the cytosol (Sun and others [2013](#page-10-0)).

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and development, including seed dormancy, stomatal movement, and lateral root formation (Finkelstein and others [2002\)](#page-9-0). It also plays important roles in plant adaptations to various environmental stresses, including drought, salinity, and freezing (Zhu [2002](#page-10-0); Thompson and others [2007](#page-10-0); Guo and others [2012;](#page-9-0) Yang and others [2014\)](#page-10-0). Recently, increasing numbers of reports have confirmed the physiological roles of ABA in heavy metal tolerance in herbaceous plants. For example, exogenous ABA significantly enhances cadmium tolerance by reducing transpiration rates in rice seedlings (Hsu and Kao [2003,](#page-9-0) [2005](#page-9-0)). In Atractylodes macrocephala, the application of ABA increases antioxidant enzyme activity and decreases Pb^{2+} content in shoot and root tissues, alleviating Pb^{2+} -induced oxidative damage (Wang and others [2013a](#page-10-0)). Moreover, pretreatment with ABA markedly attenuates the inhibitory effect of Cd^{2+} on adventitious rooting in mung bean seedlings (Li and others [2014](#page-9-0)). However, the underlying mechanisms responsible for the altered Cd^{2+} toxicity remain largely unknown in woody plants.

As a salt-tolerant tree, Populus euphratica is usually used as a model species to explore mechanisms involved in plant responses to salinity (Chen and others [2001](#page-9-0), [2002a,](#page-9-0) [2002b,](#page-9-0) [2003;](#page-9-0) Sun and others [2009,](#page-9-0) [2010a;](#page-9-0) Chen and Polle [2010;](#page-9-0) Han and others [2013;](#page-9-0) Ma and others [2013](#page-9-0); Chen and others [2014;](#page-9-0) Polle and Chen [2015](#page-9-0)). However, P. euphrat*ica* is sensitive to Cd^{2+} stress, mainly because of a failure to activate early protective responses upon Cd^{2+} exposure (Polle and others [2013](#page-9-0)). Therefore, P. euphratica is considered ideal for investigating the effects of exogenous chemicals on Cd^{2+} detoxification in woody plants (Sun and others [2013](#page-10-0)). The present work aims to examine the possible role of exogenous ABA in the alleviation of cellular Cd^{2+} toxicity in *P. euphratica*. In this study, the effects of ABA on antioxidant enzyme activity, H_2O_2 accumulation, and Cd^{2+} uptake were investigated in Cd^{2+} -stressed P. euphratica cells. In addition, we used a non-invasive ion

flux technique to measure the cellular fluxes of Cd^{2+} in P. euphratica. The main objective was to examine ABA-induced alternations in ion fluxes in this poplar under cadmium stress.

Materials and Methods

Plant Material and Treatments

P. euphratica callus cells were induced from shoots as described previously (Sun and others [2010a,](#page-9-0) [2010b](#page-9-0), [2013](#page-10-0)). The cells were grown on a Murashige and Skoog (MS) solid medium (pH 5.7), supplemented with 2.5 % sucrose, 0.25 mg L^{-1} 6-BA (6-benzylaminopurine), and 0.50 mg L^{-1} NAA (1-Naphthaleneacetic acid). Cultures were maintained at 25 °C in the dark and sub-cultured every 3 weeks. Dose tests of $CdCl₂$ and ABA effects on cell growth were examined in this study. P. euphratica cells were treated with different concentrations of $CdCl₂$ (0, 25, 50, 100, and 200 μ M) supplemented with or without ABA (5 µM; Note: ABA was able to reduce the effects of Cd^{2+} on viability and membrane permeability (MP) at $5 \mu M$, Table [1](#page-2-0)). Cell growth was reduced by increasing Cd^{2+} concentrations in the medium after 3 weeks of culture (Supplementary Fig. S1). ABA could alleviate Cd^{2+} inhibition of cell growth and the ABA effect was more pronounced when the medium was supplemented with 100 μ M CdCl₂, as compared to the low (25 and 50 μ M) or high doses (200 μ M) of CdCl₂ (Supplementary Fig. S1). Thus 100 μ M CdCl₂ was used for the following experiments in this study.

Dose tests of ABA on cell viability and MP were examined in Cd^{2+} -stressed cells. After 15 days of transformation onto a fresh solid MS medium, cell cultures were incubated in a liquid MS medium (LMS) for a 6-h equilibration and then treated with or without $CdCl₂$ (100 μ M in LMS) in the absence or presence of ABA (0.5, 5, and $20 \mu M$). Control cells were treated without the addition of $CdCl₂$ or ABA. Cell samples were harvested at 72 h to examine cell viability and MP.

To examine the time course of H_2O_2 , antioxidant enzymes (SOD, CAT, and APX) and Cd^{2+} fluxes, P. euphratica cultures were exposed to $CdCl₂$ (0 or 100 µM in LMS) supplemented with or without ABA $(5 \mu M)$. Cells were sampled at 0, 24, 48, and 72 h, and used to measure H_2O_2 , antioxidant enzymes activity, and Cd^{2+} fluxes.

Determination of Cell Viability

Cell viability was determined with the fluorescent dye fluorescein diacetate as described by Sun and others $(2010b, 2012a, 2012b)$ $(2010b, 2012a, 2012b)$. Briefly, cell samples were

Table 1 Effect of exogenous ABA on cell viability and membrane permeability (MP) in P. euphratica cells under Cd^{2+} stress

Treatment	ABA (0 μ M)	ABA $(0.5 \mu M)$	$ABA (5 \mu M)$	$ABA (20 \mu M)$
Cell viability $(\%)$				
$-Cd^{2+}$	$97 \pm 4 \text{ a}^{\text{A}}$	95 ± 3 a ^A	$93 \pm 3 a^{A}$	87 ± 8 a ^A
$+Cd^{2+}$	$24 \pm 2 h^{B}$	$33 \pm 2 h^{B}$	$50 \pm 3 a^{B}$	$21 \pm 3 h^{B}$
MP(%)				
$-Cd^{2+}$	$29 \pm 4 h^{B}$	$32 \pm 1 h^{B}$	$31 \pm 2 h^{B}$	$31 \pm 4 h^{B}$
$+Cd^{2+}$	64 ± 1 a ^A	$62 \pm 2 a^{A}$	$43 \pm 4 h^{A}$	64 ± 6 a ^A

Cells were treated with $(+Cd^{2+})$ or without $(-Cd^{2+})$ 100 µM CdCl₂ for 72 h in the presence or absence of ABA (0, 0.5, 5, and 20 μ M). Each value (\pm SE) is the mean of four to five independent experiments. For cell viability measurement, at least 500 cells were examined in each experiment. Values followed by different letters in the same row (a, b; Kruskal–Wallis non-parametric test) or the same column (A, B; Mann–Whitney U test) are significant differences at $P < 0.01$

harvested and stained with 20 μ g mL⁻¹ fluorescein diacetate (Sigma-Aldrich, St. Louis, MO, USA) for 5 min in the dark at room temperature. Then the fluorescence of living cells was visualized under a Leica SP5 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) with excitation at 488 nm and emission at 515–530 nm. Cell viability was examined by measuring five randomly selected fields on each slide, and for each field at least 100 cells were analyzed.

Membrane Permeability Measurement

MP was determined in terms of relative conductivity according to Wang and others ([2007,](#page-10-0) [2013b\)](#page-10-0) and Sun and others [\(2010b](#page-9-0)). The relative change in the conductivity is due to the release of soluble solutes from the disrupted membranes. In brief, callus cells (0.2 g) were cultured in redistilled water at 25 \degree C for 2 h, and then the conductivity (C1) was measured. Thereafter, cells were heated at 95 $^{\circ}$ C for 1 h to determine the total conductivity (C2). The electrical conductivities, C1 and C2, were measured with an electrical conductivity meter (DDSJ-318, LeiCi Co., Shanghai, China).

The MP was calculated as follows:

MP $(\%) = C1/C2 \times 100$

Enzyme Activity Assays

Callus samples (0.2 g) were ground to a fine powder and homogenized with 2 mL of 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 1 % polyvinylpyrrolidone. The homogenate was centrifuged at 13,000 rpm for 20 min at $4 °C$, and the supernatant was used for the enzyme assay. Protein concentration was determined with the Pierce BCA Protein Assay Kit (Thermo, USA). In the case of APX measurement, 1 mM ascorbic acid was added to the extraction buffer. The total

activities of CAT and APX were determined as described previously (Sun and others [2010b](#page-9-0), [2013\)](#page-10-0). The activity of SOD was measured using an SOD assay kit A001-3 (Nanjing Jiancheng Bioengineering Institute, China) according to the manufacturer's instructions. The results of this enzymatic assay were given in units of SOD activity per milligram of protein $(U \, mg^{-1}$ protein) (Wang and others [2007,](#page-10-0) [2008](#page-10-0)), where 1 U of SOD was defined as the amount of enzyme producing 50 % inhibition of a colorimetric reaction between superoxide anion and a watersoluble tetrazolium salt, WST-1 (2-(4-iodophenyl)-3-(4 nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt).

Detection of Cellular H_2O_2

 H_2O_2 content was detected using the H_2O_2 -sensitive fluorescent probe H_2 DCF-DA $(2', 7'$ -Dichlorodihydrofluorescein diacetate, Molecular Probes, Eugene, OR, USA). Callus cells were incubated in 50 μ M H₂DCF-DA for 5 min in the dark. Then the cells were fixed on poly-Llysine-pretreated cover slips and washed 3–4 times with LMS solution. The specific fluorescence of H_2O_2 produced in cells was examined with a Leica SP5 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) with excitation at 488 nm and emission at 500–530 nm. Three-dimensional reconstructed images (maximum) of cells were used to calculate the relative fluorescence intensity using Image-Pro Plus version 6.0 software.

Visualization of Intracellular Cd^{2+} Levels

Cell cultures were exposed to 0 or 100 μ M CdCl₂ for 72 h in the absence or presence of $5 \mu M$ ABA. A Cd-specific fluorescent dye, LeadmiumTM Green AM, was used to detect Cd^{2+} within cells (Sun and others [2013](#page-10-0); Han and others 2014). The stock solution of LeadmiumTM Green AM was prepared by adding $50 \mu L$ dimethyl sulfoxide to

the dye. Then the stock solution was diluted 1:20 with 0.85 % NaCl. Cells were stained with LeadmiumTM Green AM for 1 h in the dark and then washed three times with 0.85 % NaCl. The fluorescence of cells was visualized under a Leica SP5 confocal microscope with excitation at 488 nm and emission at 505–530 nm. The relative fluorescence intensity was calculated with Image-Pro Plus version 6.0 software.

Measurement of Cd^{2+} Content

P. euphratica cells were treated with 100 μ M CdCl₂ for 3 weeks in the absence or presence of $5 \mu M$ ABA. Then callus cells were sampled and dried at 60 \degree C for 48 h. Dry samples (0.1 g) were digested with $HNO₃/HClO₄$ (85/15, v/v), and Cd^{2+} concentration was measured using an inductively coupled plasma optical emission spectrometer (OPTIMA 2000; PerkinElmer, USA).

$Cd²⁺$ Flux Recordings

Net Cd^{2+} flux was measured non-invasively using the noninvasive micro-test technique (NMT; NMT-YG-100, Younger USA LLC, Amherst, MA01002, USA). The protocols for the preparation of Cd^{2+} -selective electrodes were followed as described by Sun and others [\(2013](#page-10-0)) and Han and others [\(2014](#page-9-0)) with modifications. Briefly, glass micropipettes (XYPG120-2; Xuyue Sci. and Tech. Co., Ltd.) with an external tip diameter of $2-4 \mu m$ were prepulled and silanized with tributylchlorosilane. The micropipettes were filled with a backfilling solution (10 mmol/L $Cd(NO₃)₂ + 0.1$ mmol/L KCl) and then front filled with a commercially available ion-selective cocktail (Cadmium Ionophore I, 20909, Sigma-Aldrich, St. Louis, MO, USA). An Ag/AgCl wire electrode holder (XYEH01-1; Xuyue Sci. and Tech. Co., Ltd.) was inserted into the back of the electrode to produce an electrical contact with the electrolyte solution. DRIREF-2 (World Precision Instruments) was used as the reference electrode (CMC-4). The microelectrodes were calibrated in 0, 5, 10, and 50 μ M CdCl₂ solution prior to the net Cd^{2+} flux measurements. Only electrodes with Nernstian slopes >25 mV/decade were used. The ion flux was calculated using Fick's law of diffusion:

$$
J = -D(dc/dx)
$$

where J represents the ion flux in the x direction, dc/dx is the ion concentration gradient, and D is the ion diffusion constant in a particular medium. The flux data were acquired with the ASET software, which is part of the NMT system, and calculated using MageFlux developed by the XuYue company [\(http://xuyue.net/mageflux](http://xuyue.net/mageflux)).

Steady-State Cd^{2+} Flux Recording

P. euphratica cells were exposed to 0 or 100 μ M CdCl₂ for 0, 24, 48, and 72 h in the absence or presence of $5 \mu M$ ABA. Prior to flux measurement, cells were immobilized in the measuring solution (0 or 100 μ M CdCl₂, 50 μ M CaCl₂, pH 5.5) and equilibrated for 10 min. Then the steady-state Cd^{2+} flux was recorded for 10 min in each cell.

In addition, the effect of ABA pretreatment on Cd^{2+} flux was examined in this study. P. euphratica cells were pretreated with or without $5 \mu M$ ABA for 12 h, and then exposed to 0 or 100 μ M CdCl₂ for 72 h. Then the steadystate Cd^{2+} flux was measured with NMT.

Transient Cd^{2+} Flux Recording

Cells were pretreated with 5 μ M ABA, 3 mM H₂O₂, or 5 μ M ABA plus $3 \text{ mM } H_2O_2$ for 6 h, and then immobilized in the measuring solution (50 μ M CaCl₂ supplemented with or without 5 mM LaCl₃, pH 5.5). Cd²⁺ fluxes were continuously recorded for 10 min prior to the Cd^{2+} treatment. A stock solution of $CdCl₂(100 mM)$ was slowly added to the measuring solution until the final concentration in the solution reached 100 μ M, followed by continuous recording of the Cd²⁺ flux for 30 min. The data measured during the first 2–3 min were discarded because of the diffusion effects of the stock addition.

Data Analysis

Statistical analyses were performed using SPSS version 17.0 software. Unless otherwise stated, differences were considered statistically significant when $P < 0.05$. Nonparametric statistics were used to analyze the percentage data of cell viability and MP between two independent groups (Mann–Whitney U test) or among multiple groups (Kruskal–Wallis test).

Results

ABA Alleviated Cd^{2+} Toxicity in *P. euphratica* Cells

In this study, cell viability and MP (an indicator of lipid peroxidation) were examined to quantify the Cd^{2+} -induced toxicity in P. euphratica cells. CdCl₂ (100 μ M, 72 h) caused a significant decrease in cell viability but markedly increased MP (Table [1\)](#page-2-0). This indicates that Cd^{2+} treatment resulted in a distorted and disrupted membrane, leading to an increased release of intracellular solutes and thus decreased cell viability (Wang and others [2007,](#page-10-0) [2013b;](#page-10-0) Sun and others [2010b\)](#page-9-0). Of note, exogenously applied ABA reduced the effects of Cd^{2+} on viability (by 10–29 %) and MP (by 15–82 %), and the effects were more pronounced at $5 \mu M$ compared to the low $(0.5 \mu M)$ or high dose (20 μ M) (Table [1](#page-2-0)). Treatments with ABA (0.5–20 μ M) had no obvious effect on either viability or MP in the absence of Cd^{2+} (Table [1](#page-2-0)). Furthermore, our results showed that ABA could maintain cell growth under Cd^{2+} stress. As shown in Fig. 1, upon 3 weeks of 100 μ M CdCl₂ exposure, P. euphratica cells treated with ABA $(5 \mu M)$ exhibited 83 % higher fresh weight than non-ABA-treated cells. Collectively, these results indicated that ABA could alleviate Cd^{2+} toxicity in *P. euphratica* cells.

ABA Increased Antioxidant Enzyme Activity and Reduced H_2O_2 Accumulation under Cd^{2+} Stress

To examine the effect of exogenous ABA on antioxidant enzymes, we measured CAT, SOD, and APX activities in *P. euphratica* cells after 0, 24, 48, and 72 h of Cd^{2+} stress.

Fig. 1 Effect of exogenous ABA on cell growth of P. euphratica under Cd^{2+} stress. Cells were treated with or without CdCl₂ (100 µM) for 3 weeks in the presence or absence of 5 μ M ABA. a Representative images showing cell performance. b Fresh weight of cells. Each column is the mean of four to five biologically independent samples, and bars represent the standard error of the mean. Columns labeled with different letters (a, b, c) indicate significantly differences at $P < 0.05$. Scale bar 1 cm

Fig. 2 Effect of ABA on activity of antioxidant enzymes in P. euphratica cells under Cd^{2+} stress. **a** CAT; **b** SOD; **c** APX. Cells were subjected to 100 μ M CdCl₂ for 0, 24, 48, and 72 h in the presence or absence of 5 µM ABA. Each *column* is the mean of three to four biologically independent samples, and bars represent the standard error of the mean. Columns labeled with different letters (a, b, c, d, e) denote significantly differences at $P < 0.05$

There was no significant difference in antioxidant activities when ABA and Cd^{2+} treatments were initiated (0 h, Fig. [2](#page-4-0)a–c). CdCl₂ (100 μ M) stress accelerated the activities of the three enzymes at 24, 48, and 72 h (Fig. [2a](#page-4-0)–c). It was notable that ABA increased the activity of CAT and APX in Cd^{2+} -stressed *P. euphratica* cells at the three time points ([2](#page-4-0)4, 48, and 72 h) (Fig. 2a, c). ABA + Cd^{2+} treatment resulted in significantly higher SOD activity than Cd^{2+} treatment at 72 h, although their activities were similar at 24 and 48 h (Fig. [2](#page-4-0)b). Compared with control cells, ABA alone had no significant effect on the activities of the three antioxidant enzymes in the absence of Cd^{2+} stress (Fig. [2](#page-4-0)a–c).

In addition, a specific H_2O_2 probe, $H_2DCF-DA$, was used to detect H_2O_2 accumulation in *P. euphratica* cells after 0, 24, 48, and 72 h of Cd^{2+} stress. P. euphratical cells exhibited very low H_2O_2 level at the initiation of ABA and Cd^{2+} treatments (0 h, Fig. 3). CdCl₂ stress resulted in a marked elevation of H_2O_2 and the H_2O_2 increased with the period of Cd^{2+} exposure (24–72 h, Fig. 3). Of note, ABA application $(5 \mu M)$ markedly decreased Cd^{2+} -induced H_2O_2 production over the observation time, 24, 48, and 72 h (Fig. 3). These results suggested that ABA could enhance the activity of antioxidant enzymes and decrease the level of H_2O_2 in Cd^{2+} -stressed *P. euphratica* cells.

ABA Reduced Cd^{2+} Accumulation in P. euphratica Cells Under Cd^{2+} Stress

In the present study, a Cd^{2+} -sensitive fluorescent probe, LeadmiumTM Green, was used to monitor Cd^{2+} accumulation in *P. euphratica* cells after 72 h of Cd^{2+} treatment. CdCl₂ stress (100 μ M) caused evident Cd²⁺-specific fluorescence in *P. euphratica* cells, whereas Cd^{2+} -specific fluorescence was nearly undetectable in control cells (Fig. [4\)](#page-6-0). Of note, under Cd^{2+} stress, the ABA-treated P. euphratica cells exhibited 33 % less fluorescence intensity compared with the cells treated without ABA (Fig. [4\)](#page-6-0).

The Cd^{2+} content was also determined in *P. euphratica* cells after long-term exposure to 100 μ M CdCl₂ (3 weeks). The Cd²⁺ concentration in the ABA-treated cells was 16 % less than in cells treated without ABA (Fig. [5](#page-6-0)). This result was in accord with the measurements with the LeadmiumTM Green probe, suggesting that exogenous ABA application could decrease Cd^{2+} accumulation within P. euphratica cells under Cd^{2+} stress.

ABA Reduced Cd^{2+} Influx in Cd^{2+} -Stressed P. euphratica Cells

To determine whether the reduced accumulation of Cd^{2+} was the result of a reduction in Cd^{2+} uptake in P.

Fig. 3 Effect of exogenous ABA on H_2O_2 accumulation in P. euphratica cells under Cd^{2+} stress. Cells were subjected to 100 μ M CdCl₂ with or without 5 µM ABA for 0, 24, 48, and 72 h and then stained with the H2O2-sensitive fluorescent probe H2DCF-DA. Representative images show H2O2 production (green fluorescence) in P. euphratica cells. Each value (±standard error) is the mean of three to four biologically independent experiments, and 80–100 individual cells were quantified for each treatment. The mean fluorescence values labeled with different *letters* are significant differences at $P < 0.05$. Scale $bar 10 \mu m$

Fig. 4 Effect of exogenous ABA on Cd^{2+} levels within *P. euphratica* cells under Cd²⁺ stress. P. euphratica cells were treated with 100 μ M CdCl₂ for 72 h in the presence or absence of ABA (5 μ M) and then incubated with a Cd^{2+} -fluorescent probe (LeadmiumTM Green AM)

Fig. 5 Effect of exogenous ABA on Cd^{2+} content in *P. euphratica* cells under Cd²⁺ stress. Cells were subjected to 100 μ M CdCl₂ in the presence or absence of 5 μ M ABA for 3 weeks. Each column represents the mean of three experiments, and bars indicate the standard error of the mean. Different letters (a, b, c) denote significantly differences at $P < 0.05$

euphratica cells, we measured the net Cd^{2+} fluxes with NMT. Cd^{2+} flux in *P. euphratica* cells was extremely low or under detection limit before the addition of $CdCl₂$ (100 μ M) (0 h; Fig. [6\)](#page-7-0). After exposure to Cd²⁺ for 24–72 h, the steady Cd^{2+} influx was remarkably enhanced (Fig. [6](#page-7-0)). It was notable that the Cd^{2+} influx increased with the period of Cd²⁺ exposure, reaching 33.7 pmol cm⁻² s⁻¹ at 72 h (Fig. [6\)](#page-7-0). However, application of ABA (5 μ M) reduced the Cd²⁺ influx by 56–79 % in CdCl₂ (100 μ M)treated cells over the observation periods (24–72 h; Fig. [6](#page-7-0)).

The effect of ABA pretreatment on steady-state Cd^{2+} flux was examined in this study. P. euphratica cells were pretreated with or without $5 \mu M$ ABA for 12 h, and then exposed to 0 or 100 μ M CdCl₂ for another 72 h. ABA pretreatment could significantly inhibit Cd^{2+} uptake in $CdCl₂$ -stressed cells (Supplementary Fig. S2). This is similar to the finding when ABA and Cd^{2+} were applied together (Fig. [6\)](#page-7-0). However, the ABA inhibition of Cd^{2+}

for 1 h. Each value represents the mean of at least 50 individual cells quantified from three to four biologically independent experiments. The mean fluorescence values labeled with different letters, a, b, and c, are significant differences at $P < 0.05$. Scale bar 10 µm

influx was lower than the concomitant application of Cd^{2+} and ABA (Fig. [6,](#page-7-0) Supplementary Fig. S2).

The effects of ABA, H_2O_2 , and Ca^{2+} -channel inhibitors on transient Cd^{2+} flux were also investigated. P. euphratica cells were pretreated with ABA or H_2O_2 for 6 h and then exposed to CdCl₂ shock to measure Cd²⁺ flux in the presence or absence of LaCl₃ (an inhibitor of Ca^{2+} -permeable channels). ABA pretreatment reduced Cd^{2+} influx by 86 % in CdCl₂-stressed cells (Fig. [7\)](#page-8-0). Of note, H_2O_2 pretreatment (3 mM) increased the entry of Cd²⁺ into P. euphratica cells (the mean value reached 35.2 pmol cm^{-2} s⁻¹) (Fig. [7](#page-8-0)); however, ABA significantly reduced H₂O₂-elicited Cd²⁺ influx (Fig. [7](#page-8-0)). Additionally, in the presence of LaCl₃, Cd^{2+} entry was markedly blocked in CdCl₂-shocked cells, irrespective of H_2O_2 and ABA pretreatments (Fig. [7](#page-8-0)).

Discussion

Excessive Cd^{2+} can induce DNA fragmentation, chromatin condensation, and loss of cell viability in woody (Sun and others [2013\)](#page-10-0) and herbaceous species (Iakimova and others [2008](#page-9-0); Ma and others [2010](#page-9-0)), leading to programmed cell death (Iakimova and others [2008](#page-9-0); Ma and others [2010](#page-9-0); Sun and others [2013\)](#page-10-0). In this study, cellular and subcellular ion analyses revealed that short-term (72 h) or prolonged Cd^{2+} exposure (3 weeks, 100 μ M) resulted in evident Cd²⁺ accumulation within P. euphratica cells (Figs. 4, 5). This result agrees with those of a previous report (Sun and others [2013](#page-10-0)). The Cd^{2+} buildup, especially in the cytoplasmic region, led to a significant increase in DCF-dependent fluorescence, indicating an H_2O_2 burst in P. euphratica cells (Fig. [3](#page-5-0)). This Cd^{2+} -elicited H₂O₂ burst has been suggested to contribute to oxidative damage (DalCorso and others [2008](#page-9-0)) and the occurrence of programmed cell death in P. euphratica cells (Sun and others Fig. 6 Effect of exogenous ABA on steady-state Cd^{2+} fluxes in P. euphratica cells under Cd^{2+} stress. Cells were treated with 100 μ M CdCl₂ for 0, 24, 48, and 72 h in the presence or absence of 5 µM ABA. Steady-state Cd^{2+} fluxes were continuously recorded for 10 min for each cell. Each column represents the mean of 15 individual cells quantified from three to four biologically independent samples. Bars indicate the standard error of the mean. Different letters (a, b, c, d, e) denote significantly differences at $P < 0.05$

[2013\)](#page-10-0). In the present study, ABA reduced Cd^{2+} suppression of cell growth and viability in P. euphratica cells, although the alleviation of Cd^{2+} toxicity was dose dependent (Fig. [1](#page-4-0), Table [1](#page-2-0), Supplementary Fig. S1). Exogenous ABA application has been reported to reduce Cd^{2+} toxicity in herbaceous plant species, such as rice and mung bean seedlings (Hsu and Kao [2003,](#page-9-0) [2005;](#page-9-0) Li and others [2014](#page-9-0)). Our data showed that ABA alleviation of Cd^{2+} toxicity mainly resulted from the restriction of Cd^{2+} under Cd^{2+} stress (Figs. [4,](#page-6-0) [5\)](#page-6-0). Similarly, Hsu and Kao ([2003\)](#page-9-0) showed that ABA pretreatment reduces Cd^{2+} content in CdCl₂stressed rice seedlings.

The NMT data indicated that the Cd^{2+} restriction in ABA-treated P. euphratica cells was the result of a reduced Cd^{2+} influx. Steady-state and transient flux recordings showed a net Cd^{2+} influx in Cd^{2+} -shocked and short-term stressed P. euphratica cells (Figs. 6, [7](#page-8-0)). Moreover, the steady Cd^{2+} influx increased with increasing exposure time to Cd^{2+} stress (24–72 h; Fig. 6). ABA application significantly decreased the Cd^{2+} influx during the observation periods (24–72 h; Fig. 6). Similarly, ABA pretreatment could significantly inhibit Cd^{2+} uptake in $CdCl₂$ -stressed cells (Supplementary Fig. S2). However, the ABA inhibition of Cd^{2+} influx was lower than the concomitant application of Cd^{2+} and ABA (Fig. 6, Supplementary Fig. S2). This is likely due to the difference in the duration of ABA treatment, 12 h (ABA pretreatment) versus 72 h $(Cd^{2+}+ABA)$. ABA may not interfere with the uptake of Cd^{2+} as the ABA concentration was 5 µM, which is much lower than the applied Cd^{2+} , 100 µM.

In pharmacological experiments, the Cd^{2+} influx was blocked by the PM Ca^{2+} channel inhibitor LaCl₃, indicating that the Cd^{2+} -elicited Cd^{2+} influx was through the PM Ca^{2+} channels (Fig. [7\)](#page-8-0). This finding is in agreement with Sun and others ([2013\)](#page-10-0), who suggested that the Cd^{2+} influx into the cytosol is mediated by PM Ca^{2+} -permeable channels (Sun and others [2013\)](#page-10-0). Electrophysiological evidence revealed that Cd^{2+} ions can be transported into cells through Ca^{2+} channels. Using the whole-cell patch-clamp technique, Perfus-Barbeoch and others [\(2002](#page-9-0)) have confirmed that Cd^{2+} permeates through the PM calcium channels in Arabidopsis guard cells. The permeability of Cd^{2+} through wheat voltage-dependent calcium channels was detected when the PM derived from root cells was incorporated into planar lipid bilayers (White [1998](#page-10-0)). Of note, H_2O_2 application increased the net Cd^{2+} influx into P. euphratica cells (Fig. [7](#page-8-0)). Moreover, the Cd^{2+} influx increased with the rise of endogenous H_2O_2 accumulation in Cd^{2+} -stressed cells (24–72 h; Figs. [3,](#page-5-0) 6). Therefore, the Cd^{2+} -induced H_2O_2 production is thought to stimulate the entry of Cd^{2+} into Cd^{2+} -stressed *P. euphratica* cells. In accordance, Sun and others [\(2013](#page-10-0)) also showed that H_2O_2 addition enhances an immediate Cd^{2+} influx in P. euphratica cells.

ABA significantly reduced the influx of Cd^{2+} in P. euphratica cells (Fig. 6). This is presumably related to the increased activity of antioxidant enzymes, CAT, SOD, and APX (24–72 h; Figs. [2,](#page-4-0) [3](#page-5-0)). The activated antioxidant enzymes benefited P. euphratica cells to scavenge the Cd^{2+} -elicited H₂O₂, and thus limited the H₂O₂-stimulated

Fig. 7 Effect of ABA, H_2O_2 , and PM Ca^{2+} channel inhibitor (LaCl₃) on transient Cd²⁺ fluxes in *P. euphratica* cells. a Transient Cd²⁺ kinetics. Cells were pretreated with or without ABA $(5 \mu M)$ in the presence or absence of H₂O₂ (3 mM) for 6 h. Prior to the Cd²⁺ shock, a steady Cd^{2+} flux was continuously recorded for 10 min. Cd^{2+} fluxes in ABA- and/or H_2O_2 -pretreated cells were measured in the presence or absence of $LaCl₃$ (an inhibitor of $Ca²⁺$ -permeable channels; 5 mM). Each point is the mean of six individual cells, and bars represent the standard error. The mean fluxes of Cd^{2+} after the addition of CdCl₂ are shown in (b). Different *letters* (a, b, c, d) denote significantly differences at $P < 0.05$

 Cd^{2+} influx in a long term of stress. We hypothesize that ABA stimulated the initial generation of ROS, which upregulated the activities of antioxidant enzymes. It has shown that ABA triggers the increased generation of ROS and activates antioxidant enzymes in water-stressed maize leaves (Jiang and Zhang [2002](#page-9-0)). Our data showed that enzyme activities of CAT, SOD, and APX increased correspondingly to the rise of H_2O_2 during the period of Cd^{2+} stress ([2](#page-4-0)4–72 h; Figs. 2, [3](#page-5-0)). It is likely that the Cd^{2+} -elicited H_2O_2 up-regulated the activities of antioxidant enzymes. It has shown that H_2O_2 acted as a signaling molecule in the activation of CAT and APX in scot pine roots under Cd^{2+} stress (Schützendübel and others [2001](#page-9-0)). Collectively, ABA application significantly enhanced these enzyme activities, which contributed to the scavenging of

Fig. 8 A schematic model of ABA alleviation of Cd^{2+} toxicity in P. euphratica cells. Solid arrows indicate a promotion effect, a bar indicates a repression effect, and dotted arrows indicate an unconfirmed signaling cascade

 $H₂O₂$ under Cd²⁺ stress (Figs. [2,](#page-4-0) [3\)](#page-5-0). As a result, the $H₂O₂$ stimulated entry of Cd^{2+} was inhibited by ABA in Cd^{2+} stressed P. euphratica (Figs. [6,](#page-7-0) 7).

In conclusion, ABA plays a crucial role in alleviating Cd^{2+} toxicity in *P. euphratica* cells under Cd^{2+} stress conditions. We postulate the following model of ABA signaling in Cd^{2+} toxicity alleviation in this poplar (Fig. 8): In Cd^{2+} -stressed *P. euphratica*, ABA up-regulates the activity of antioxidant enzymes, which scavenge the Cd^{2+} -elicited H₂O₂ within cells. As a result, the entry of Cd^{2+} is subsequently reduced because H_2O_2 otherwise would stimulate Cd^{2+} influx through the PM Ca^{2+} channels in *P. euphratica*. The buildup of Cd^{2+} and Cd^{2+} -elicited oxidative damage thus is limited in ABA-treated P. euphratica.

Acknowledgments The research was supported jointly by the Beijing Forestry University Young Scientist Fund (Grant No. BLX005), the National Natural Science Foundation of China (Grant Nos. 31270654, 31200207, 31200470, 31570587, 31500504), the Research Project of the Chinese Ministry of Education (Grant No. 113013A), the key project for Oversea Scholars by the Ministry of Human Resources and Social Security of PR China (Grant No. 2012001), the Program for Changjiang Scholars and Innovative Research Teams in University (Grant No. IRT13047), the Program of Introducing Talents of Discipline to Universities (111 Project, Grant No. B13007), the Fundamental Research Funds for the Central Universities (Grant No. TD2012-04), the Research Support Project of Shanxi University (Grant No. 113533801004), and the Plan Project for Scientific Research and Entrepreneurship Action of College Students in Beijing (Grant No. S201510022037).

References

- Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333
- Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica, a hybrid in response to increasing soil NaCl. Trees 15:186–194
- Chen S, Li J, Wang T, Wang S, Polle A, Hüttermann A (2002a) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233
- Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002b) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230
- Chen S, Li J, Wang S, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res 33:967–975
- Chen S, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124
- Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245
- Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719
- DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280
- di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130
- Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421
- Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45
- Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46
- Guo W, Chen R, Gong Z, Yin Y, Ahmed S, He Y (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11:4063–4080
- Han Y, Wang W, Sun J, Ding M, Zhao R, Deng S, Wang F, Hu Y, Wang Y, Lu Y, Du L, Hu Z, Diekmann H, Shen X, Polle A, Chen S (2013) Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J Exp Bot 64:4225–4238
- Han Y, Sa G, Sun J, Shen Z, Zhao R, Ding M, Deng S, Lu Y, Zhang Y, Shen X, Chen S (2014) Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100:74–83
- Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874
- Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80
- Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM (2008) Cadmium toxicity in cultured tomato cellsrole of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 32:1521–1529
- Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410
- Li S, Leng Y, Feng L, Zeng X (2014) Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environ Sci Pollut Res 21:525–537
- Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37
- Ma W, Xu W, Xu H, Chen Y, He Z, Ma M (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 232:325–335
- Ma T, Wang J, Zhou G, Yue Z, Hu Q, Chen Y, Liu B, Qiu Q, Wang Z, Zhang J, Wang K, Jiang D, Gou C, Yu L, Zhan D, Zhou R, Luo W, Ma H, Yang Y, Pan S, Fang D, Luo Y, Wang X, Wang G, Wang J, Wang Q, Lu X, Chen Z, Liu J, Lu Y, Yin Y, Yang H, Abbott RJ, Wu Y, Wan D, Li J, Yin T, Lascoux M, Difazio SP, Tuskan GA, Wang J, Liu J (2013) Genomic insights into salt adaptation in a desert poplar. Nat Commun 4:2797
- Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548
- Polle A, Chen S (2015) On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell Environ 38:1794–1816
- Polle A, Klein T, Kettner C (2013) Impact of cadmium on young plants of *Populus euphratica* and $P \times \text{canescens}$, two poplar species that differ in stress tolerance. New For 44:13–22
- Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243
- Sandalio LM, Rodríguez-Serrano M, del Río LA, Romero-Puertas MC (2009) Reactive oxygen species and signaling in cadmium toxicity. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Berlin, pp 175–190
- Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167
- Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898
- Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and saltsensitive poplar species. Plant Physiol 149:1141–1153
- Sun J, Wang M, Ding M, Deng S, Liu M, Lu C, Zhou X, Shen X, Zheng X, Zhang Z, Song J, Hu Z, Xu Y, Chen S (2010a) H_2O_2
and cytosolic Ca^{2+} signals triggered by the PM H⁺-coupled transport system mediate K^{+}/Na^{+} homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958
- Sun J, Li L, Liu M, Wang M, Ding M, Deng S, Lu C, Zhou X, Shen X, Zheng X, Chen S (2010b) Hydrogen peroxide and nitric oxide mediate K^+/Na^+ homeostasis and antioxidant defense in NaClstressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205–215
- Sun J, Zhang C, Deng S, Lu C, Shen X, Zhou X, Zheng X, Hu Z, Chen S (2012a) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell Environ 35:893–916
- Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012b) Extracellular ATP signaling is mediated by H_2O_2 and cytosolic Ca^{2+} in the salt response of Populus euphratica cells. PLoS ONE 7:e53136
- Sun J, Wang R, Zhang X, Yu Y, Zhao R, Li Z, Chen S (2013) Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem 65:67–74
- Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917
- Wang R, Chen S, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591
- Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957
- Wang J, Chen J, Pan K (2013a) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20:1441–1449
- Wang F, Deng S, Ding M, Sun J, Wang M, Zhu H, Han Y, Shen Z, Jing X, Zhang F, Hu Y, Shen X, Chen S (2013b) Overexpression of a poplar two-pore K^+ channel enhances salinity tolerance in tobacco cells. Plant Cell Tissue Organ Cult 112:19–31
- White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann Bot 81:173–183
- Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N, Li R, Weeda S, Ren S, Ouyang B, Guo Y (2014) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem 77:23–34
- Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273
- Zhu X, Jiang T, Wang Z, Lei G, Shi Y, Li G, Zheng S (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239–240:302–307