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Abstract  Rising sea level is of great significance to coastal societies; predicting sea level extent in 
coastal regions is critical. When carrying out predictions, the subsequences obtained using decomposition 
methods may exhibit a certain regularity and therefore can provide multidimensional information that can 
be used to improve prediction models. Traditional decomposition methods such as seasonal and trend 
decomposition using Loess (STL) focus mostly on the fluctuating trend of time series and ignore its 
impact on prediction. Methods in the signal decomposition domain, such as variational mode 
decomposition (VMD), have no physical significance. In response to the above problems, a new 
decomposition method for sea level anomaly time series prediction (DMSLAP) is proposed. With this 
method, the trend term in a time series can be isolated and the effects of abnormal sea level change 
behaviors can be attenuated. We decompose multiperiod characteristics using this method while 
maintaining the smoothness of the analyzed series. Satellite altimetry data from 1993 to 2020 are used in 
experiments conducted in the study area. The results are then compared with predictions obtained using 
existing decomposition methods such as the STL and VMD methods and time varying filtering based on 
empirical mode decomposition (TVF-EMD). The performance of DMSLAP combined with a prediction 
method resulted in optimal sea level anomaly (SLA) predictions, with a minimum root mean square error 
(RMSE) of 1.40 cm and a maximum determination coefficient (R2) of 0.93 during 2020. The DMSLAP 
method was more accurate when predicting 1-year data and 3-year data. The TVF-EMD and DMSLAP 
methods had comparable accuracies, and the periodic term decomposed by the DMSLAP method was 
more in line with the actual law than that derived using the TVF-EMD method. Thus, DMSLAP can 
decompose SLA time series better than existing methods and is an effective tool for obtaining short-term 
SLA prediction.
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1 INTRODUCTION

Sea level is rising due to climate change (Church 
et al., 2013; Oppenheimer et al., 2019). This rise is 
expected to continue over the next few decades to 
hundreds of years and will have far-reaching effects 
on coastal areas (Wong et al., 2014). In low-lying 
areas, flooding and coastal erosion result from sea 
level rise; these processes can reduce land area and 
force coastal populations to migrate (Mimura, 
2013). In addition, sea level rise can increase water 
and soil salinization in coastal areas. Salinization 

impacts coastal agriculture, aquaculture, ecosystems 
and the supply of freshwater for domestic and 
commercial uses (Dasgupta et al., 2017). Since 
China began its economic reform in 1978, the 
growing national economy has become increasingly 
concentrated in coastal areas (Kanbur and Zhang, 
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2005; Holz, 2008; Chen and Groenewold, 2010). 
These coastal areas have become economic zones 
with the highest economic densities, the strongest 
comprehensive strengths and the largest strategic 
support networks in China (He et al., 2014). 
According to the Statistical Communique of the 
People’s Republic of China on the 2020 Sea Level, 
sea level change exhibits a fluctuating upwards 
trend. From 1980 to 2020, the coastal level rise rate 
recorded in China was 3.4 mm/a, higher than the global 
average measured during the same period (Department 
of Marine Early Warning and Monitoring, 2021). 
Compared to traditional measurement methods, 
satellite altimetry technologies can obtain continuous 
sea surface height data and better analyze long-time-
series sea level changes over a wide range of sea 
areas. Currently, many types of high-temporal-
resolution and high-spatial-resolution satellite altimeter 
data are available, and these data are widely used to 
study sea level variations in vast sea areas and in 
other applications related to marine science (Cazenave 
et al., 2018). Based on satellite altimetry data, 
regular sea level change patterns can be studied in 
the China Sea and its vicinity. Thus, these data help 
the government respond promptly to the impacts of 
sea level rise in coastal areas.

Sea surface height data are often large-scale and 
nonlinear, and it is difficult to achieve high 
prediction accuracies with these data when using a 
single model. Rather, sea level can be better 
predicted by analyzing sea level trends and cycles. 
The index value influencing factors of sea level 
anomaly (SLA) time series can be divided into four 
categories: trend changes, seasonal changes, periodic 
changes, and random changes (Moosa, 1996). Long-
term trend changes refer to the general continuous 
development and change trends of a time series over 
a long period (Jebb et al., 2015). Seasonal changes 
refer to obvious cyclical variations in time series 
caused by seasonal changes. Although the basic 
pattern of these changes is fixed, the magnitudes of 
the seasonal effects may change among different 
periods. Seasonal effects can also be embedded in 
overall trends (Geremew and Gourio, 2018). 
Therefore, the trend terms considered in this paper 
include the long-term trend changes and seasonal 
changes. Periodic changes involve fluctuations in 
time series over a period of several years. Random 
changes in a time series refer to nonperiodic or 
irregular trend changes caused by temporary or 
accidental factors (Hyndman and Athanasopoulos, 
2021). Many methods have been established for 

predicting sea level, including support vector 
machines (das Chagas Moura et al., 2010), artificial 
neural networks (Imani et al., 2013), extreme 
learning machines and relevance vector machines 
(Imani et al., 2018). Among existing methods, the 
seasonal autoregressive integrated moving average 
(SARIMA) is an extension of the autoregressive 
integrated moving average (ARIMA) model (Box 
and Jenkins, 1976) developed by Box and Jenkins 
(Tseng et al., 2002). SARIMA considers both 
periodicity and seasonal factors in a time series, and 
has a high prediction accuracy (Mao et al., 2018). 
Some time, long and short time memory (LSTM) 
networks can solve the gradient disappearance 
problem and have a good fitting effect on long time 
series data with poor regularity (Xiao et al., 2019). It 
is necessary to consider the characteristics of the 
analyzed time series when processing SLA time 
series, and multiple prediction models can be 
combined to improve the short-term sea level 
prediction accuracy. Therefore, the subsequences 
obtained by decomposing SLA time series exhibit a 
certain regularity and can provide multidimensional 
information that can be used by prediction models to 
achieve an improved prediction effect.

When conducting time series prediction, some 
scholars have considered using the signal decomposition 
method to decompose and process the time series 
data. An empirical mode decomposition (EMD) 
method, that can adaptively decompose signals into 
intrinsic mode functions (IMFs) and residual terms, 
was proposed by Huang et al. (1998). However, the 
EMD method has some problems; for example, the 
signal breakpoint is not necessarily the extreme 
point, so endpoint effects and modal aliasing 
problems can arise. Some time series decomposition 
algorithms depend on local data to obtain 
decomposition results, such as seasonal and trend 
decomposition using Loess (STL) (Cleveland et al., 
1990) and X-13ARIMA seasonal adjustment-
time series (X-13ARIMA-SEATS) (Dagum and 
Bianconcini, 2016); among these algorithms, STL is 
the most classic. STL uses locally weighted regression 
and smoothing (Loess) steps (Cleveland, 1979) as a 
smoothing device to decompose a time series into a 
trend term, periodic term, and irregular residual 
term (Cleveland et al., 1990). STL can fit time series 
trends well, but trend changes can fluctuate due to 
the influence of random factors, and the existence 
of these fluctuations can affect the prediction 
accuracy. In addition, STL can decompose only one 
periodic subsequence and is not applicable to the 
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decomposition of multiperiod time series. At times, 
series decomposition algorithms rely on all the 
available data and obtain each subsequence through 
a data value correlation decomposition at each 
incremental time point; these methods include 
singular spectrum analysis (SSA) (Broomhead and 
King, 1986), and variational mode decomposition 
(VMD) (Dragomiretskiy and Zosso, 2014). Since its 
development, SSA has been widely used in time 
series processing tasks because it can perform the 
stable functions of recognizing and enhancing 
periodic signals; however, this method suffers from 
overfitting issue (Elsner and Tsonis, 1996; Hassani, 
2007). VMD has a good effect on nonlinear signals, 
and the IMFs obtained by it are close to their 
corresponding center frequencies. The greatest 
limitations of VMD are boundary effects and bursty 
signals (Chouksey and Jha, 2021). Recently, Song 
and Chen (2021) compared five decomposition 
methods and found that time varying filtering based 
on empirical mode decomposition (TVF-EMD) method 
can improve the prediction accuracy. The subsequences 
obtained from TVF-EMD are relatively stable. The 
biggest disadvantage of TVF-EMD in the process of 
decomposing time series is that there is no specific 
physical explanation for the decomposed subsequences.

The main methods used to measure trend 
changes include regression analysis methods (Visser 
and Molenaar, 1995), moving average methods 
(Hansun, 2013), and envelope curve technique 
(Johnson et al., 2011). Regression analysis methods 
can roughly fit the growth trend of the time series 
and accurately predict the growth rate. The moving 
average methods can reflect the real fluctuating 
trends of the time series with random factors, and 
the existence of these fluctuations can affect the 
prediction accuracy. In the study of time series 
change, the envelope curve technique is to obtain 
the trend change by calculating the local maximum 
and local minimum of the time series and 
connecting and averaging them. However, the trend 
term obtained by this method is also affected by 
outliers. If the time series obtained by the envelope 
curve technique is smoothed, the influence of 
abnormal changes in a period of time can be better 
alleviated. In this paper, the trend term of the SLA 
time series is obtained by combining the envelope 
curve technique with Lowess smoothing (Cleveland, 
1979). The autoregressive integrated moving 
average (ARIMA) model (Box and Jenkins, 1976), 
multivariate model (King et al., 1991), and singular 
spectrum analysis (SSA) (Chen et al., 2013) are 

common methods used to extract period terms from 
time series after the trend term is removed. The 
advantage of the ARIMA model is that the model is 
very simple, only endogenous variables are required 
and no other exogenous variables are needed. The 
disadvantage is that the time series or series after 
differentiation is required to be stable. When 
decomposed using multivariate model and SSA, the 
periodic terms can exhibit certain tendencies or 
irregular fluctuation phenomena. The periodic terms 
with regular changes are obtained according to the 
period, and SLA time series predictions are carried 
out to avoid affecting abnormal values. In order to 
make the obtained period items more regular and 
predictable, the combination of moving average and 
Lowess smoothing methods are used to process the 
series composed of the same position in different 
periods.

To accommodate the temporal characteristics of 
the analyzed SLA time series, we proposed a new 
time series decomposition method for sea level 
anomaly time series prediction (DMSLAP). The 
DMSLAP was compared with the existing STL, 
VMD, and TVF-EMD decomposition models over 
the China Sea and its vicinity. Then, the SLA prediction 
accuracies obtained with the various methods were 
compared by combining different decomposition and 
prediction models. Finally, the DMSLAP method 
was used to compare the influence of different time 
scales on the SLA time series prediction.

This paper is organized as follows. In Section 2, 
three existing time series decomposition methods 
are described, and the proposed time series 
decomposition method is introduced. In Section 3, 
the experiments and the results were analyzed. The 
results and future research are discussed in Section 4.

2 METHOD OF TIME SERIES DECOMPOSITION

2.1 Existing decomposition method

In this section, two typical time series decomposition 
methods, namely, the STL and VMD methods, and a 
new method called TVF-EMD are introduced. These 
results obtained when conducting experiments on 
SLA time series datasets using these methods are 
then compared.

STL is a method used to decompose a time series 
into three parts: the trend subsequence, seasonal 
subsequence, and remainder subsequence. The STL 
is not affected by outliers in the data, and can 
estimate trend and periodic terms robustly (Cleveland 
et al., 1990).
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The STL process consists of two loops, an inner 
loop nested within an outer loop. Within each inner 
loop, both the seasonal and trend subsequences are 
updated. The weight of each outer loop can be 
calculated using the results of the inner loop. The 
weight of the outer loop is then used in the next 
inner loop (Cleveland et al., 1990). The STL 
requires only 2 inputs, one is the time series to 
be decomposed, and the other is the period of 
the time series. The period entered is 12 in this 
experiment.

VMD is an adaptive nonrecursive decomposition 
method proposed by Dragomiretskiy and Zosso 
(2014), and this method decomposes signals into a 
sum of finite IMFs. VMD is used in crude oil 
prediction and image processing tasks and has 
shown superiority among existing decomposition 
methods (E et al., 2017; Chouksey and Jha, 2021). 
VMD requires a total of 7 input variables, expressed 
as VMD (s, alpha, tau, K, DC, i, tol). In order to 
satisfy the requirement that the SLA time series 
subsequences obtained using VMD are the trend 
term, periodic term, and residual term, the number 
of decomposition levels K in the input parameters is 
set to 3. The other parameters are set as follows: s is 
the time series to be decomposed; the balancing 
parameter of the data-fidelity constraint alpha is 
optimized by the genetic mutation particle swarm 
optimization algorithm, which is set to 2 000 in this 
paper; the update step size tau is determined using 
the residual index indicator, which is set to 0 in this 
paper; true if the first mode is put and kept at DC, it 
is generally set to 0; the parameter i determines the 
initial value of the center frequency w, which is set 
to 2 in this paper; tolerance of convergence criterion 
tol, typically is approximately 1e-6 (Dragomiretskiy 
and Zosso, 2014).

TVF-EMD is an improved EMD model that uses 
time-varying filtering in the sifting process to solve 
the modal mixing problem and maintain time-
varying characteristics. The TVF-EMD process 
consists of a total of three main steps: (1) estimate 
the local cut-off frequency; (2) construct a time-
varying filter to obtain the local mean function and 
calculate the criterion value; and (3) judge whether 
the residual signal satisfies the stop criterion. The 
specific parameter selection process can be found in 
the cited literature (Li et al., 2017). The TVF-EMD 
performs an adaptive design of the local cutoff 
frequency by making full use of the instantaneous 
amplitude and frequency information, and each 
parameter is adaptively selected. Based on this, we 
only need to input the time series when decomposing.

2.2 Decomposition method for sea level anomaly 
time series prediction

According to the temporal characteristics of SLA 
time series, a new decomposition method for the 
SLA time series prediction is proposed, named 
decomposition method for sea level anomaly time 
series prediction (DMSLAP). In the proposed 
method, the trend term of the SLA time series is 
obtained by combining the envelope curve technique 
with Lowess smoothing, which can better alleviate 
the influence of abnormal changes over a period of 
time. In order to make the obtained period items 
more regular and predictable, the combination of 
moving average and Lowess smoothing methods are 
used to process the series composed of the same 
position in different periods. A flow chart of the 
DMSLAP process is shown in Fig.1.

The detailed steps for decomposing the SLA for 
P months are described below.

(1) According to the SLA time series sla(t), t=1, 
2, … , T, the average values of the upper and lower 
envelopes are obtained. The envelopes are determined 
using spline interpolation over local maxima separated 
by at least. The envelopes are determined using spline 
interpolation over local maxima separated by at least 
np (np is half the period of the time series) 
samples. Then, the mean value is used for Lowess 
smoothing to obtain the trend term slatrend(t) of the 
sea level anomaly time series. The window length 
wl is calculated for smoothing based on genetic 
algorithm (Ataee et al., 2007). The formulas used 
to calculate the trend term slatrend(t) at point t are as 
follows:
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where tk is the kth closest point to t, k=1, 2, … , wl; 
slamean(t) is the average value of the upper and lower 
envelopes. B is a matrix of 1 and points tk, which is 
used for matrix calculation. Wt is the diagonal 
matrix of weights. K is the weight using the 
Epanechnikov quadratic kernel. D is the Epanechnikov 
quadratic kernel. Y is all the slamean(tk) series in the 
windows with length wl centered at point t. The 
schematic diagram of trend term slatrend(t) is shown 
in Fig.2.

The black dotted line in Fig.2 is the SLA time 
series sla(t). The blue curves in Fig.2 show the 
upper and lower envelopes of the SLA time series 
sla(t). The green line shows the average value of the 
upper and lower envelopes. The red line is the trend 
term slatrend(t). The trend term can reflect the series 

change trend and extract rules other than abnormal 
changes more accurately during the prediction 
process.

(2) The trend term slatrend(t) is subtracted from the 
sea level anomaly time series sla(t) to obtain the 
first remaining term slar1(t). Then, the period of the 
SLA time series is obtained by using Fourier 
transform (Goldblum et al., 1988). The number of 
periods is m, and the period is Km, m=1, 2, ….

(3) Using the first remaining term slar1(t) 
obtained in step (2), the periodic terms slaCm(t), m=
1, 2, … of the P month SLA time series are 
calculated.

The specific process by which the periodic 
terms slaC1(t), slaC2(t), … , slaCm(t), m=1, 2, … are 
calculated according to the corresponding period Km 
obtained in step (2) and are explained as follows:

Step 1: the first remaining term slar1(t) is grouped 
according to the period Km, and each group of 
sample points derived at the same position 
constitutes subsequence set X(n) = {slar1(n), slar1(n+
Km), … , slar1(n+P–Km)}, where Km is the period and 
n=1, 2, …, Km.

Step 2: lowess smoothing is used to perform a 
regression step for each subsequence X(n), and the 
result is sequence set C(t1); then, each subsequence 
is extended forward and backwards for Km months to 
obtain the time series C(t2), where t2=-Km+1, …, T+
Km; T=P/Km.

Fig.1 Flowchart of the decomposition method used in this study

Fig.2 The trend term obtained from the schematic diagram
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Step 3: low-pass filtering of smoothed cycle-
subseries is implemented. Moving averages are 
performed with window lengths Km, Km and 3 on the 
time series C(t2) in turn; then, the Lowess regression is 
performed to obtain the time series L(t), t=1, 2, … , T; 
T=P/Km. L(t) is equivalent to a low-throughput of X(n). 
The periodic subsequence, C(t)=C(t1)–L(t), t=1, 2, …, 
T, is obtained by using time series C(t1) and time series 
L(t) (Cleveland et al., 1990).

Step 4: restore subsequence set C(t) to the 
periodic term slaCm(t) of length P. The schematic 
diagram of steps 1–4 is shown in Fig.3.

(4) By subtracting the trend term slatrend(t) and the 

periodic terms slaCm(t), m=1, 2, … , from the SLA 
time series sla(t) (1), the residual term slar(t) can be 
obtained.

3 EXPERIMENT AND ANALYSIS

In this paper, two experiments were conducted to 
verify the effectiveness of DMSLAP. First, a 
comparative experiment between DMSLAP and 
typical decomposition methods was performed. The 
DMSLAP, STL, and VMD decomposition methods 
were used to analyze the decomposition effect and 
completeness of each decomposition method. Then, 
the influence of the DMSLAP method on the SLA 

Fig.3 The schematic diagram of the periodic terms are obtained
Km is the period of time series. 

1634



No. 5 SUN et al.: Time series decomposition for the sea level change

time series prediction effect is assessed on different 
timescales. When evaluating the prediction outcomes, 
we consider the mean, root mean square error 
(RMSE) and correlation coefficient (R2) as metrics.

3.1 Sea level anomalies data

The TOPEX/Poseidon (T/P), Jason-1, Jason-2, 
and Jason-3 satellite altimetry data recorded from 
1993 to 2020 were used in this article. The study 
area spans from 105°E to 135°E and from 0° to 45°N, 
as shown in Fig.4. The reference sea level data used 
in this article is the mean sea surface-Centre 
National d’Etudes Spatiales-Collecte Localisation 
Satellites 15 (MSS_CNES_CLS15). This dataset is 
universally acknowledged as a high-accuracy global 
sea level model. The data used herein included 
geophysical data records (GDRs) from TP series 
satellite altimeters before the orbit change; these 
records were produced by CLS and distributed by 
Archiving, Validation and Interpretation of Satellite 
Oceanographic (Aviso+ ), with support from Centre 
National d’Etudes Spatiales (CNES) (https://www.
aviso.altimetry.fr/). The timespan and cycles in the data 
recorded by each altimeter are provided in Table 1.

First, the GDR data were divided by month. 
Next, the GDR datapoints associated with land 

flags and ice flags were removed. According to 
the handbooks (Blanc et al., 1996; Bronner et al., 
2016; Dumont et al., 2017; Bignalet-cazalet et al., 
2021) provided by CNES, data that did not meet 
the filtering criteria were also removed. Then, the 
sea surface heights were obtained through 
collinear and crossover adjustment processing 
steps (Jiang et al., 2002). The along-track SLAs 
were then obtained by subtracting the MSS_
CNES_CLS15 reference sea level model from the 
derived sea surface heights. In the research area, 
monthly SLA data were obtained by the along-track 
SLA latitude-weighting method. The T/P data were 
used as a benchmark in this work to apply a system 
bias correction to the Jason-1, Jason-2, and Jason-3 
SLA data. Finally, the monthly SLA data were 
corrected based on the biases among the four 
satellites in their tandem stages, as calculated by 
Wan et al. (2018). The time series of the SLAs 
discussed and analyzed are shown in Fig.5.

Figure 5 shows the 1993–2020 SLA time series 
derived after the processing steps. The sea level in 
the study area presents an overall rising trend, 
exhibiting an annual growth rate of 4.31 mm/a 
from 1993 to 2020. This growth rate is higher than 
the global annual sea level growth rate of 
3.43 mm/a from 1993 to 2020 provided by 
the Aviso website (https://www.aviso.altimetry.fr/
en/data/products/oc/ean-indicators-products/mean-
sea-level/products-and-images-selection-within-saral-
old.html). The sea level rises and falls alternately 

Table 1 Satellite data used to establish SLA time series

Altimetry data

T/P

Jason-1

Jason-2

Jason-3

Timespan

1992. 10–2002. 7

2002. 8–2008. 12

2009. 1–2016. 5

2016. 6–2020. 12

Cycle

2–363

21–256

18–303

12–179

Fig.4 The research area and the tracks of satellites (black 
points) and the MSS_CNES_CLS15 model coverage 
range
MSS_CNES_CLS15 provides the mean sea surface heights 

derived based on 20-year altimetry data. Fig.5 SLA time series spanning 1993–2020
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and exhibits an obvious periodic change law. The 
sea level mainly decreases in spring and winter and 
gradually increases after reaching its minimum 
value in winter or spring.

3.2 Decomposition of SLA time series

After processing, the SLA time series exhibits an 
obvious tendency and periodicity. The main purpose 
of the decomposition method is to decompose the 
temporal characteristics in a time series before 
further analyses or predictions are carried out. 
DMSLAP aims to decompose temporal characteristics 
for use in SLA time series predictions. This method not 
only ensures that temporal characteristics are 
represented but also reduces the influence of abnormal 
sea surface height changes on the accuracy of the 
prediction results. The effects of the DMSLAP, STL, 
VMD, and TVF-EMD methods on the decomposition 
process and results were further analyzed.

3.2.1 Time series feature extraction

The DMSLAP method decomposed a SLA time 
series into three parts: the trend term, periodic terms 
and residual term. In this paper, the DMSLAP 

method was used to calculate all local maxima and 
minima in the processed SLA time series. Then, 
based on the local maximum and minimum values, 
upper and lower envelopes were generated by cubic 
spline interpolation, and the mean values of the 
upper and lower envelopes were obtained. In addition, 
the trend term of the SLA time series was obtained 
by applying Lowess smoothing to the mean values, 
and the subsequence results are shown in Fig.6a. 
Then, the STL, VMD, and TVF-EMD methods were 
used to decompose the SLA time series, and the 
trend terms shown in Fig.6b, c, & d were obtained.

As seen from Fig.6, the sea level in the study 
area presented an overall fluctuating trend, and the 
derived trend terms could better reflect the 
fluctuation characteristics of the SLA time series 
when the four time series decomposition methods 
listed above were used. Among these four methods, 
the trend term obtained using the STL method can 
best reflect the real sea level change trend, and the 
significant rises and declines in sea level caused by 
El Niño and other climate phenomena are also 
reflected well. The trend terms obtained by the 
VMD and TVF-EMD methods are relatively similar, 

Fig.6 The decomposition results of the trend term obtained using different methods
a. decomposition method for sea level anomaly time series prediction (DMSLAP); b. seasonal and trend decomposition using Loess (STL); c. variational 

mode decomposition (VMD); d. time varying filtering based on empirical mode decomposition (TVF-EMD).
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and both methods excessively smooth out details. 
Compared to the trend term obtained using the STL 
method, DMSLAP smoothed out the special change 
values, thus regularizing trend change. The trend 
terms decomposed by the VMD and DMSLAP 
methods can extract rules other than abnormal changes 
more accurately during the prediction process.

After the trend term was obtained, in the 
DMSLAP method, the trend term subsequence was 
subtracted from the original SLA time series to 
obtain the first remaining term. The periods 
obtained by the Fourier transform are 12 and 
30 months for the SLA time series, and the 100 
periods such as 18 and 16 months are weak and can 
be ignored. The first remaining terms were 
sequentially divided into 12 months and 30 months 
in length, and each group of sample points derived 
at the same position constitutes a subsequence set. 
Then Lowess smoothing and low-pass filtering were 
performed on each subsequence. Finally, the periodic 
term was extracted from by restoring subsequence 
set. The resulting periodic term subsequences are 
shown by the blue curves in Fig.7a. The periodic 
term subsequence results obtained by the STL, 
VMD, and TVF-EMD methods are shown as blue 
curves in Fig.7b, c, & d, respectively.

The blue curves in Fig.7 show that some 
differences exist among the periodic terms obtained 
using the four methods. The periodic terms obtained 
using the VMD and TVF-EMD methods exhibit 
certain volatile characteristics, including periodic 
changes in some special cases. The periodic terms 
obtained by DMSLAP and STL are smoother than 
those obtained by VMD and are not affected by 
abnormal data behaviors. The STL method can 
decompose only one periodic sequence. DMSLAP 
considers the temporal characteristics of SLA time 
series, and the number of resulting decomposed 
periodic term subsequences are uncertain. Thus, the 
corresponding periodic subsequences can be calculated.

After obtaining the periodic term subsequence, 
the DMSLAP method subtracted the trend term 
subsequence and periodic term subsequence from 
the original SLA time series to obtain the residual 
term. The full results of the decomposition 
processes performed with the DMSLAP, STL, 
VMD, and TVF-EMD methods are shown as green 
curves in Fig.7a, b, c, & d, respectively.

We can see from the green curves in Fig.7 
that most of the residual terms obtained using 
the four methods are within the range of -5 cm to 
5 cm, indicating that these four methods can 

effectively decompose the SLA time series. 
Obvious differences can be observed among the 
results obtained with the four decomposition 
methods. VMD outputs other subsequences in 
addition to the trend term, periodic term, and 
residual term, and the total number of output 
subsequences is dependent on the inputs. The 
decomposition results obtained by the VMD and 
TVF-EMD methods are relatively similar, and 
the corresponding residual terms vary greatly 
and are difficult to predict. DMSLAP can 
decompose the data corresponding to the main 
period and other periods, and the main period 
results are similar to those obtained for the 
period decomposed by STL.

3.2.2 Time series decomposition similarity

In this work, cosine similarity was used to evaluate 
the similarity of two vectors by calculating the cosine 
value of the angle between them (Zhou and 
Leydesdorff, 2016). Equation 2 was used to calculate 
the cosine similarity and can be expressed as follows:

ρxy =
∑
t = 1

T

xt yt

∑
t = 1

T

x2
t∑

t = 1

T

y2
t

, (2)

where x and y are the original time series and the 
results after decomposition and the removal of 
the remaining subsequences, respectively, and 
T is the total amount of time covered by the 
analyzed data.

The similarities between the original SLA time 
series and the temporal subsequences decomposed 
by the four methods were calculated, and the results 
obtained are shown in Table 2.

Table 2 shows that the similarities between the 
results obtained using the four decomposition 
methods and the original series are high, and all 
similarity values are above 0.9. Thus, all four 
methods can decompose the time series well. The 
decomposition result obtained using the STL 
method best reflected the real sea level changes. 
This method had the highest degree of decomposition 
completeness compared to the other three analyzed 
methods. The cosine similarity of the DMSLAP 
result was slightly lower than that of the STL result.

3.3 Sea level anomaly time series prediction

With regard to the decomposed SLA time series 
derived using the four methods, the combined 
SARIMA+LSTM method (Sun et al., 2020) was 
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used to make predictions, and the predicted results 
were then analyzed. In this experiment, the data 
recorded from 1993 to 2019 were selected as the 
training set, and the data recorded in 2020 were 
selected as the verification set. Then, SARIMA 

was used to predict the trend terms and periodic 
terms, and LSTM was used to predict the 
residual terms. Finally, the prediction results were 
obtained by jointly predicting of the decomposed 
time series, and the results are shown in Fig.8 and 
Table 3.

As shown in Fig.8, the sea level change expected 
in the next year can be predicted to a certain extent 
by using the four methods analyzed in this work. 
Among these methods, the periodic term decomposed 

Fig.7 Time series decomposition using different methods
a. decomposition method for sea level anomaly time series prediction (DMSLAP); b. seasonal and trend decomposition using Loess (STL); c. variational 

mode decomposition (VMD); d. time varying filtering based on empirical mode decomposition (TVF-EMD).

Table 2 Cosine similarities between the SLA time series 
and decomposition results

Correlation coefficient

Cosine similarity

STL

0.982 1

VMD

0.970 9

TVF-EMD

0.964 2

DMSLAP

0.976 2
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using the STL method was greatly affected by 
abnormal behavior, which further affected the 
periodic term prediction ability. The prediction 
effects of DMSLAP and TVF-EMD were equivalent. 
Table 3 also shows that among the four analyzed 
methods, the minimum RMSE value obtained by 
DMSLAP and the combined prediction model was 
1.40 cm, and the R2 value reached 0.93. The STL 
method provided the worst predictions, with an 
RMSE of 2.14 cm. The DMSLAP method was thus 
more conducive for SLA time series predictions than 
the STL method. Therefore, when conducting SLA 
time series predictions, in addition to the selection of 
the prediction method, which is very important, the 
selection of the time series decomposition method is 
also critical. During the decomposition stage, only by 
breaking down the regular components to the greatest 
possible extent can we obtain better predictions of 
the future conditions.

The DMSLAP decomposition effect was better 

than the effects of the other methods when 
predicting one-year SLA time series. We considered 
the influence of different time scales on the different 
decomposition methods analyzed. The DMSLAP, 
STL, VMD, and TVF-EMD methods were used to 
predict SLA values during 2020, 2019–2020, and 
2018–2020 based on SLA time series data records of 
1993–2019, 1993–2018, and 1993–2017, respectively. 
The sea level prediction results obtained in these 
different time periods using the four methods listed 
above are shown in Table 4.

As we can see from Table 4, the effect of 
DMSLAP was greatly affected by the analyzed time 
scale. On different prediction time scales, the 
prediction effect exhibits certain differences. 
Looking only at the DMSLAP prediction results, we 
can see that the longer the prediction time is, the 
worse the prediction accuracy is when using the 

Table 3 SLA prediction results in 2020

Method

DMSLAP

STL

VMD

TVF-EMD

Mean (cm)

1.11

1.88

1.60

1.27

RMSE (cm)

1.40

2.14

1.91

1.54

R2

0.93

0.84

0.87

0.92

Fig.8 SLA time series prediction results using different methods
a. DMSLAP; b. STL; c. VMD; d. TVF-EMD.

Table 4 The RMSEs derived after SLA time series 
predictions (unit: cm)

Method

DMSLAP

STL

VMD

TVF-EMD

2020

1.40

2.14

1.91

1.54

2019–2020

1.81

2.36

1.97

1.79

2018–2020

2.47

2.53

2.89

2.48
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same decomposition and prediction methods. As 
seen from Table 4, the prediction accuracies of the 
four decomposition methods generally decrease 
when the prediction time length increases. The 
DMSLAP method has the highest accuracy when 
forecasting only 1-year data, the TVF-EMD method 
has the highest accuracy when predicting 2-year 
data, and the DMSLAP method has the highest 
accuracy when predicting 3-year data. Among these 
results, the RMSEs of the STL and VMD methods 
are concentrated at approximately 2 cm, and these 
values are excessively large among the three groups 
of experiments; thus, these two methods are not 
suitable for short- or medium-term SLA time series 
predictions. The TVF-EMD method performs 
slightly worse than the DMSLAP method when 
predicting 1-year data and is slightly more 
accurate than DMSLAP when predicting 2-year 
data; conversely, the DMSLAP method is more 
accurate when predicting 3-year data. Overall, the 
TVF-EMD and DMSLAP methods have comparable 
accuracies. However, the periodic term decomposed 
by the DMSLAP method is more in line with the 
actual law than that derived using the TVF-EMD 
method. When DMSLAP is combined with the 
prediction model, the short- and medium-term 
time series prediction accuracies are increased. 
Therefore, DMSLAP can play a substantial role in 
short-term sea level anomaly predictions.

4 CONCLUSION

According to the temporal characteristics of SLA 
time series, we proposed a new decomposition method 
for predicting SLA time series in this paper. The 
purpose of the developed method is to improve the sea 
level change prediction accuracy, named DMSLAP 
(decomposition method for sea level anomaly time 
series prediction). This developed method and the 
existing STL, VMD, and TVF-EMD methods are used 
to decompose SLA time series. The comparison results 
of the decomposition experiments show that:

(1) from the decomposed trend items, it is found 
that the trend items obtained using the STL method 
can best reflect the real sea level change trend, 
which is more advantageous for analyzing the trend 
growth of sea level change directly. However, the 
VMD and DMSLAP methods can maintain the 
overall trend while removing the influence of 
abnormal data behaviors on the decomposed trend 
terms, which can better predict sea level changes.

(2) from the decomposed periodic terms, it is 

found that the periodic terms obtained using the 
VMD and TVF-EMD methods are unstable in some 
special cases. The periodic terms obtained using the 
DMSLAP and STL are smoother and unaffected by 
abnormal data behaviors. The DMSLAP can 
maintain the overall change characteristics while 
maintaining the smoothness of the time series, 
reducing the difficulty of SLA time series prediction.

Experimental studies on the SLA prediction were 
carried out in the China seas and its vicinity. The 
DMSLAP, STL, VMD, and TVF-EMD methods 
were designed to predict 1-, 2-, and 3-year SLA 
values. The DMSLAP method was more accurate 
when predicting 1-year data and 3-year data. TVF-
EMD and DMSLAP had comparable accuracies, 
and the periodic term decomposed by the DMSLAP 
method was more in line with the actual law than 
that derived using the TVF-EMD method. These 
results show that DMSLAP has a higher decomposition 
completeness and a better prediction effect than the 
other existing methods and is thus an effective 
tool for predicting short-term sea level changes. 
Although SLA time series are complex, the 
DMSLAP method can successfully decompose the 
corresponding trend and period terms when only 
temporal variables are considered. In future studies, 
we may consider the impacts of various prediction 
methods on decomposition methods analyzed 
herein, as multiple prediction methods were not 
evaluated in our current work.
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