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  Abstract        We investigated the intraseasonal variability of equatorial Pacifi c subsurface temperature and 
its relationship with El Niño-Southern Oscillation (ENSO) using Self-Organizing Maps (SOM) analysis. 
Variation in intraseasonal subsurface temperature is mainly found along the thermocline. The SOM patterns 
concentrate in basin-wide seesaw or sandwich structures along an east-west axis. Both the seesaw and 
sandwich SOM patterns oscillate with periods of 55 to 90 days, with the sequence of them showing features 
of equatorial intraseasonal Kelvin wave, and have marked interannual variations in their occurrence 
frequencies. Further examination shows that the interannual variability of the SOM patterns is closely 
related to ENSO; and maxima in composite interannual variability of the SOM patterns are located in the 
central Pacifi c during CP El Niño and in the eastern Pacifi c during EP El Niño. These results imply that some 
of the ENSO forcing is manifested through changes in the occurrence frequency of intraseasonal patterns, in 
which the change of the intraseasonal Kelvin wave plays an important role.   

  Keyword : intraseasonal variability; equatorial Pacifi c; El Niño-Southern Oscillation (ENSO); Self-
Organizing Maps (SOM) 

 1 INTRODUCTION  

 El Niño-Southern Oscillation (ENSO) is the 
dominant mode of interannual variability in the 
tropical Pacifi c Ocean; ENSO events have 
considerable infl uence on regional or global climate. 
El Niño events are typically characterized by increased 
sea surface temperature (SST) in the eastern equatorial 
Pacifi c (EP). However, in the past 20 years, increased 
SST has been occurring more frequently around the 
dateline in the central equatorial Pacifi c (CP) (e.g., 
Ashok et al., 2007; Yu and Kao, 2007; Kug et al., 
2009; Lee and McPhaden, 2010; Cai et al., 2014). The 
two fl avors of El Niño—CP and EP—are diff erent in 
terms of their spatial-temporal structure, 
teleconnection modes, and even infl uence on global 
climate (e.g., Ashok and Yamagata, 2009; Yeh et al., 
2009; Feng and Li, 2011; Feng et al., 2011; Kumar 

and Hu, 2014). The fi rst extreme El Niño event in the 
21 st  century occurred in 2015/16. It led to severe 
weather and damage in many regions all over the 
world, and was diff erent from the extreme EP El Niño 
events in 1982/83 and 1997/98. The Niño4 SST 
anomaly reached a record high of 1.7°C during the 
mature phase of the 2015/16 El Niño; compared with 
1982/83 and 1997/98, the center of enhanced 
convection was 20° longitudes further west in 
2015/16; SST anomaly in the eastern equatorial 
Pacifi c also spread to the west of the dateline during 
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the 2015/16 event (L’Heureux et al., 2017; Ren et al., 
2017; Santoso et al., 2017; Xue and Kumar, 2017). 
The complexity of this extreme El Niño poses a new 
challenge to ENSO theory and prediction. Most 
numerical models are unable to predict ENSO events 
that occurred between 2010 and 2014 and in 2017/18 
(Zhang et al., 2013; Zhu et al., 2016; Huang et al., 
2017; L’Heureux et al., 2017; Hu et al., 2019). 

 Some studies suggest that global warming weakens 
easterly winds in the equatorial region and fl attens the 
thermocline; this causes the thermocline feedback to 
move westward from the eastern Pacifi c, resulting in 
frequent CP El Niño events (Ashok et al., 2007; Yeh 
et al., 2009). Since 1998/99, equatorial trade winds 
have become stronger, the eastern Pacifi c has become 
cooler, and the western Pacifi c has become warmer; 
subsequently, some studies argue that the enhancement 
of easterly winds and zonal SST gradient is responsible 
for the higher frequency of CP El Niño (Choi et al., 
2011; McPhaden et al., 2011; Chung and Li, 2013).  

 Processes other than low-frequency and large-scale 
dynamic ones also play a vital role in El Niño 
evolution; these include westerly wind burst 
(Kutsuwada and McPhaden, 2002) and oceanic 
intraseasonal variability (ISV) in the form of the 
Kelvin wave, which is partly associated with the 
Madden-Julian Oscillation (e.g., Kessler et al., 1995; 
Hendon et al., 1998; Zhang, 2001). Feng et al. (2016) 
argued that life cycle and strength of oceanic ISV in 
the two types of El Niño are statistically diff erent. El 
Niño events of 1997/98 and 2015/16 were comparable 
in strength; Lyu et al. (2018) compared their ISV 
characteristics, and found that intraseasonal variations 
in 1997 were 30% to 50% stronger than those in 2015. 
While some studies have examined characteristics of 
the intraseasonal oscillation of oceanic variability, 
comprehensive features of ISV as well as its possible 
connections with ENSO variability has yet been 
received a few attentions.  

 A popular approach for identifying the spatial-
temporal patterns of a variable is through linear 
empirical orthogonal function (EOF) analysis 
(Bjornsson and Venegas, 1997), but this method is not 
guaranteed to reveal its physical meaning (e.g., 
L’Heureux et al., 2013). In this paper, we carried a 
statistical non-linear classifi cation method called 
Self-Organizing Maps (SOM) on the subsurface 
ocean temperature along equator to extract the 
intraseasonal variabilities. It was fi rstly proposed by 
Kohonen (1981) and has been applied in many fi elds. 
In climate sciences, it has been used for example to 

examine the variability of ocean currents (Liu and 
Weisberg, 2005), to analyze multimodel ensemble 
seasonal forecasts (Gutiérrez et al., 2005). It has been 
also used to classify ENSO phases and ENSO 
characteristics (Leloup et al., 2007; Johnson, 2013). 
Since SOM is not constrained by either linearity or 
orthogonality, it avoids the disadvantages of EOF 
analysis and often results in more easily interpretable 
physical structures (Kohonen, 2001; Johnson et al., 
2008; Johnson and Feldstein, 2010). 

 The rest of the paper is organized as follows. Section 
2 introduces the data and methodology. Section 3 
presents results of EOF and SOM analyses of 
intraseasonal variability of subsurface ocean variables. 
Interannual variations of intraseasonal SOM patterns 
and possible relationships with ENSO are discussed in 
Section 4. A summary is given in Section 5. 

 2 MATERIAL AND METHOD 

 2.1 Data 

 The TAO/TRITON (Tropical Atmosphere Ocean/
Triangle Trans-Ocean Buoy Network) array 
observation data from the TAO Project Offi  ce of 
National Oceanic and Atmospheric Administration/
Pacifi c Marine Environmental Laboratory (NOAA/
PMEL) were used in this study. Meridional mooring 
spacing is between 2° and 3° and longitudinal mooring 
spacing is between 10° and 15° in the equatorial 
Pacifi c. We analyzed the daily subsurface ocean 
temperature data from 1993 to 2016 from 11 sites on 
the equator at 137°E, 147°E, 156°E, 165°E, 180°, 
170°W, 155°W, 140°W, 125°W, 110°W, and 95°W. 
Ocean temperature was interpolated to 14 standard 
vertical levels (5, 10, 25, 50, 75, 100, 125, 150, 175, 
200, 225, 250, 275, and 300 m). Equatorial temperature 
was derived from averaging the subsurface ocean 
temperature data across the area between 2°S and 
2°N, although missing values remained (Fig.1a). Data 
from adjacent mooring sites are highly correlated. For 
example, for 1993–2016, the correlation coeffi  cient 
between data from 156°E and 165°E is 0.73, 
correlation between data from 180° and 170°W is 
0.90, correlation between 170°W and 155°W is 0.88, 
and correlation between 140°W and 125°W is 0.89; 
these correlations are signifi cant at the 99% confi dence 
level. Therefore, linear regression between highly 
correlated sites was used to derive missing values. 
Correlation coeffi  cients between the time series that 
were used to derive missing values are 0.70 to 0.90. 
Figure 1b shows the data of Fig.1a with data gaps 
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fi lled in. Climatology was calculated for each day by 
averaging the data over 1993–2016. Daily anomalies 
are defi ned as deviations from the mean annual cycle. 
To examine intraseasonal variability, a band-pass 
(elliptic) fi lter of 20 to 100 days was applied to the 
daily anomalies.  

 Monthly SST analysis during 1993–2016 from 
NOAA_ERSST_V3b data was used. It covers 
88°N–88°S and 0°–358°E with a resolution of 2° 
latitude × 2° longitude. Details of the dataset can be 
found in Xue et al. (2003) and Smith et al. (2008). 
Anomalies were obtained by subtracting the monthly 
seasonal cycle from original data. The long-term 
trend is fi rstly calculated by linear regression method 
and was removed from the SST anomalies. 

 2.2 Method 

 The SOM patterns are organized on a two-
dimensional grid. They are obtained by minimizing 
the Euclidean distance between the observed daily 
fi eld and each of the SOM patterns. A brief introduction 
is given as follows, and for more details the reader 
may refer to Kohonen (1995) and Johnson et al. 
(2008). We consider the STA as a weighted mean of 

all STA patterns. If we describe each pattern as an 
2-dimensional vector  m ( nx ,  ny ), in which ( nx ,  ny ) 
describes the grid points in the spatial domain, then 
we may express the STA as, 

  z =∫ mp ( m )d m ,        (1) 
 where  p ( m ) is the probability density function of  m . It 
is diffi  cult to examine all members of the continuum; 
we may choose some representative patterns. If we 
choose  K  representative patterns, then a discretized 
form of Eq.1 will be, 

 1 ( ).K
c c cz m p m            (2) 

 We may interpret  p ( m  c ) as the probability of 
occurrence of the pattern  m  c . The SOM method 
provides a means of describing a continuum of 
patterns, as in Eq.1, by a discrete number of 
representative patterns as in Eq.2. 

 An overview of the algorithm for obtaining  m  c  is 
given here. Regression of an ordered set of model 
vectors  m  i    R  2  into the space of observation vectors 
 z    R  2  is often made by the following process: 

  m  i ( t +1)= m  i ( t )+ α ( t ) h  c  (  x  ),  i ( z ( t )– m  i ( t )),            (3) 
 where  t  is the sample index of the regression step. The 
regression is performed recursively for each 
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 Fig.1 TAO/TRITON ocean temperature (°C) at 100 m along the equator averaged over 2°S–2°N from 1993 to 2016 (a); as 
in (a), but with missing values fi lled by interpolation (b) 
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presentation of a sample of  z . The initial values for the 
model vectors are organized in an orderly fashion 
along the linear subspace spanned by the two principal 
eigenvectors of the input data set. 

 The index  c  for determining closest pattern is 
defi ned by the condition 

         ,c iz t m t z t m t i      (4)  

 where ||.|| is the distance measure.  
 Here  h  c  (  x  )  ,  i  is called the neighborhood function, 

which is a decreasing function of the distance between 
the the  i  th  and  c  th  models on the map grid. It is taken to 
be the Gaussian  

  

2

, 2exp(- ),
2 ( )
i c

c x i

r r
h

t


               (5) 

 where  r  c  is the location of unit  c  on the map grid and 
the  σ ( t ) is the neighborhood radius at time  t . The 
learning rate factor  α ( t ) is a decreasing function of 
time between [0, 1]. It linearly goes from 1 to 0 during 
the training length. 

 Various methods have been proposed for 
determining SOM grid size. SOM analysis is based 
on fi nding the smallest Euclidean distance between 
daily data and SOM patterns, which corresponds to 
the minimization of the average quantization error 
(QE). Yuan et al. (2015) defi ned QE as: 

 *
1

1QE ( ),N
N t cz m

N        (6) 

 where  z  t  is the observed fi eld on each day and  m  c  *  is the 
representative SOM pattern for that day, and  N  is the 
number of days. Occurrence frequency of  m c  *    , or  f (  m c  *   ), 
is the ratio of the number of samples associated with  
 m c  *       to  N . 

 Lee and Feldstein (2013) selected the grid size 
using two criteria on the basis of average pattern 
correlations between observed daily fi eld and its 
representative SOM pattern. First, the number of 
SOM patterns should not be too large; second, SOM 
patterns should be similar to observed daily fi elds. We 

applied this method, which has been used in other 
studies (Feldstein and Lee, 2014; Yuan et al., 2015). 
We evaluated quantization errors and average pattern 
correlations for fi ve grid sizes: 2×4, 3×3, 3×4, 3×5, 
and 4×4 (Table 1). For each SOM pattern, mean 
pattern correlation between the daily fi eld and the 
representative SOM pattern for that day (i.e., the 
SOM pattern with the smallest Euclidean distance on 
that day) was calculated. In Table 1, the second 
column shows the weighted-mean correlation of all 
SOM patterns; weights were defi ned by occurrence 
frequency of the SOM pattern; the third column 
shows the quantization error. As can be seen, when 
grid size doubles from 2×4 to 4×4, mean pattern 
correlation increases from 0.48 to 0.54 and 
quantization error decreases from 3.89 to 3.67. We 
performed the SOM analysis with a 3×4 grid because 
this grid is not too large, its average pattern correlation 
is relatively high, and its average quantization error is 
low. We also examined spatial patterns (fi gures not 
shown) and occurrence frequencies using diff erent 
grids and found that the essential features of the main 
SOM patterns are retained, indicating that the 
properties of these patterns are insensitive to grid 
size. We used the software MATLAB and the SOM 
Toolbox (http://www.cis.hut.fi /projects/somtoolbox/).  

 In addition, EOF analysis was conducted. Although 
this linear method has some shortness, the leading 
EOFs can still capture the dominant spatial patterns. 
The Monte Carlo technique (Overland and 
Preisendorfer, 1982) was used to test the signifi cance 
of EOF modes. Composite and correlation methods 
were also used. Statistical signifi cance was evaluated 
with Student’s  t -tests.  

 3 RESULT 

 3.1 Intraseasonal variability of the equatorial 
subsurface temperature continuum  

 3.1.1 EOF patterns 

 An EOF analysis was conducted on intraseasonal 
subsurface temperature anomaly (STA) data from 
1993 to 2016; data along equator averaged in from 
2°S to 2°N above 300 m were used to extract the 
linearly dominant ISV patterns (Fig.2). Monte Carlo 
test results indicate that the fi rst two EOF modes are 
signifi cant at the 95% confi dence level. Variances are 
also strongly concentrated in the fi rst two modes. 

 The fi rst two modes account for 60% of total STA 
variance; the fi rst (EOF1) and second (EOF2) modes 
explain 32% and 28% of the variance, respectively; 

 Table 1 Average quantization errors (QE) and average 
pattern correlations between the daily fi eld and 
corresponding best matching SOM pattern for 
diff erent SOM grid sizes 

 Grid size  Average pattern correlation  Average quantization error 

 2×4  0.48  3.89 

 3×3  0.52  3.83 

 3×4  0.53  3.72 

 3×5  0.53  3.71 

 4×4  0.54  3.67 
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their spatial patterns are depicted in Fig.2a & b. 
Principal components of the leading modes—PC1 for 
EOF1 and PC2 for EOF2—normalized by their 
standard deviations are shown in Fig.2c & d. The 
EOF1 displays a zonal sandwich pattern along the 
thermocline with positive loading in the central 
Pacifi c and negative loading in the western and 
eastern Pacifi c (Fig.2a). The EOF2 (Fig.2b) exhibits a 
seesaw pattern with centers along the thermocline. 

Spectral analysis suggests that both EOF1 and EOF2 
oscillate broadly with periods of 50 to 95 days with 
peaks at 55 to 60 days and 70 to 80 days, while EOF2 
has an additional peak at 90 days (Fig.2e & f).  

 3.1.2 SOM patterns 

 To better resolve spatial variation of intraseasonal 
variability from nonlinear perspective, we examined 
SOM patterns extracted from fi ltered (20–100 days) 
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 Fig.2 The fi rst two EOF modes of intraseasonal subsurface temperature anomaly (STA) during 1993–2016  
 a–b. spatial pattern, EOF1 and EOF2, with the variance fraction showing in the bracket; c–d. corresponding time series of principal component for the 
fi rst (PC1) and the second (PC2) mode (normalized by the standard deviation); e–f. power spectra of the fi rst and the second time series, with dashed lines 
denoting 95% confi dence level based on Student’s  t -test. 
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daily STA data. Figure 3 shows 12 SOM patterns. For 
each pattern, occurrence frequency—percentage of 
days over the study period for which a particular 
pattern is the representative pattern of the day—is 
shown in the bracket at the top of the fi gure.  

 By comparing Fig.3 and Fig.2, we can see that 
each EOF is related to a continuum of SOM patterns. 
To quantify this relationship, we calculated spatial 
correlations between SOM patterns and the sandwich 
(EOF1) and seesaw (EOF2) modes (Table 2). If the 
correlation between a SOM pattern and EOF1 is 
greater than or equal to the threshold value of 0.7, 
then we consider that this pattern corresponds to the 
positive phase of the sandwich mode; if correlation is 
less than -0.7 then the pattern corresponds to the 
negative phase of the mode. Similarly, if the 
correlation between a pattern and EOF2 is greater 

(less) than or equal to 0.7 (-0.7), then this pattern 
corresponds to the positive (negative) phase of the 
seesaw mode. 

 The threshold value was determined following two 
criteria: 1) the value should be large enough so that 
each SOM pattern is only associated with one mode, 
and 2) it should be small enough so that each mode is 
associated with several patterns. We found three SOM 
patterns that correspond to the positive phase of the 
sandwich mode (SOM2, SOM3 and SOM6), four 
patterns that correspond to the negative phase of the 
sandwich mode (SOM7, SOM8, SOM10 and 
SOM11), three patterns that correspond to the positive 
phase of the seesaw mode (SOM1, SOM4 and 
SOM5), and two patterns that correspond to the 
negative phase of the seesaw mode (SOM9 and 
SOM12). 
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 Table 2 Pattern correlations between the EOF and SOM patterns 

 SOM  1  2  3  4  5  6  7  8  9  10  11  12 

 EOF1  0.25   0.72    0.97   -0.13  0.32   0.99   - 0.95   - 0.75   0.26  - 0.97   - 0.73   -0.26 

 EOF2   0.96   0.58  0.22   0.98    0.76   -0.09  0.25  -0.64  - 0.95   -0.22  -0.61  - 0.96  

 Bold values exceed 99% signifi cant confi dence level. 
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 For each SOM pattern, we generated a 
corresponding time series by projecting 20–100 days 
fi ltered STA data on to the pattern using linear 
regression; SPC1–12 are the time series for the 12 
SOM patterns, and are referred to as the SOM PCs in 
this paper. Spectral analysis of SOM PCs suggests 
that SOM patterns oscillate broadly with a period of 
50 to 95 days (Fig.4). Following Yuan et al. (2015) 
and Johnson and Feldstein (2010), we defi ne the 
e-folding time scale of a SOM pattern as the time over 
which autocorrelation decays to 1/e. We found that 
e-folding time scales of all SOM patterns are between 
11 and 12 days (Fig.5a), and lagged autocorrelations 

decay to zero over about 15 to 16 days. Principal 
component time series of the EOFs also yield 
e-folding time scales of 11 to 12 days (Fig.5b). The 
SOM patterns and EOFs have similar e-folding time 
scales, further proving that SOM patterns oscillate 
predominantly on the intraseasonal time scale. 

 If we reorder the sequence of the SOM patterns, we 
can see a wave pattern evolution moving in the 
positive horizontal axis direction: SOM6 → SOM3 
→ SOM2 → SOM5 → SOM1 → SOM4 → SOM7 
→ SOM10 → SOM8 → SOM11 → SOM12 → 
SOM9, which is consistent with a phase progression 
of the synthetic sinusoidal pattern. This feature of the 
continuum SOM patterns together with their 
oscillation period confi rms an eastward propagation 
in the form of intraseasonal equatorial Kelvin wave. 
In other words, both seesaw and sandwich patterns 
from EOF analysis as well as from SOM analysis are 
one mode in diff erent phases associated with the 
intraseasonal Kelvin wave. 

 3.2 Interannual variation of SOM patterns 

 3.2.1 Correlation analysis  

 In this section, we examine the relationship of 
intraseasonal variability and ENSO from a SOM 
perspective. Because the period of the intraseasonal 
time scale is about 55 to 90 days, we divided each 
year into two seasons; spring-summer season is 
characterized by mean values from April, May, June, 
July, to August (AMJJA), and autumn-winter season 
is characterized by mean values from October, 
November, December to January and February of the 
following year (ONDJF). For each SOM pattern, 
seasonal occurrence frequency—percentage of days 
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over the season for which a particular pattern is the 
representative pattern of the day—between 1993 and 
2016 and normalized by standard deviation is shown 
in Fig.6 together with the Niño3.4 index. There is 
clear interannual variation in the occurrence 
frequencies of SOM patterns, which can also be seen 
from the lead-lag correlations between the SOM 
patterns and the Niño3.4 index (Fig.7). Most patterns 
are closely correlated to the Niño3.4 index. The 
Niño3.4 index is defi ned by the SSTA averaged in 
(170°W–120°W, 5°S–5°N). The largest positive 
correlation coeffi  cients are between 0.4 and 0.6 and 
occur when SOM1, SOM3 and SOM10 lead the 
Niño3.4 index for 0–1 seasons; correlations are 
signifi cant at the 99% confi dence level. Statistically 
signifi cant negative correlations occur when SOM5, 
SOM8 and SOM9 lead Niño3.4 index for 0–1 seasons. 
These results indicate that occurrence frequencies of 
SOM1, SOM3 and SOM10 increase (decrease) during 
El Niño (La Niña) events, while the opposite is true 
for SOM5, SOM8 and SOM9. 
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 3.2.2 Composite Analysis of occurrence frequency 
and strength of SOM patterns 

 We conducted a composite analysis to investigate 
whether ENSO infl uences SOM patterns and their 
interannual variation. We used the method proposed 
by Yeh et al. (2009) to identify CP and EP events. An 
EP El Niño year is defi ned as the year in which the 
Niño3 SST index averaged over December, January 
and February (DJF mean SST anomaly averaged over 
the Niño3 region, which is located at 150°W–90°W, 
5°S–5°N) is above 0.5°C and greater than the DJF 
Niño4 SST index (DJF mean SST anomaly averaged 
over the Niño4 region, which is located at 
160°E–150°W, 5°S–5°N). A CP El Niño year is 
defi ned as the year in which the DJF Niño4 SST index 
is above 0.5°C and greater than the DJF Niño3 SST 
index. Between 1993 and 2016, there were two EP El 
Niño events (1997/98 and 2015/16), four CP El Niño 
events (1994/95, 2002/03, 2004/05 and 2009/10), and 
eight La Niña events (1995/96, 1998/99, 1999/2000, 
2005/06, 2007/08, 2008/09, 2010/11 and 2011/12). 
Other years were neutral (1993/94, 1996/97, 2000/01, 
2001/02, 2003/04, 2006/07, 2012/13, 2013/14 and 
2014/15). For each SOM pattern, we calculated its 
occurrence frequency in EP El Niño, CP El Niño, La 
Niña and neutral years for the spring-summer and 
autumn-winter seasons (Table 3). 

 Occurrence frequencies of SOM1, SOM3 and 
SOM10 generally increase (decrease) during El Niño 
(La Niña) years; whereas those of SOM5, SOM8 and 

SOM9 increase (decrease) during La Niña (El Niño) 
years. For example, occurrence frequency of SOM1 
in spring-summer is 10.66% in neutral years, 16.33% 
(15.68%) in EP (CP) El Niño years, and 6.02% in La 
Niña years. Occurrence frequency of SOM3 in spring-
summer is 13.98% in neutral years, 18.30% (18.62%) 
in EP (CP) El Niño years, and 9.58% in La Niña years. 
Occurrence frequency of SOM10 in spring-summer 
increases to 13.39% (13.23%) in EP (CP) El Niño 
years from 11.42% in neutral years, and decreases to 
8.27% in La Niña years. Occurrence frequencies of 
SOM5 in spring-summer in EP El Niño, CP El Niño, 
La Niña and neutral years are 0.0%, 5.88%, 9.07% 
and 5.88%, respectively; those of SOM8 are 0.0%, 
0.98%, 7.26%, and 3.92%, and those of SOM9 are 
4.24%, 4.41%, 10.96%, and 9.63%. These results are 
generally consistent with correlation analysis results 
although some discrepancies exist because two types 
of El Niño are included in the composite analysis. 
Discrepancies are mainly found in autumn-winter of 
the CP and EP El Niño years. For example, occurrence 
frequency of SOM1 in autumn-winter increases from 
13.04% in neutral years to 14.08% in CP El Niño 
years, but decreases to 12.17% in EP El Niño years. 
Similarly, occurrence frequency of SOM9 in autumn-
winter decreases from 7.38% in neutral years to 
7.07% in CP El Niño years, but increases to 9.21% in 
EP El Niño years. 

 Because most SOM patterns are associated with 
either the seesaw or sandwich mode, we examined 
seasonal change in occurrence frequencies of the 

 Table 3 Occurrence frequency (%) of the SOM patterns during EP El Niño, CP El Niño, La Niña and neutral ENSO years 
in both spring-summer (AMJJA) and autumn-winter (ONDJF) 

 SOM 
 EP El Niño  CP El Niño  La Niña  Seasonal mean 

 AMJJA  ONDJF  AMJJA  ONDJF  AMJJA  ONDJF  AMJJA  ONDJF 

 1 (D+)  16.33  12.17  15.68  14.80  6.02  8.63  10.66  13.04 

 2 (T+)  6.20  1.97  2.28  2.13  6.97  3.94  5.09  2.95 

 3 (T+)  18.30  11.18  18.62  18.09  9.58  12.67  13.98  15.59 

 4 (D+)  7.51  10.19  4.24  7.23  6.97  12.12  6.51  8.84 

 5 (D+)  0.00  6.25  5.88  0.49  9.07  3.85  5.88  2.8 

 6 (T+)  7.51  7.56  5.71  6.41  9.73  8.63  8.13  7.72 

 7 (T–)  10.78  6.25  8.00  7.73  12.20  10.28  9.78  8.07 

 8 (T–)  0.00  3.61  0.98  0.82  7.26  2.66  3.92  3.35 

 9 (D–)  4.24  9.21  4.41  7.07  10.96  8.72  9.63  7.38 

 10 (T–)  13.39  12.50  13.23  11.01  8.27  9.73  11.42  11.18 

 11 (T–)  6.20  11.51  8.98  9.04  6.02  8.81  6.59  8.24 

 12 (D–)  9.47  7.56  11.92  15.13  6.89  9.91  8.41  10.84 

 The seesaw, sandwich SOM patterns are denoted in the bracket in the fi rst column. ‘D’ denotes seesaw pattern and ‘T’ denotes sandwich pattern. Positive and 
negative phases are denoted by ‘+’ and ‘–’, respectively. 
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patterns associated with each mode during diff erent 
ENSO phases. Positive and negative phases were 
analyzed together initially. Table 4 shows average 
occurrence frequencies of SOM patterns associated 
with positive and negative phases of the seesaw and 
sandwich modes. As can be seen in Tables 3 & 4, 
seesaw and sandwich patterns appear in EP El Niño, 
CP El Niño, La Niña, and neutral years in both seasons. 

 Total occurrence frequencies of the seesaw pattern 
in spring-summer, which is when ENSO events 
develop, are 37.58%, 42.15%, 39.94%, and 41.09% 
in EP El Niño, CP El Niño, La Niña and neutral years, 
respectively; total occurrence frequencies of the 
seesaw pattern in autumn-winter, which is when 
ENSO events are mature, are 45.39%, 44.73%, 
43.25%, and 42.91% during EP El Niño, CP El Niño, 
La Niña and neutral years, respectively. Total 
occurrence frequencies of the sandwich pattern in 
spring-summer are 62.41%, 57.84%, 60.05%, and 
58.91% in EP El Niño, CP El Niño, La Niña and 
neutral years; total occurrence frequencies of the 
sandwich pattern in autumn-winter are 54.60%, 
55.26%, 56.74%, and 57.09% in EP El Niño, CP El 
Niño, La Niña and neutral years. Taking neutral years 
as a reference, these results indicate that occurrence 
frequency of the seesaw pattern increases (decreases) 
during the mature (developing) phase of an ENSO 
event; occurrence frequency of the sandwich pattern 
increases considerably during the development of 
both El Niño and La Niña events, and decreases 
during the mature phase. In both El Niño and La Niña 
years, occurrence frequency of the seesaw (sandwich) 
pattern increases (decreases) from spring-summer to 
autumn-winter. In other words, the seesaw pattern is 
more likely to occur during the mature phase of an 
ENSO event, while the sandwich pattern is more 
likely to occur during the development of an ENSO 

event. Meanwhile, occurrence frequency of the 
sandwich pattern is higher than that of the seesaw 
pattern.  

 The positive and negative phases of the seesaw and 
sandwich patterns were also investigated in detail. 
Positive seesaw pattern occurs more frequently than 
negative seesaw pattern, whereas negative sandwich 
pattern occurs more frequently than positive sandwich 
pattern. For the seesaw pattern, we found that 
occurrence frequencies of both positive and negative 
phases generally increase from spring-summer to 
autumn-winter; exceptions include the positive phase 
in CP El Niño years (occurrence frequency of 25.81% 
in spring-summer and 22.53% in autumn-winter) and 
the negative phase in neutral years (occurrence 
frequency of 19.23% in spring-summer and 15.13% 
in autumn-winter). For the sandwich pattern, 
occurrence frequency of the positive phase decreases 
from spring-summer to autumn-winter in EP El Niño, 
La Niña and neutral years; occurrence frequencies in 
spring-summer and autumn-winter are similar in CP 
El Niño years (26.63% in spring-summer, 26.64% in 
autumn-winter); occurrence frequency of the negative 
phase increases from spring-summer to autumn-
winter in EP El Niño and neutral years, but decreases 
in CP El Niño and La Niña years.  

 We used the mean of a SOM PC to quantify the 
strength of the corresponding SOM pattern. Mean 
strength was calculated for spring-summer and 
autumn-winter in EP El Niño, CP El Niño, La Niña, 
and neutral years. The ISV strength during a certain 
period is defi ned by the summary of 12 SOM PCs 
weighted by its occurrence in the period. Figure 8 
shows that ISV oscillations are clearly much stronger 
in El Niño years than in La Niña and neutral years 
with some diff erences between EP and CP El Niño 
years. The strongest ISV occurs in spring-summer 

 Table 4 Separate occurrence frequencies (%) for the positive and negative phases of the seesaw and sandwich SOM patterns 
for EP El Niño, CP El Niño, La Niña and neutral ENSO years in both spring-summer (AMJJA) and autumn-winter 
(ONDJF) 

 SOM type 
 EP El Niño  CP El Niño  La Niña  Neutral ENSO 

 AMJJA  ONDJF  AMJJA  ONDJF  AMJJA  ONDJF  AMJJA  ONDJF 

 D (total)  37.58  45.39  42.15  44.73  39.94  43.25  41.09  42.91 

 D (+)  23.85  28.61  25.81  22.53  22.07  24.60  23.02  24.69 

 D (–)  13.72  16.77  16.33  22.20  17.86  18.64  18.04  18.22 

 T (total)  62.41  54.60  57.84  55.26  60.05  56.74  58.91  57.09 

 T (+)  32.02  20.72  26.63  26.64  26.28  25.25  27.20  26.26 

 T (–)  30.39  33.88  31.20  28.61  33.76  31.49  31.71  30.84 

 ‘D’ denotes seesaw pattern and ‘T’ denotes sandwich pattern. Positive and negative phases are denoted by ‘+’ and ‘–’, respectively. 
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during the developing phase of EP El Niño, and in 
autumn-winter during the mature phase of CP El 
Niño. This is in agreement with that argued by Feng 
et al. (2016). 

 These results indicate that ENSO has considerable 
eff ects on the seasonality of positive and negative 
seesaw and sandwich patterns.  

 3.2.3 Spatial pattern composite  

 Each SOM pattern was multiplied by its occurrence 
frequency, which is weighted by the SOM PC during 
the composite period, and composite maps were 
created by summing over all 12 patterns as follows: 
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( , ) ( , ) ( ) ,i c i c i

c
z x y m x y f m R



          (7) 

 where ( , )iz x y  denotes the composite temperature 
anomaly pattern for period  i ,  m  c ( x ,  y ) denotes SOM 
pattern  c  in Fig.3,  f  i ( m  c ) is the average occurrence 
frequency of  m  c  for period  i , and  R  i  is the average 
SOM PC in period  i . We obtained composite maps for 
the developing (averaged over AMJJA) and mature 
phases (averaged over ONDJF) of ENSO events 
during EP El Niño, CP El Niño and La Niña years 
(Fig.9) and compared them with true composite 
anomaly patterns derived from the original 
temperature data (Fig.10).  

 We calculated the correlation coeffi  cients between 
the composite maps from SOM and the original 
temperature data. As expected, there is close 
correlation between the maps and features of ENSO 
are clearly visible (Table 5). For example, for 
developing and mature phases of EP El Niño, 
correlation coeffi  cients are 0.66 and 0.57; for 
developing and mature phases in CP El Niño, 
correlation coeffi  cients are 0.64 and 0.71; for 
developing and mature phases of La Niña, correlation 
coeffi  cients are 0.50 and 0.40. All correlations are 
signifi cant at the 99% confi dence level. The largest 
positive loadings for the interannual variability of 
SOM patterns and the temperature anomaly fi eld are 

EP CP LA NE
0

0.05

0.1

0.15

0.2

0.25

ENSO phase

A
m

p
li

tu
d
e

ISV strength

 

AMJJA

ONDJF

 Fig.8 Mean strength (no unit) of the intraseasonal 
variability (ISV) in spring-summer (AMJJA), and 
autumn-winter (ONDJF) during EP El Niño (EP), CP 
El Niño (CP), La Niña (LA), and neutral (NE) years 

50

100

150

200

250

300

D
ep

th
 (

m
)

50

100

150

200

250

300

D
ep

th
 (

m
)

160°E 180° 160°W 140°W 120°W 100°W 160°E 180° 160°W 140°W 120°W 100°W 160°E 180° 160°W 140°W 120°W 100°W

a. SOM-EP El Niño AMJJA b. SOM-CP El Niño AMJJA c. SOM-La Niña AMJJA

d. SOM-EP El Niño ONDJF e. SOM-CP El Niño ONDJF f. SOM-La Niña ONDJF

 Fig.9 Composite maps for interannual variability of SOM patterns in diff erent ENSO phases 
 Values in shading are larger than 0.2 (no unit) and exceed 95% confi dence level. 

 Table 5 Pattern correlations between the composite maps 
from SOM in Fig.9 and original STA in Fig.10 
during EP El Niño, CP El Niño, La Niña years in 
both spring-summer (AMJJA) and autumn-winter 
(ONDJF) 

   EP El Niño  CP El Niño  La Niña 

 Period  AMJJA  ONDJF  AMJJA  ONDJF  AMJJA  ONDJF 

 Correlation  0.66  0.57  0.64  0.71  0.50  0.40 
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located in the central Pacifi c during CP El Niño and 
eastern Pacifi c during EP El Niño (Figs.9 & 10), 
which is consistent with the structural features of the 
two fl avors of El Niño. 

 Except for a high pattern correlation between 
interannual variation of SOM and the true interannual 
STA, the dominant mode of intraseasonal STA itself 
also shows a high similarity with that of the interannual 
STA. The fi rst and the second EOFs of interannual 
STA (Fig.11a & b) are the well-known east-west tilt 
mode (i.e., seesaw mode) and warm water volume 
mode, respectively (Meinen and McPhaden, 2000; 
Clarke, 2010). They represent the diff erent phases of 
EP El Niño. The correlation between PC1 and Niño3 
index reaches as high as 0.95. EOF3 shows a sandwich 
pattern with positive STA in central Pacifi c, and 

negative STA in eastern and western Pacifi c. This 
mode is associated with CP El Niño (Kim et al., 2012; 
Kumar and Hu, 2014). Its time series closely relates 
to the El Niño Modoki index (Ashok et al., 2007), 
with correlation between them reaching 0.80. 
Diff erent from the sandwich pattern shown in Fig.2a, 
the central Pacifi c temperature anomaly stays mainly 
above the thermocline. Nevertheless, seesaw and 
sandwich patterns of the interannual STA are still 
similar with those of the intraseasonal STA. To verify 
this, we calculated the correlation coeffi  cients between 
them. Correlation between the seesaw patterns 
(Figs.2b & 11a) is 0.40, and that is 0.51 between the 
sandwich patterns (Figs.2a & 11c). Both correlations 
are signifi cant at 99% confi dence level. 

 Because SOM patterns vary primarily on an 
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intraseasonal time scale we can conclude that 
interannual variability of subsurface temperature can 
arise from interannual variability in the occurrence 
frequencies of intraseasonal SOM patterns. Since the 
sequence of the SOMs presents the eastward 
propagation of equatorial intraseasonal Kelvin wave, 
the changes in occurrence frequency of the seesaw 
and sandwich SOM patterns between the CP and EP 
events is due to corresponding change of the 
intraseasonal Kelvin wave. During CP El Niño, 
occurrence frequencies of both positive and negative 
sandwich patterns are higher than those of the seesaw 
patterns. This implies that Kelvin waves with strongest 
variations locating at the central equatorial Pacifi c is 
more frequent than those with strongest variations 
locating at the western and eastern equatorial Pacifi c. 
Therefore, interannual variation of SOM patterns, 
hence the propagation features of the Kelvin wave, is 
a possible reason for increased occurrence of CP El 
Niño events. 

 4 CONCLUSION 
 In this paper, we examined the intraseasonal 

variability of equatorial Pacifi c subsurface temperature 
and its relationship with ENSO. The SOM is suggested 
to be useful for the detection of intraseasonal changes 
in ENSO behavior. Our results show that variation in 
intraseasonal subsurface temperature is mainly found 
along the thermocline. Most SOM patterns concentrate 
zonally in basin-wide seesaw or sandwich structures, 
which oscillate with a period of about 50 to 90 days, 
and their sequence displays features of equatorial 
Kelvin wave. Interannual variation of SOM patterns 
is closely related to ENSO. During the developing 
phases of both El Niño and La Niña, occurrence 
frequency of the sandwich SOM pattern increases, 
while that of the seesaw SOM pattern decreases. 
During the mature phase of ENSO events, occurrence 
frequency of the sandwich pattern decreases, while 
that of the seesaw patterns increases. The change in 
occurrence frequency of the seesaw and sandwich 
SOM patters is due to the change of the intraseasonal 
Kelvin wave characters. Because of data limitations, 
we were unable to compare occurrence frequencies of 
the sandwich and seesaw patterns during years when 
CP El Niño is inactive. Composite maps of the 
interannual variability of the SOM patterns and 
subsurface temperature are closely correlated, 
implying that interannual variability of ocean 
temperature can be somewhat reasonably expressed 
in terms of the interannual variation in occurrence 

frequency of SOM patterns on intraseasonal time 
scales. In other words, the interannual variation of the 
intraseasonal variability may be one of the possible 
driving mechanisms for ENSO. It is worthy to note 
that the results obtained in this paper are mainly based 
on nonlinear SOM analysis from qualitative 
viewpoint. Quantitative analysis should be conducted 
to further examine the contribution of intraseasonal 
variation to ENSO; and numerical models should be 
used to further examine these issues in future.   
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