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  Abstract          Saline lakes represent a particularly interesting aquatic environment for harboring high 
microbial diversity. However, the microbial diversity in diff erent states and locations of saline lake is often 
overlooked. We studied for the fi rst time the diversity and relative composition of the microbial communities 
in the Chagan Lake, NE China, and investigated the diff erences in microbial species and physical and 
chemical factors in diff erent geographical localities of the lake. After extracting the total DNA of the 
sample, we tested the library with the established library, sequenced the qualifi ed library with Illumina 
HiSeq 2500, and studied the bacterial diversity by 16S rRNA targeted metagenomics analysis. Results reveal 
that the highest microbial abundance in Chagan Lake at genus level was  Proteobacterium  followed by 
 Actinomycetes  and  Bacteroides   . In addition, we compared the microbial composition within the lake using 
alpha- and beta-diversity indices, showing that both diversity and evenness were the highest in the middle of 
the lake and lowest in the west of lake areas, and in the upper, middle, and lower depth of water columns, the 
low water column had the highest species number in the whole water environment, but the diff erence was 
not signifi cant. We believe that physicochemical factors contribute to the formation of microbial community 
composition and diversity. In aquaculture industry, it is impossible apply horticulture for making full use 
of the spatial diff erences in the microbial composition of the water. Therefore, combining cultured aquatic 
animal with the most suitable microbial species is a good way to boost the breeding eff ect for greater 
economic value. 

  Keyword : saline lake; aquatic environment; microbial diversity; physical and chemical factors; Chagan 
Lake 

 1 INTRODUCTION 

 Microbial diversity in aquatic environments plays 
a signifi cant role and has been a hot topic in recent 
years. Smith (2007) compared 70 models to explore 
the relationship between microbial diversity and 
productivity and found similar changes in microbial 
ecology and the general science of ecology. Microbial 
diversity in the environment is the manifestation of 
life, which is important for the study of evolutionary 
biology. Previously, many studies have dedicated to 
developing molecular methods for detecting the 
diversity of biological microorganisms (Pessi et al., 
2016; Venter et al., 2016; Liu et al., 2017), of which 
some used 16S rRNA gene clone libraries to describe 
the biodiversity of microbial mats. In 

aquaculture, microbial diversity has been used to 
indicate the aquatic environments and productivity. 
Aquaculture activities signifi cantly aff ect bacterial 
function (Kandel et al., 2014; Kobiyama et al., 2018). 
Therefore, it is very important to analyze microbial 
diversity to well understand the aquatic environments. 

 Coman et al. (2013) used the metabarcoding 
method to sequence and compare 16S rRNA genes on 
the MiSeq platform (Illumina USA) from DNA and 
RNA transcripts (cDNA), and explore microbial 
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diversity and physicochemical factors. Physical and 
chemical factors are important indices to the water 
quality and nutrient status in aquaculture (Valdebenito 
et al., 2015), and thus to assess the degree of water 
pollution/quality in terms of environmental safety 
(Maloney et al., 2018). Most previous studies focuse 
on the links between the physical-chemical factors of 
water environment and the microbial composition/
abundance (Chiriac et al., 2017). However, the 
interrelationship between these important ecological 
factors and microbial diversity remain poorly studied.  

 Unlike those that more thoroughly researched 
marine and freshwater environments, the microbial 
ecology of saline lakes is poorly understood. Interest 
in saline lakes microbiology focused on the separation 
and characterization of individual microorganisms 
with potential industrial applications. In this study, 
we analyzed environmental factors and microbial 
composition in the Chagan Lake, a typical saline lake 
in NE China. 

 Chagan Lake (Fig.1) is a well-known saline lake in 
China (salinity range 16 to 52.0 mg/L, pH range 7.35 
to 9.40) (Zhu et al., 2012). The lake is distinguished 
from other lakes by its unique culture. In recent years, 
fi shery has been well developed in the lake, and has 
become famous for the winter hunting performance on 
ice in the lake. Saline and alkaline lakes are model 
systems for studying microbial diversity (Mwirichia et 
al., 2011). High concentration of carbonate 
permanganate and high pH are the hallmarks of these 
lakes (Zhang et al., 2017). Saline lakes are also an 
unusual environment because of their high 
concentrations of dissolved organic carbon (COD), 
dissolved inorganic phosphorus, and bacterial remains. 
In this study, we studied the microbial diversity of the 
lake by analyzing the microbial structure of diff erent 
lake depths and the changes in physical and chemical 
factors, and provided a theoretical basis for the future 
development of the saline water. 

 2 MATERIAL AND METHOD 

 2.1 Site description and sampling of lake water 

 Collecting samples at diff erent locations in the 
east of the lake, in the middle of the lake and in the 
west of the lake (124°16′53″E/45°32′52″N, 
124°19′18″E/45°31′51″N, 124°18′01″E/45°16′46″N, 
124°14′10″E/45°15′29″N, 124°19′06″E/45°11′32″N, 
and 124°22′37″E/45°13′53″N). Depths of 0.5, 2, and 
4 m from the horizontal plane were defi ned as the 
high, middle, and low water column, respectively. A 
submersible pump was used to continuously pump 
lake water from a given depth (high, middle, and 
low water column) in a large bucket to facilitate 
measurement and sampling. The working time of the 
submersible pump collecting water samples was 
60 s but the working time of the measurement was 
180s. The following parameters were measured: 
dissolved oxygen (DO), pH temperature, 
conductivity, and salinity. Water samples from each 
location were collected directly into a 1 000-mL 
sterile vial. There were 18 sampling points in this 
study (each coordinate point was divided into 3 
heights) and 3 replicates were collected from each 
sampling point. Samples were immediately stored at 
4°C. The water samples were used for cations, 
anions, dissolved, total organic carbon, total P, and 
total N analyses. Filtered unacidifi ed samples were 
collected for the analysis of major anions. 

 2.2 Water sample processing and total DNA 
extraction 

 The 1 000 mL water sample was fi ltered through a 
0.22-μm membrane fi lter and the fi lter membrane was 
used for the subsequent DNA extraction as per Paul et 
al. (2015). The fi lter was stored in a sterile centrifuge 
tube, frozen quickly in liquid nitrogen for 3–5 min, 
and stored immediately at -80°C. 

 The membrane was then cut out and placed in 
sterile water to dissolve and microcentrifuged after 
which precipitate was collected. Total bacterial DNA 
was obtained from samples using the Power Soil 
DNA Isolation Kit (MO BIO Laboratories) as per the 
manufacturer’s instructions. 

 2.3 Preparation of Gene Amplicon Libraries 

 The V3–V4 region of the bacterial 16S rRNA gene 
was amplifi ed with the common primer pair (forward 
primer 5′-ACTCCTACGGGAGGCAGCA-3′; reverse 
primer 5′-GGACTACHVGGGTWTCTAAT-3′). PCR 
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 Fig.1 Location map of Chagan lake in China 
 The area of Chagan Lake is about 480 km2. The maximum water storage is 
415 million cubic meters, and the average water depth is 4 m.  
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amplifi cation was performed in a total volume of 50 μL 
that contained 10 μL buff er, 0.2 μL Q5 high fi delity 
DNA polymerase, 10 μL high GC enhancer, 1 μL 
dNTP, 10 μmol/L of each primer, and 60 ng template 
DNA. Thermal cycling conditions were: an initial 
denaturation at 95°C for 5 min followed by 15 cycles at 
95°C for 1 min 50°C for 1 min, and 72°C for 1 min 
with a fi nal extension at 72°C for 7 min.  

 Sixty microliters of Ampure XP magnetic beads 
were added to the PCR product, left at room 
temperature for 5 min, and then placed on a magnetic 
stand. After 5 min, the supernatant was removed, and 
200 μL 80% ethanol was utilized to wash the beads. 
The supernatant was discarded after 30 s at room 
temperature and the process was repeated. The beads 
were once again placed on a magnetic stand for 3 min 
and then resuspended in 37 μL ddH 2 O and incubated 
for 2 min at room temperature. Finally, they were 
dried on a magnetic stand for 2 min and 35 μL of the 
supernatant was pipetted into a new PCR tube. 

 A second round of PCR was carried out in a 40 μL 
reaction containing 20 μL 2×Phusion High-Fidelity 
master mix, 8 μL ddH 2 O, 10 μmol/L of each primer, 
and 10 μL target PCR purifi cation product from the 
previous step. The PCR amplifi cation was performed 
with an initial incubation step at 98°C for 30 s 
followed by 10 cycles at 98°C for 10 s, 65°C for 30 s, 
and 72°C for 30 s with a fi nal extension at 72°C for 
5 min. Finally, all PCR products were quantifi ed by 
Quant-iT™ DsDNA HS Reagent and pooled together. 
High-throughput sequencing analysis of bacterial 
rRNA genes was performed on the purifi ed pooled 
sample using the Illumina Hiseq 2500 platform 
(2×250 paired ends). 

 2.4 Data analysis 

 A small fragment library was constructed on the 
Illumina HiSeq sequencing platform for sequencing 
using the paired-end method. According to the 
relationship between paired-end reads and overlap, 
the double-ended sequence data obtained by HiSeq 
sequencing are spliced into a sequence of tags and the 
quality of reads and the eff ect of merge are quality-
controlled and fi ltered. The reads of each sample were 
spliced using FLASH v1.2.7 software and the 
resulting spliced sequence is the raw tags. 
Trimmomatic v0.33 software was used to fi lter the 
spliced raw tags to get high quality tags (clean tags). 
The chimera sequences were identifi ed and removed 
using UCHIME v4.2 software to obtain the eff ective 
tags. Taxonomy was assigned using the default 

classifi er in QIIME (Greengenes) against the updated 
Greengenes database at a 97% similarity threshold. 

 3 RESULT 

 3.1 Water chemistry of Chagan Lake 

 Physicochemical parameters of water samples 
were analyzed to understand the physicochemical 
conditions in these microbial habitats. All samples 
featured physicochemical parameters typical of a 
saline lake particularly with respect to pH, salinity, 
DO, COD, total nitrogen (TN), total phosphorus (TP), 
CO     32ˉ, and chloride (Cl − ) content (Table 1). 

 3.2 Sequencing and quality control 

 Fifty-four samples were taken from the east, the 
middle and the west of Chagan Lake. The samples 
were sequenced by constructing a small fragment 
library using the paired-end method on the Illumina 
HiSeq sequencing platform. The sequence data were 
classifi ed into operational taxonomic units (OTUs) 
that were then used for analysis of species composition 
and abundance. Alpha- and beta-diversity indices 
were calculated to analyze the diff erences among 
samples. 

 A total of 3 854 114 raw reads corresponding to the 
exact barcode sequences were generated from the 54 
samples. After fi ltering and optimization, 3 517 778 
tags were obtained, and after removing the potential 
chimera tags, 3 445 455 eff ective sequences were 
obtained (Table 2). The GC content and average 
sample length of the 16S rRNA gene sequencing 
results as well as the number of Q20 and eff ective 
sequence tags are shown in Table 2. 

 The diversity indices represent richness and 
balance and have multiple representations: Chao1, 
Ace, Shannon, and Simpson. Rarefaction values of 
>99% indicate that this sequencing presented an 
adequate representation of the microorganisms in the 
sample. Chao1 and Ace indices indicate that the 
richness of species samples in the middle of lake was 
the highest ( P >0.05). When the high middle and low 
water columns were compared, the low water column 
had the highest abundance of species in the whole 
water environment. Shannon and Simpson indices 
show that the middle of lake had the highest species 
diversity ranging from 5.037 4 to 5.362 7, while the 
west of lake had the lowest ranging from 4.528 2 to 
4.707 3, and there were signifi cant diff erences among 
the three groups ( P <0.05).  
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 Table 1 Physiochemical analysis of water (all data represent mean of triplicate ± SD) 

     COD (mg/L)  COD MN    (mg/L)  DO (mg/L)  TN (mg/L)  TP (mg/L)  CO     32ˉ   (mg/L)  Cl–   (mg/L) 

 U 

 H 
 UH 1   20.41±0.45  5.76±0.09  6.90±0.05  1.02±0.01  0.11±0.05  121.72±0.87  77.45±0.49 

 UH 2   20.61±0.17  5.84±0.03  6.70±0.05  1.01±0.01  0.12±0.05  143.22±4.17  81.75±0.63 

 M 
 UM 1   20.19±0.46  5.95±0.04  6.87±0.05  1.82±0.02  0.15±0.05  131.53±0.56  81.29±0.76 

 UM 2   21.26±0.69  5.90±0.03  6.77±0.05  1.81±0.02  0.13±0.05  160.03±3.85  81.82±0.18 

 L 
 UL 1   22.11±0.48  5.63±0.07  6.67±0.05  2.47±0.03  0.13±0.05  137.94±4.09  87.60±0.49 

 UL 2   23.07±0.48  5.55±0.04  6.87±0.05  2.22±0.03  0.13±0.05  171.10±2.15  81.36±0.65 

 Z 

 H 
 ZH 1   20.43±0.23  5.64±0.02  6.9±0.05  1.03±0.02  0.14±0.05  147.44±0.9 0  78.23±0.35 

 ZH 2   21.28±0.81  5.33±0.04  6.83±0.05  0.79±0.02  0.11±0.05  141.78±1.08  81.35±1.34 

 M 
 ZM 1   21.12±0.56  5.95±0.02  6.93±0.05  1.07±0.02  0.14±0.05  155.33±1.34  78.88±0.72 

 ZM 2   23.5±0.1 0  5.75±0.03  6.83±0.05  1.19±0.02  0.15±0.05  148.87±0.86  87.66±0.49 

 L 
 ZL 1   22.26±0.26  5.45±0.17  6.80±0.1 0  2.47±0.02  0.09±0.05  162.26±0.67  79.43±0.32 

 ZL 2   25.70±0.72  6.04±0.03  6.53±0.05  1.8±0.02  0.17±0.05  153.70±0.84  91.84±0.50 

 D 

 H 
 DH 1   22.40±0.30  6.23±0.05  6.90±0.05  1.28±0.03  0.12±0.05  135.29±1.49  77.87±0.53 

 DH 2   28.82±0.07  6.19±0.01  6.70±0.1 0  1.28±0.02  0.11±0.05  150.96±1.22  78.11±0.40 

 M 
 DM 1   23.59±0.1 0  6.23±0.02  6.57±0.05  1.14±0.02  0.12±0.05  135.90±0.60  82.69±0.86 

 DM 2   34.74±0.21  5.94±0.047  6.57±0.05  1.51±0.28  0.12±0.05  158.52±1.02  78.85±1.27 

 L 
 DL 1   26.63±0.25  6.54±0.03  6.57±0.05  2.78±0.01  0.09±0.05  148.83±0.72  86.79±0.67 

 DL 2   39.39±0.32  6.47±0.23  6.27±0.05  3.82±0.31  0.14±0.05  169.83±0.34  83.9±0.70 

 UH: high water column level of the east of lake; UM: middle water column level of the east of lake; UL: lower water column level of the east of lake; ZH: 
high water column level of the middle of lake; ZM: middle water column level of the middle of lake; ZL: lower water column level of the middle of lake; 
DH: high water column level of the west of lake; DM: middle water column level of the west of lake; DL: lower water column level of the west of lake.  

 Table 2 Sequencing data quality assessment 

     Sample ID  PE reads  Raw tag  Clean tag  Eff ective tag  GC (%)  Q20 (%)  Eff ectiveness (%) 

 U 

 H 
 UH 1   80 160  75 842  69 327  68 580  53.12  94.83  85.55 

 UH 2   63 995  60 008  54 420  51 969  53.05  94.54  81.21 

 M 
 UM 1   80 134  75 267  67 982  66 167  53.02  94.54  82.57 

 UM 2   79 296  74 549  67 498  65 841  53.03  94.63  83.03 

 L 
 UL 1   79 943  75 769  69 254  68 158  53.06  94.81  85.26 

 UL 2   79 965  75 543  68 907  67 815  53.02  94.81  84.81 

 Z 

 H 
 ZH 1   79 952  75 142  68 488  67 715  53.21  94.8  84.69 

 ZH 2   65 481  61 825  56 559  55 888  53.19  94.79  85.35 

 M 
 ZM 1   80 055  75 623  69 008  67 848  53.35  94.77  84.75 

 ZM 2   80 007  75 432  68 520  67 128  53.34  94.75  83.9 

 L 
 ZL 1   73 388  69 257  63 275  62 411  53.6  94.81  85.04 

 ZL 2   54 109  51 275  47 019  46 359  53.7  94.9  85.68 

 D 

 H 
 DH 1   80 119  76 017  69 715  69 131  53.31  94.87  86.29 

 DH 2   80 219  75 950  69 611  68 883  53.36  94.85  85.87 

 M 
 DM 1   79 889  75 644  69 218  68 724  53.23  94.85  86.02 

 DM 2   80 121  75 971  69 791  68 875  53.36  94.84  85.96 

 L 
 DL 1   79 872  75 756  69 009  66 605  52.12  94.74  83.39 

 DL 2   79 778  75 415  68 705  66 228  52.13  94.75  83.02 

     Total  4 074 624  3 854 114  3 517 778  3 445 455       

 Sample ID is the sample name; PE reads is the number of double-ended reads obtained by sequencing; raw tag is the original sequence number obtained by 
double-end reading splicing; clean tag is obtained by fi ltering the original sequence optimize the number of sequences; eff ective tags are the number of eff ective 
sequences after fi ltering the chimera for clean tags; GC (%) is the GC content of the sample the percentage of bases of type G and C to the total base; Q20 (%) 
is greater than the mass value A base equal to 20 as a percentage of the total number of bases; Eff ectiveness (%) is the percentage of eff ective tags to PE reads. 
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 3.3 General characteristics of samples 

 The OTU is a classifi cation operational unit for 
facilitating human analysis to defi ne OTUs in a degree 
of similarity >97% between any two sequences, and 
each OTU corresponds to a representative sequence. 
Using the UCLUST (Edgar, 2010) in QIIME (version 
1.8.0) software to cluster tags at a similarity level of 
97% for getting the number of OTUs for each sample. 
A Venn graph (Chen and Boutros, 2011) was used to 
show the consistency of OTUs between any two 
samples.  

 In the sample of the eastern part of the lake, there 
were 755 shared OTUs in the high, middle, and low 
water column levels, and the number of unique OTUs 
in the low water column level was signifi cantly higher 
than in the high and middle water column levels 
(Fig.2a). Of the two samples in the middle of lake, 
there were 879 shared OTUs in the high, middle and 
lower water column levels, and there were 181 OTUs 
in the low water column level, signifi cantly higher 
than in the high and middle water column levels 
(Fig.2b). In the west of lake samples, diff erences in 
microbial diversity among high, middle, and lower 
water column levels were more pronounced, and the 
number of unique OTUs in the low water column 
levels was signifi cantly higher than that in the high 
and middle water column levels (Fig.2c). At the same 

height of the water layer, the microbial species at 
diff erent sites were also highly diverse. There are 938 
shared OTUs at high water levels, and the number of 
OTUs in the eastern part of the lake is signifi cantly 
higher than that in the middle of the lake and the 
western part of the lake (Fig.2d). In the middle water 
column level, the microbial diversity in the east, 
middle and west of the lake was also signifi cant, with 
199 unique OTUs in the east (Fig.2e). In the low 
water column level (Fig.2f), the number of unique 
OTUs in the middle and the west of the lake was also 
signifi cantly lower than in the eastern part of the lake. 

 3.4 Microbial composition of samples 

 Comparing the representative sequence of the 
OTU with the microbial reference database, the 
species classifi cation information corresponding to 
each OTU could be obtained, and then the composition 
of each sample community could be calculated at 
each taxonomy level (phylum, class, order, family, 
genus, and species). A total of 48 bacterial phyla were 
found in Chagan Lake water samples. The ten most 
abundant phyla contributed up to 98% of the total 
bacterial diversity. In terms of the relative abundance, 
 Proteobacteria  (35.48%) was the most important 
phylum, followed by  Actinobacteria  (21.08%), 
 Bacteroidetes  (19.39%), and  Cyanobacteria  
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 Fig.2 The Venn diagram demonstrating unique and shared OTUs among all the water samples of the Chagan Lake 
 Diff erent samples are shown in diff erent colors. The number of overlapping parts is the number of OTUs shared between two samples. 



Vol. 38400 J. OCEANOL. LIMNOL., 38(2), 2020

(14.41%).  Planctomycetes ,  Gemmatimonadetes , 
 Verrucomicrobia ,  Acidobacteria ,  Saccharibacteria , 
and  Chlorobi  made up a relatively small portion of the 
total diversity. The microbial composition of each 
sample had some diff erences at the genus level. 
 Proteobacterium  and  Acidimicrobium  were the most 
dominant categories in all samples. The Pair-group 
Method With Arithmetic Mean (PGMA) clustering 
tree combined with the histogram is shown in Fig.3. 
To maximize the view, only the top ten species in the 
abundance level are displayed. Figure 4 is the heatmap 
of species abundance for each group of samples at 
phylum level, recording signifi cant diff erences in the 
number of bacteria at phylum level. The corresponding 
value of the heatmap is the  Z -value achieved by 
normalizing the relative abundance of each species. 

 3.5 Analysis of LEfSe among samples 

 According to the set biomarker screening criteria 
(LDA score >4) to fi nd the eligible biomarker (Wang 
et al., 2012), we compared the signifi cance of 
diff erence between any two groups at each taxonomic 
level. Fifteen groups of bacterial were enriched in 
the middle water column level of the west of lake, 
namely, Cyanobacteria, Actinobacteria, Frankiales, 
Sporichthyaceae, HgcI clade, FamilyI, SubsectionIII, 
Planktothrix, Saprospiraceae, and uncultured. The 
bacteria enriched in the high water column of the 
middle of lake were Sphingobacteriia, 
Sphingobacteriales, Bacteroidetes  Incertae   sedis , 
Deltaproteobacteria, Methylophilales, 

Methylophilaceae, Chloroplast, and uncultured. The 
Betaproteobacteria, Alphaproteobacteria, 
Burkholderiales, Comamonadaceae, Sphingomonadales, 
Sphingomonadaceae, Novosphingobium, and 
uncultured were enriched in the low water column 
level of the east of the lake. A total of 59 diff erent 
species were examined and shown in Fig.5a. This 
article lists only the three groups with the highest 
abundance. Figure 5b is the Line Discriminant 
Analysis Eff ect Size (LEfSe) analysis of evolutionary 
branching plots with an LDA value greater than 4, 
which could show the relative content of species with 
signifi cant diff erences among groups of diff erent 
samples; and the fi gure shows that the DM group and 
the ZH group had the most diverse species. 

 3.6 Multivariate statistical analysis 

 The histogram of analysis of variance (ANOVA) at 
the genus level, and that of ANOVA at the species 
level are shown in Fig.6. The species with signifi cant 
diff erences among samples at the genus level were 
Blfdil19, Roseomonas, Limnohabitans, and CL500-3. 
At the species level Flavobacterium, CL500-3, 
Methylophilaceae, and Chloroplast were the four 
most distinct bacteria. 

 4 DISCUSSION 

 This molecular survey provides new insights into 
structure and composition of indigenous microbial 
communities within the saline Chagan Lake 
ecosystem. Physicochemical analyses of water 
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 Fig.3 The sample clustering tree based on the β-diversity, the histogram of species abundance among samples at genus level, 
and the top 10 species in species abundance 
 The species diversity, abundance similarity, and dominant species of each sample are compared depending on the proportion of each color block. Each 
color represents one species, and the length indicates the relative abundance. 
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samples demonstrated that Chagan Lake has 
comparable characteristics to other hypersaline lake 
ecosystem, based primarily on physicochemical 
factors such as pH, salinity, COD, concentrations of 
CO     32ˉ and Cl −  that infl uencing the microbial community 
in water environment (Wani et al., 2006; Jiang and 
Shen, 2007; Joshi et al., 2008; Valdespino-Castillo et 
al., 2014). Despite such extreme alkaline and saline 
conditions in this lake, abundant microbial 
communities are always found. As shown in Fig.3, 
the DL group is closer to ZM group in the clustering 

tree, while the other two samples in the west of lake 
are more closely related to DM and DH groups. In the 
ZM and DL groups, the Flavobacterium content was 
relatively high, while it was relatively small in the DH 
and DM groups, so perhaps the diff erence in 
Flavobacterium content determined that the DL group 
of the same locus is more similar to the ZM group in 
the clustering tree. It can be seen that the abundance 
of Synechococcus in the samples in the eastern and 
western parts of the lake is higher, while the content 
of Synechococcus in the middle of lake was low. It 
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might be due to that the content of Synechococcus 
leads to the clustering of the samples in the eastern 
and western parts of the lake in the phylogenetic tree. 

 Our results are consistent with previous studies, 
showing that Proteobacteria and CFB bacteria are 
commonly observed in water and sediments from 
other soda lakes. The plankton, fi sh, and shrimp, 
which are rich in a lake environment, can produce 
ample metabolic waste. A series of chemical reactions 
occur during the long-term accumulation of lake 
sediments and particularly in a saline-alkali 
environment and some pathogenic bacteria might be 
enriched during this process. 

 A large number of such bacteria have been 
previously reported in various alkaline lakes (Jiang et 
al., 2006; Roske et al., 2012). Along with 
Proteobacteria, the presence of other Candidate 
divisions (namely Comamonadaceae), unclassifi ed, 
and uncultured in Chagan Lake might indicate a 
signifi cant role of these groups in this lake ecosystem. 
Proteobacteria was the most abundant among all and 
their abundance decreased in deeper water column. 

Macrogenomics studies have emphasized the 
importance of microbial communities in nutrient 
cycling and biochemical degradation in aquatic 
ecosystems (Wobus et al., 2003; Khandeparker et al., 
2017). Culture-based studies of specifi c 
microorganisms often conclude that the concentration 
of sediment in aquatic environments is higher than 
that of aquatic microorganisms. Perkins et al. (2014) 
showed that sediments contain more nutrients than 
water columns, whereas the bottom water is the 
closest to the sediments of the water, so the nutrients 
in water sediments might be aff ected by bottom water. 
Sediments have the most abundant and unique OTUs 
and might contain many human pathogens (Abia et 
al., 2015). The results of this study show that the low 
water column level contained the most unique and 
abundant OTUs among other levels of water column, 
indicating that sediment are continuously 
contaminated in bottom water by feed leftover and 
other contaminants (Jia et al., 2015). Thus, the bottom 
water can be used to indicate the quality of sediment. 
In practice, the collection and inspection of the water 
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body is easier than that of sediment. It is simpler and 
more eff ective to infer the quality of the water 
sediment by checking the bottom water but the 
sediment. 

 In this study, the OTUs and the sequence data were 
consistent and showed changes in microbial 
community with depth. It is apparent that the 
geochemical gradients in Chagan Lake water samples 
contribute to the overall microbial structure of the 
lake. There were higher bacterial diversity/OTUs in 
Chagan Lake low water column than that of the high 
water column, thus bearing a clear infl uence on the 
activities of the indigenous microbial communities of 
the lake ecosystem. Data in Table 2 show that the 
sequencing coverage was suffi  cient and the data was 
statistically supported. 

 The mean values of genes level and species level 
diversity of the samples were signifi cantly diff erent 
(Fig.6). In the case of the same species abundance, the 
better the uniformity of each species in community, 
the greater the diversity of the community. As the 
middle of the lake site had the highest abundance of 
distinct species, the number of indicator species 
distributed in various levels in the water was the 
largest too, among which Betaproteobacteria, 
Alphaproteobacteria, and Cyanobacteria were the 
main members in the class level. Many studies have 
shown that the abundance of Cyanobacteria is 
associated with the salinity of lakes (Al-Thukair et al., 
2007; Wu et al., 2009; Abed et al., 2012). However, in 
a recent study by Korlević et al. (2016), the salinity 
content was signifi cantly correlated with the 
abundance of Cyanobacteria in the aquatic 
environment, but the correlation is weakly positive. 

 At the phylum level, the abundance of 
Alphaproteobacteria and Betaproteobacteria at 
diff erent sites was signifi cantly diff erent. 
Proteobacteria is the richest and largest bacterial 
phylum among all samples, but they show diff erent 
trends at diff erent water levels. The Alphaproteobacteria 
and Betaproteobacteria in freshwater and saline water 
environments have been widely reported (Berry et al., 
2006; Hahn, 2006; Roske et al., 2012), in which pH 
and nutrients have been interpreted relative to their 
abundance (Newton et al., 2011). In contrast, 
diff erential bacteria in the middle of the lake water 
were mainly Acidimicrobiia and Gammaproteobacteria 
(at the class level), and the middle of the lake water 
featured the highest bacterial diversity among all the 
lake waters, which is diff erent from recent reports of 
microbial diversity in a river network (Besemer et al., 

2013). We believe that the unique microbial diversity 
in the middle of the lake water is related to its high 
primary productivity and clean water sources. For 
example, Chlorofl exaceae, Subsection I, and 
Burkholderiales are markedly enriched in the middle 
of the lake environment. In addition, many plankton, 
such as Chlorophyta and Bacillariophyta, are also 
enriched in there. Therefore, the middle of the lake 
water environment is highly productive, and played 
an important role in maintaining nutrient concentration 
in the environment and good water quality. 

 5 CONCLUSION 

 Above all, the number of microorganisms in 
multiple sites is signifi cantly diff erent due to various 
relevant factors in recent reports (Casamayor et al., 
2000; Sogin et al., 2006). Diff erently, we used high-
throughput sequencing method to compare microbial 
species in very detail. The highest diversity was found 
in the middle sites of the lake and the lowest diversity 
in the west of the lake, which was dominated by 
Cyanobacteria and Bacteroidetes and was related to 
physicochemical factors.  

 Meanwhile, there are signifi cant diff erences in the 
types and contents of microorganisms in diff erent 
locations of Chagan Lake, which demands for more 
studies in the future. Additional to physical and 
chemical factors, other factors, such as cultured 
species, and seasonal or climate changes shall be 
considered. 

 6 DATA AVAILABILITY STATEMENT  

 The data that support the fi ndings of this study are 
available from the corresponding author upon 
reasonable request. 
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