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  Abstract       Since January 2012, the National Satellite Ocean Application Service has released operational 
wind products from the HY-2A scatterometer (HY2-SCAT), using the maximum-likelihood estimation 
(MLE) method with a median fi lter. However, the quality of the winds retrieved from HY2-SCAT depends 
on the sub-satellite cross-track location, and poor azimuth separation in the nadir region causes particularly 
low-quality wind products in this region. However, an improved scheme, i.e., a multiple solution scheme 
(MSS) with a two-dimensional variational analysis method (2DVAR), has been proposed by the Royal 
Netherlands Meteorological Institute to overcome such problems. The present study used the MSS in 
combination with a 2DVAR technique to retrieve wind data from HY2-SCAT observations. The parameter 
of the empirical probability function, used to indicate the probability of each ambiguous solution being the 
“true” wind, was estimated based on HY2-SCAT data, and the 2DVAR method used to remove ambiguity in 
the wind direction. A comparison between MSS and ECMWF winds showed larger deviations at both low 
wind speeds (below 4 m/s) and high wind speeds (above 17 m/s), whereas the wind direction exhibited lower 
bias and good stability, even at high wind speeds greater than 24 m/s. The two HY2-SCAT wind data sets, 
retrieved by the standard MLE and the MSS procedures were compared with buoy observations. The RMS 
error of wind speed and direction were 1.3 m/s and 17.4°, and 1.3 m/s and 24.0° for the MSS and MLE wind 
data, respectively, indicating that MSS wind data had better agreement with the buoy data. Furthermore, 
the distributions of wind fi elds for a case study of typhoon Soulik were compared, which showed that MSS 
winds were spatially more consistent and meteorologically better balanced than MLE winds. 

  Keyword : HY-2A scatterometer; wind retrieval; maximum-likelihood estimation (MLE); multiple solution 
scheme (MSS); two-dimensional variational analysis method (2DVAR); typhoon Soulik 

 1 INTRODUCTION 

 Scatterometer-derived winds are signifi cantly 
important data sets for many meteorological and 
oceanographic applications. A radar scatterometer is 
designed to determine the normalized radar cross 
section (sigma0) from the surface, following which 
the subsequent processing stages from sigma0 to 
wind vectors, including calibration, inversion, and 
ambiguity removal, collectively affect the quality of 
the scatterometer-derived winds. For the calibrated 
sigma0 with metadata, greater effort has been devoted 
to improving the algorithms for both inversion and 
ambiguity removal in order to obtain high-quality 

winds. Various algorithms have been developed and 
implemented in operational systems. Typical of this 
inversion approach is the maximum-likelihood 
estimation (MLE) method and its variants based on 
the Bayesian approach (Pierson, 1989; Stoffelen and 
Portabella, 2006) and the normalized standard 
deviation algorithm based on the criterion of a 
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minimum normalized standard deviation of wind 
speed derived from backscatter measurements using a 
geophysical model function (GMF) (Gohil et al., 
2008). The circular median fi ltering approach is 
widely used for ambiguity removal (Schultz, 1990). 

 SeaWinds is a rotating pencil-beam scatterometer 
deployed onboard QuikSCAT, which has proven a 
highly successful mission, and this has been followed 
by two similar instruments onboard Oceansat-2 
(OSCAT) and HY-2A (HY2-SCAT), launched in 
September 2009 and August 2011, respectively. 
Studies have demonstrated that the nadir region of the 
QuikSCAT swath has poor azimuthal diversity, which 
could result in low-quality wind retrievals (Portabella 
and Stoffelen, 2002). Several advanced algorithms 
have been proposed to improve wind retrievals, 
especially over the nadir and extreme swath regions. 
For example, the Directional Interval Retrieval with 
Threshold Nudging algorithm, developed to improve 
the accuracy of QuikSCAT winds (Stiles et al., 2002), 
and the Directional Stability and Conservation of 
Scattering algorithm, designed to obtain operational 
wind products from OSCAT (Gohil et al., 2010). An 
improved scheme, i.e., a multiple solution scheme 
(MSS) in conjunction with a two-dimensional 
variational ambiguity removal (2DVAR) method, has 
been proposed by the Royal Netherlands 
Meteorological Institute. For most cases, there is no 
relatively correct solution among the limited number 
of selectable ambiguities output from the standard 
MLE procedure; the difference is the MSS method 
retains more ambiguous wind solutions. Studies have 
shown that MSS combined with 2DVAR is an 
effective method for wind retrieval from SeaWinds, 
and it has been used in wind retrieval from OSCAT 
(Stoffelen et al., 2010; Vogelzang et al., 2011). 

 The HY2-SCAT instrument is carried onboard the 
HY-2A polar satellite, and its products have been 
operationally released by the National Satellite Ocean 
Application Service since January 2012. The current 
operational system provides retrieved winds using the 

MLE method followed by a median fi ltering ambiguity 
removal process. However, the quality of winds 
retrieved from HY2-SCAT depends on the sub-satellite 
cross-track location, and poor azimuthal separation or 
diversity between views in the nadir region result in 
low-quality wind retrievals (Portabella, 2002). 

 In this study, the MSS inversion is used for HY2-
SCAT wind retrieval, in conjunction with a 2DVAR 
algorithm, to both overcome the problems in the nadir 
region and improve the spatial consistency of the 
retrieved winds. The MSS and 2DVAR algorithm are 
introduced in Section 2. Section 3 focuses on the 
practice of HY2-SCAT wind retrieval based on MSS 
and 2DVAR. Evaluation of the improved winds is 
then performed, including a comparison of wind 
fi elds for a case study of typhoon Soulik. Finally, the 
conclusions are drawn in Section 4. 

 2 MSS AND 2DVAR ALGORITHM 
 The wind retrieval procedure using MSS and 

2DVAR for scatterometer data is illustrated 
schematically in Fig.1. A set of radar backscatter 
measurements (observations) with metadata including 
sigma0, incidence angle, and relative azimuth, are 
grouped together in each wind vector cell (WVC) for 
the wind retrieval. The MLEs of the assumed wind 
speeds and directions are calculated using the 
backscatter observations and the data calculated from 
the GMF. Then, the minimum MLE as a function of 
wind direction, called the MLE cost function, is 
extracted by searching for the minimum MLE within 
the entire wind domain. Compared with the standard 
MLE skill, MSS retrieval skill is improved in the 
additional procedure of the MLE cost function. For the 
standard procedure, ambiguous wind solutions are 
determined by searching the minima of the MLE cost 
function; however, the MSS skill retains all those 
solutions that consist of the MLE cost function. The 
probability of every solution being the “true” wind is 
given through the empirical probability function 
(EPF), which depends on the scatterometer instrument 
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 Fig.1 Schematic of scatterometer wind retrieval process using MSS and 2DVAR 
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and measurement noise. Finally, the 2DVAR technique 
is applied together with some additional information 
(e.g., background winds, spatial consistency 
constraints) to select one of the ambiguous wind 
solutions as the observed wind for every WVC. This 
step, known as ambiguity removal (AR), involves the 
spatial fi ltering of many neighboring WVCs at once 
(Portabella, 2002). Another important aspect of wind 
retrieval is the quality control. However, this study 
focuses on the wind retrieval algorithm and therefore, 
quality control will not be included. 

 2.1 Multiple solution scheme 

 The Bayesian approach is widely applied to 
inverting variables from a given set of observations. 
The MLE, which is one of the optimization techniques 
based on the Bayesian approach, is commonly used in 
scatterometry because the inversion process is highly 
nonlinear (Pierson, 1989; Stoffelen, 1998). An MLE 
function, used to select a set of wind vector solutions 
that optimally matches the observed sigma0, is 
generally defi ned as: 

 
0 0 2
obs GMF
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( ( ) ( ))1MLE
N

i

i i
N Kp

 



  , (1) 

 where  N  is the number of available measurements obs  
GMF  is the backscatter simulated by the GMF for 

given trial values of wind speed and direction, and  Kp  
is the variance of the measurement error. In this study, 
the NSCAT-3 GMF is used and  Kp  is set as a constant. 

 The MLE can be interpreted as a measure of the 
distance between a set of obs  and GMF , which is 
calculated with trial winds using the GMF (Stoffelen 
and Anderson, 1997a). For a specifi c direction, the 
MLE is calculated through a range of wind speeds 
(below 50 m/s) and the speed with the minimum MLE 

is taken as a candidate for the wind vector. The same 
operation is repeated for every direction and the 
resulting minimum MLE as a function of wind 
direction, known as the MLE cost function, is 
established (an example is shown in Fig.2). 

 According to Bayes’ theorem, the MLE value 
represents the probability that a trial wind vector 
(solution) is the “true” wind. Generally, as the MLE 
increases, the probability of any particular solution 
being the true wind decreases exponentially. As the 
contribution from observation noise cannot be 
estimated, suitable parameters for this relationship 
should be determined based on empirical methodology. 
The probability of a trial wind being the true wind, 
based on a set of scatterometer observations, is then 
defi ned as (Portabella and Stoffelen, 2001): 

 0 - /1( | ) Rn LP e
k'

   ,   (2) 

 where  v  represents the “true” wind,  k  '  is a normalization 
factor and  L  is the parameter that must be derived 
empirically based on the performance of the 
scatterometer. Equation 2 is the EPF, which is developed 
to convert the MLE values to equivalent probabilities. 
In order to account for misestimated measurement 
noise, a normalized MLE ( Rn ) with respect to the wind 
and the cross-track index is defi ned as: 

  Rn =MLE/<MLE>,  (3) 
 where the MLE value represents any point of the cost 
function for a particular WVC and <MLE> is the 
expected MLE for that WVC and wind condition.  

 The <MLE> is used to respect the misestimation of 
the measurement noise and theoretically, it can be 
derived from an instrument error model. However, in 
practice, an alternative method has to be proposed. If 
the expected MLE is estimated by the mean MLE, 
studies have shown that the mean MLE, as a function 
of cross-track index and wind speed (not statistically 
dependent on wind direction), can effectively respect 
measurement noise (Portabella and Stoffelen, 2001, 
2002; Portabella, 2002) 

 Through reviewing the inversion procedure using 
the MSS method, the multiple solutions, together 
with the corresponding probabilities calculated by the 
EPF (Eq.2), retain all the direction solutions 
corresponding to the MLE cost function. However, 
for the case of the standard MLE procedure, only 
solutions at the minima of the MLE cost function—
typically up to four minima—are used. This ignores 
neighboring wind solutions that have comparable 
probability of being the “true” wind. Apparently, the 
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 Fig.2 Example of MLE cost function for HY2-SCAT
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MSS method fully retains the information of the cost 
function and the observations.  

 2.2 Two-dimensional variational ambiguity 
removal (2DVAR) 

 The goal of the AR procedure is to select the best 
solution based on a set of ambiguous solutions and 
spatial consistency constraints and it is generally 
performed using many neighboring WVCs at once. 
Median fi ltering (Schultz, 1990) and 2DVAR are the 
two AR techniques used most commonly in 
scatterometry (Schultz, 1990; Stoffelen et al., 1997b; 
Stiles et al., 2002). In this paper, 2DVAR is used 
because it can explicitly use probability for the 
multiple solutions. The 2DVAR approach can be 
divided into two principal steps: fi rstly, an analysis 
wind is obtained using variational analysis, which 
combines background information (winds from NWP 
model) with the ambiguous solutions; and secondly, 
among all the ambiguous solutions, the one closest to 
the analysis wind in the wind direction is selected. 

 Using probability theory and Bayes’ theorem, the 
joint probability of the true state of the sea surface 
wind ( x ) and an ambiguous solution ( ) can be 
expressed as (Lorenc, 1986): 

 o o b( ) ( | ) ( | )k kP x v P v x P x x  ,   (4) 

 where  k  is the ambiguity index and  x  b  is the background 
fi eld (NWP winds are usually used as the initial 
guess). The most likely estimate of  x , the control 
variable in the procedure, can be found by maximizing 
Eq.4, or equivalently, by minimizing the cost function: 

 o b( ) -2ln ( | ) 2ln ( | )kJ x P v x P x x  .   (5) 
 To increase computational effi ciency, an 

incremental formulation is used: 
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 Then, the cost function Eq.5 can be rewritten as: 

 o o b( ) ( , ) ( )kJ x J v x J x     ,   (7) 

 where  J  o  is the observation term and  J  b  is the 
background term. 

 The observation term  J  o  represent the misfi t between 
the ambiguous solutions and the control variable on a 
particular WVC. The contribution of the solutions is 
weighted by the solution probability. The observation 
term of the cost function can be expressed as (Stoffelen 
and Anderson, 1997a; Portabella and Stoffelen, 2004): 
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 where  N  is the number of ambiguous solutions and  λ  
is an empirical parameter that gives the optimal 
separation between multiple solutions for  λ =4 
(Stoffelen and Anderson, 1997b).  K  i  is given by: 
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 where ( )iu u  and ( )iv v  are the zonal and meridional 
components of the control variables (solutions), 
respectively,  ε  u  and  ε  v  are the expected standard 
deviations of the scatterometer wind components, and 
 P  i  is the solution probability that is determined by 
Eq.2 in the inversion procedure. 

 The background term quantifi es the spatial context 
of the background fi eld errors and determines the 
spread of the observational information, which is 
expressed as (Vogelzang, 2007): 

 -1
b ( )TJ x B x  ,     (10) 

 where  B  is the background error covariance matrix and 
the superscript  T  indicates the transposition of the matrix. 
For further details, please refer to Stoffelen et al. (2001), 
Vogelzang (2007), and Portabella and Stoffelen (2004). 

 The cost function of Eq.7 can be minimized using 
a conjugate gradient method, and the wind increments 
of the control variable vector are added to the 
background fi eld to obtain the wind analysis. The 
analyzed wind fi eld is then used for the AR procedure, 
as discussed earlier. 

 3 WIND RETRIEVAL AND EVALUATION 
 3.1 Wind retrieval from HY2-SCAT 

 The MLE function for HY2-SCAT is defi ned as 
Eq.1, which refers to that of SeaWinds, and the 
NSCAT-3 GMF was used in this study. As wind 
speeds are overestimated above 15 m/s in NSCAT-2, 
a linear downscaling of such wind speeds was applied 
(Verhoef and Stoffelen, 2012).  

 The MLE cost function is computed as a function 
of wind direction from 0° to 360° with a step of 2.5°, 
and an array of solutions is produced (typically 144). 
Figure 2 shows an example of the MLE cost function 
for HY2-SCAT. 

 The probability of every solution being the “true” 
wind is given through the EPF. In order to provide the 
probability of each solution in the cost function, the 
parameters  L  and the expected MLE—the key 
parameters of the EPF—must be estimated using an 
empirical statistical method based on HY2-SCAT data. 

 To estimate the misestimation of the measurement 
noise, the mean MLE (<MLE>) was used as an 
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alternative parameter. According to Portabella and 
Stoffelen (2001), the <MLE> does not depend 
statistically on wind direction and therefore, the 
<MLE> can be computed as a function of the cross-
track index and wind speed. In this study, the expected 
MLE was computed based on the winds retrieved by 
the standard MLE procedure using HY2-SCAT 
observations from 100 orbits. A rejection process was 
applied to fi lter noise, due mainly to geophysical 
effects such as rain. Finally, the expected MLE was 
smoothed using a 3×3 median fi lter to remove the 
noise (Portabella, 2002). The obtained values of 
<MLE> used for HY2-SCAT are shown in Fig.3. 

 In order to derive Eq.2 empirically, the ambiguous 
solution from the standard MLE procedure closest to the 
ECMWF wind was considered as the “selected” wind 
and initially, only those cases that had just two solutions 
were considered. The relative probability of selecting the 
1 st  and 2 nd , as a function of  Rn  1  and  Rn  2 , can be given by: 
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 We processed 100 obits of HY2-SCAT data and 
obtained the exact two-solutions case. The relative 
probability can be calculated by using Eq.11 and the 
statistical results are shown in Fig.4a. The best-fi t 
function was obtained by adjusting the  L  parameter 
and it can be represented by the following function: 

 - /1.17( ) xP x e ,    (12) 

 where  x  represents  Rn  and  P ( x ) is the EPF for HY2-
SCAT, as shown in Fig.4b. For the case of QuikSCAT, 
parameter  L  equals to 1.4 (Portabella, 2002). 

 Equation 12 can be used to determine the 

probability of the solutions for HY2-SCAT and it can 
express the probability of any number of solutions of 
MLE. Finally, the 2DVAR technique was applied, 
together with the background fi eld, to each WVC in 
the AR procedure. Generally, the background fi eld is 
obtained from the ECMWF model by interpolation. 

 3.2 Evaluation of the retrieved winds 

 In this section, the wind data retrieved from HY2-
SCAT using the standard MLE inversion and median 
fi lter AR (called MLE-winds), and those derived using 
the multiple solution scheme with 2DVAR AR (called 
MSS-winds) are used to compare the performance of 
the two different algorithms for wind retrieval. 

 We processed fi ve months’ (Jan. 2012, Feb. 2012, 
Nov. 2012, Dec. 2012, and July 2013) HY2-SCAT 
data and collected the operationally released HY2-
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SCAT wind products from the National Satellite 
Ocean Application Service with wind components 
from the ECMWF. 

 Figure 5a shows the ambiguous solutions for HY2-
SCAT using the standard MLE inversion output, and the 
7×7 median fi lter AR results are shown in Fig.5b. The 
two solid lines identify the nadir region of the HY2-
SCAT swath. Several WVCs within the nadir region 
exhibit wind directions that are clearly spatially 
inconsistent (Fig.5b). The reason for this problem is 
most likely attributable to the ambiguous solution 
distribution for which no relative accurate solution is 
available, as shown in Fig.5a. Therefore, there is no 
mean by which to select a consistent wind fi eld from 
such a solution pattern. In order to avoid the plotted lines 
are too dense, WVCs in both Figs.5 and 6 are sampled 
with one third along longitude and latitude separately. 

 Figure 6a shows the multiple ambiguous solution 
distribution for the same case as in Fig.4, and the 

variational analysis AR results are shown in Fig.6b. In 
Fig.6a, only solutions with normalized possibilities 
above 0.01 are shown. In comparison with Fig.5a, the 
MSS inversion provides much more information to 
the AR. As discussed earlier, the 2DVAR is able to 
use the information in a more appropriate manner to 
provide a spatially consistent wind fi eld (Fig.6b). 

 To validate the accuracy of the wind speed and 
direction at different ocean states, the bias and 
standard deviations of the wind speeds with respect to 
the ECMWF winds were calculated as a function of 
the ECMWF wind speeds in bins of 1 m/s, as shown 
in Fig.7a, and the mean absolute differences of wind 
direction are shown in Fig.7b. 

 Figure 7a and 7b shows that the -deviations of MSS-
winds -vary with increasing wind speed. In Fig.7a, the 
bias decreases from 2.0 to 0.2 m/s as the wind speed 
increases from 0 to 5 m/s, while the RMS error remains 
about 2 m/s. The wind speed RMS error becomes 
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changeable at speeds above 17 m/s, although the 
absolute bias remains within 1 m/s up to a wind speed 
of 24 m/s. In Fig.7b, the bias of wind direction also 
decreases as the wind speed increases from 0 to 9 m/s 
and then it falls to 20° at a wind speed of 5 m/s. The 
bias shows little variation for wind speeds above 9 m/s.  

 A comprehensive analysis of Fig.7a and b reveals 
that wind speed is noisy at both low wind speeds 
(below 4 m/s) and high wind speeds (above 17 m/s), 
whereas the wind direction is reproduced well at wind 
speeds between 5 m/s and 24 m/s or higher. 

 To validate the MSS-winds and MLE-winds, we 
also compared these winds with in situ observations 
from 29 offshore buoy stations. The buoy data were 
collected from the National Data Buoy Center for the 
same fi ve months (as mentioned earlier) as the MSS-
winds; and the MLE-winds use the same time period. 
Only wind speeds are above 2 m/s and below 30 m/s 
are considered in this validation. The matched winds 
are limited to less than 10 min and 0.25° for the 
temporal difference and spatial separation, respectively. 
Buoy data are converted to 10-m height using the 
logarithmic profi le method (Peixdto and Oort, 1992). 
The results of the comparison are shown in Table 1. 

 A total of 4 936 points were matched and the data 
are presented in Fig.8a for wind speed and Fig.8b for 
wind direction. In the comparison of the MLE-winds 
with buoy winds, the RMS errors of wind speed and 

wind direction are 1.3 m/s and 24.0° for all swath data, 
respectively. In the comparison of the MSS-winds with 
buoy winds, 4 812 points were matched and the data 
are shown in Fig.9a for wind speed and Fig.9b for wind 
direction. The RMS errors of wind speed and wind 
direction are 1.3 m/s and 17.4° for all swath data, 
respectively. Comparisons for sweet swath (nodes 
9–28 and 49–68) winds and nadir swath (nodes 29–48) 
winds are also calculated. The results listed in Table 1 
shows that MSS-winds are more improved in wind 
direction domain. Besides, the MSS-winds narrow the 
differences of accuracy between sweet swath data and 
nadir swath data. All matched points within triple 
standard deviations were considered in this study. 

 Finally, we compared two wind fi eld data sets of 
MLL-winds and MSS-winds for the case study of 
typhoon Soulik. Soulik was a powerful typhoon that 
caused widespread damage in Taiwan Island and East 
China in July 2013. The storm originated to the northeast 
of Guam on July 6, and became a tropical depression 
early on July 7. The depression underwent a period of 
rapid intensifi cation starting on July 8 that culminated 
in Soulik attaining its peak strength early on July 10. 

 Figure 10 shows a HY2-SCAT-retrieved wind fi eld 
using the standard MLE inversion and median fi lter 
AR. In the region of the red rectangle, it is clear that 
the wind vectors do not conform to the vortex 
structure. Figure 11 shows the improved winds using 
the MSS inversion in combination with 2DVAR for 
the same case as shown in Fig.10. In order to avoid 
the plotted lines are too dense, WVCs in both Fig.10 
and 11 are sampled with odd number along longitude 
and latitude separately. 

 4 CONCLUSION 
 In this study, the MSS algorithm is used in 

combination with the 2DVAR technique to improve 
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 Table 1 Comparison of MLE-winds (left column) / MSS-
winds (right column) with buoy data 

 Wind data  Num. of data  Wind speed   RMS 
difference 

 Wind direction   
RMS difference 

 All  4 936/4 812  1.3/1.3 m/s  24.0/17.4° 

 Sweet swath  2 874/2 806  1.2/1.2 m/s  22.5/17.2° 

 Nadir swath  1 433/1 398  1.5/1.4 m/s  24.7/17.7° 
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HY2-SCAT wind retrievals. The current operational 
system using standard MLE wind retrieval procedures, 
which only considers the local MLE cost-function 
minima as ambiguous solutions, produces inaccurate 
winds in the HY2-SCAT nadir region. 

 The MSS algorithm retains all the direction solutions 
corresponding with the MLE cost function. The 
probability of each ambiguous solution being the “true” 
wind is calculated using the EPF, the parameters of 
which are derived empirically based on HY2-SCAT 
data. In the AR procedure, a variational analysis AR (i.e., 
2DVAR) is used instead of a median fi lter AR, because 
it is capable of explicitly using the probabilities for 
multiple solutions and ensuring the spatial consistency 

and meteorological balance of the retrieved winds. 
 The study shows that the MSS wind direction is 

substantially better than the MLE wind in the nadir 
region. The comparison between the MSS winds and 
ECMWF winds shows that wind speed is noisy at low 
wind speeds (below 4 m/s) and at high wind speeds 
(above 17 m/s), while the wind direction shows lower 
bias and stability, even at high wind speeds above 
24 m/s. Furthermore, the wind fi eld of a vortex structure 
is reproduced well by the MSS winds, showing spatial 
consistency. However, the quality of derived wind 
speeds above 20 m/s is still poor and further study is 
required. This should include a greater number of 
observations of high wind speeds (e.g., from buoys, 
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 Fig.8 Comparison of MLE-winds with buoy winds from the National Data Buoy Center 
 a. Wind speed; b. wind direction.  
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 Fig.9 Comparison of MSS-winds with buoy winds from the National Data Buoy Center 
 a. Wind speed; b. wind direction. 
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dropsondes, oil rigs, and WindSat) to refi ne the 
geophysical model function of the scatterometer. 
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 Fig.10 Wind fi eld retrieved using standard MLE inversion 
and median fi lter AR for the case of typhoon Soulik 
MLE on July 10, 2013 
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 Fig.11 Wind fi eld retrieved using MSS inversion in 
combination with 2DVAR for the same case as shown 
in Fig.10 


