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  Abstract         The South Yellow Sea (SYS) is strongly infl uenced by the substantial sediment loads of the 
Huanghe (Yellow) (including the modern Huanghe and abandoned old Huanghe subaqueous delta) and 
Changjiang (Yangtze) Rivers. However, the dispersal patterns of these sediments, especially in the western 
SYS, have not been clearly illustrated. In this study, we have analyzed clay minerals, detrital minerals, and 
grain sizes for 245 surface sediment samples (0–5 cm) collected from the western SYS. The clay minerals, 
on average, consist of 67% illite, 14% smectite, 11% chlorite, and 8% kaolinite. Clay minerals, detrital 
minerals, and grain size analyses of surface sediments, combined with water mass hydrology analysis, reveal 
that sediments in the western SYS are mainly derived from the modern Huanghe River, the abandoned 
subaqueous delta of the old Huanghe River, some material from the Changjiang, and coastal erosion. The 
clay minerals (especially illite and smectite) and quartz/feldspar ratio distribution patterns, reveal that the 
infl uence of modern Huanghe sediments can reach 35°N in the northwestern part of the study area, an 
infl uence that can be enhanced especially in winter owing to northerly winds. Conversely, sediments along 
the Jiangsu coast are mixed, in summer, with material from the Changjiang arriving via northward fl ow of 
Changjiang Diluted Water. The Subei Coastal Current carries the refreshed sediments northward into the 
western SYS. Sediment distribution and transport in the western SYS are mainly controlled by the oceanic 
circulation system that is primarily related to the monsoon. 

  Keyword : South Yellow Sea; clay mineral; Subei Coastal Current; provenance 

 1 INTRODUCTION 

 The South Yellow Sea (SYS) has been infl uenced 
by large volumes of sediment derived from the 
Huanghe (Yellow) and Changjiang (Yangtze) Rivers 
during the Holocene (Milliman et al., 1985; Ren and 
Shi, 1986; Qin et al., 1989; Alexander et al., 1991). 
Because of the complex hydrodynamic system (Su 
and Yuan, 2005) and wide range of sediment sources 
(Yang et al., 2003; Shi et al., 2012), the sediment 
dispersal patterns and transport paths in the SYS are 
not thoroughly understood. 

 As an important constituent of marine sediments, 
clay minerals are widely distributed in various types 
of sediments. They are sensitive indicators of 

geological processes and environmental change. 
Therefore, characteristics of clay minerals such as 
their compositions, assemblages, shapes and 
structures can help to identify sediment provenance 
and depositional environment (Park and Han, 1984; 
Lan, 2001). For example, clay mineral studies in 
marine surface sediments are able to indicate the 
provenance of the clay in the world’s oceans (Griffi n 
et al., 1968), currents in the Indian Ocean (Gingele et 
al., 2001), and sediment transport paths in the South 
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Atlantic Ocean (Petschick et al., 1996) and South 
China Sea (Liu et al., 2010a, b). The study of clay 
minerals in the SYS began in the 1970s (Li, 1990). 
Subsequently, a number of studies on these clay 
minerals were undertaken that described the clay 
mineral distribution (Zhao, 1983; Shi et al., 1989; Li, 
1990), discussed the sources of the fi ne-grained 
sediments in the central SYS (Park and Khim, 1992; 
Wei et al., 2001), and analyzed the provenance of 
clay minerals in the SYS (He, 1989; Song et al., 
2008; Lan et al., 2011). However, restricted by 
technical and economic conditions, previous studies 
have been limited in their sample numbers, and have 
focused on specifi c areas. Moreover, inconsistencies 
in sample pretreatments and analytical procedures 
prevent the comparisons of similar studies or the 
compilation of their results, because abundances of 
clay minerals are signifi cantly dependent on 
pretreatments, X-ray machine conditions, and 
calculation methods (Park and Khim, 1992). Also, 
sediment distributions can be greatly constrained by 
oceanographic conditions (Milliman et al., 1986); 
however, in some previous studies, the infl uence of 
the oceanic circulation system on sediment 
distribution and transport in the SYS has been 
underestimated or neglected.  

 Sediment provenance and dispersal patterns in the 
SYS have been discriminated using sedimentological 
(Milliman et al., 1989) and geochemical (Yang et al., 
2003) approaches, and also numerical simulations 
(Chen and Zhu, 2012). However, most of these studies 
were primarily restricted to the eastern (Chough et al., 
2004; Lim et al., 2007) and central (Shi et al., 2012) 
SYS. The western SYS (with water depths <50 m) 
have not been as involved in such studies. Annually, 
the Huanghe and Changjiang Rivers discharge a large 
volume of fl uvial clastics into the sea (Milliman and 
Meade, 1983). During the period spanning AD 1128–
1855, the Huanghe River annually discharged about 
1.1×10 9  tons of suspended sediments into the Yellow 
Sea (Milliman et al., 1985). However, the dispersal 
patterns of the sediments from the Huanghe (including 
the current Huanghe and the abandoned old Huanghe 
River subaqueous delta) and Changjiang Rivers in the 
western SYS have not been clearly illustrated. 
Therefore, it is necessary to investigate the sediment 
provenance and transport paths in the western SYS 
that has been contaminated by anthropogenic 
activities (Hong et al., 1998).  

 The main objectives of this study are: (1) to 
discriminate sediment provenance in the western SYS 

based on clay mineral and detrital mineral analyses, 
and (2) to characterize the transport paths of major 
sediment sources based on combined analyses of clay 
minerals, detrital minerals, grain sizes, and water 
mass hydrology. 

 2 REGIONAL SETTING 
 The Yellow Sea is a semi-enclosed epicontinental 

sea surrounded by China mainland and the Korean 
Peninsula. The seafl oor is relatively fl at, and tilts to 
the center and southeast from the north, east, and 
west. The average water depth of the SYS is 46 m, 
with a north-south oriented trough named the Yellow 
Sea Trough located in the center and east with water 
depths of 60–80 m. Most outcrop exposed along the 
coast of Shandong Peninsula is bedrock, whereas 
there are bedrock, sandy and muddy coasts on the 
Jiangsu coastal plain. Southerly and southeasterly 
winds prevail in summer, contrasting with northerly 
and northeasterly winds in winter, caused by the 
typical East Asian monsoon (Qin et al., 1989). 

 The main components of the circulation system in 
the Yellow Sea are the Yellow Sea Warm Current 
(YSWC) and the coastal currents along the west and 
east coasts in the cold months (December–April). The 
YSWC extends toward the SYS with a tongue-like 
shape from the southwest of Cheju Island, and is 
distributed right from the surface to the bottom water. 
The Yellow Sea Coastal Current (YSCC) fl ows 
eastward along the northern coast of the Shandong 
Peninsula and turns southward and southwestward at 
the east of the Shandong Peninsula Tip. The southward 
branch along the 40–50 m isobaths turns southeastward 
near 33–32°N (Su and Yuan, 2005). Additionally, the 
Subei Coastal Current (SCC) along the southwest 
coast of the SYS fl ows southeastward in winter 
(Fig.1a). The tidal currents in the southwestern part of 
the SYS are hydrodynamically strong, with tidal 
current velocities exceeding 100 cm/s (Ding, 1985; 
Dong et al., 1989). The circulation in warm months 
(May–November) presents an almost enclosed loop 
owing to the Yellow Sea Cold Water (YSCW) density 
current (Su and Yuan, 2005). In contrast to the winter, 
the SCC fl ows northward in summer according to 
recent studies (Xia et al., 2006; Yuan et al., 2008; Liu 
and Hu, 2009; Pang et al., 2011; Wang et al., 2013). 
The velocities of currents and tidal currents in the 
SYS are listed in Table 1. 

 The modern Huanghe River empties into the Bohai 
Sea (BS) to the north of the study area, and to the 
south the Changjiang River discharges into the East 
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China Sea (ECS). The modern Huanghe and 
Changjiang rivers annually discharge about 1.1×10 9 

 and 5.0×10 8  tons of suspended sediment, respectively 
(Milliman and Meade, 1983). About 9%–15% of the 
annual discharged sediment from the Huanghe River 
accumulates in the Yellow Sea, and two-thirds of the 
sediment accumulates in the Shandong subaqueous 
delta, with the remaining sediment spreading and 
accumulating in the southern part of the Yellow Sea 
(Alexander et al., 1991). With regard to heavy mineral 
and clay mineral assemblages, as well as the 
geochemical characteristics of surface sediments, Lan 
et al. (2005) pointed out that material from the 
Changjiang River would mainly affect areas south of 
33°N in the SYS. Additionally, the southern part of 

the study area is located at the subaqueous delta 
formed by the Huanghe River between AD 1128 and 
1855 (Milliman et al., 1985). There are some other 
small rivers including the Baima-Jili, Xiuzhen, 
Qingkou, Linhong, Shanhou, Guanhe and Sheyang 
Rivers from north to south along the west coast of the 
study area (Fig.1b and Table 2). The total drainage 
area of these rivers is about 14.8×10 3  km 2 , accounting 
for only 1.96% of the Huanghe River drainage area, 
and 0.82% of the Changjiang River. The total annual 
water discharge of the rivers is about 14% of the 
Huanghe River, and 0.8% of the Changjiang River. 
Owing to the lack of data for the annual suspended 
sediment load for every river, we have had to estimate 
the total load. Taking the annual suspended sediment 
load of the Guanhe River as a reference, we calculate 
that the total annual suspended sediment load of the 
rivers along the west coast of the study area is about 
3.2×10 6    tons, less than 10% of the suspended sediment 
load of the Huanghe River accumulating in the 
southern part of the Yellow Sea (more than 3.3×10 7   
 tons/year according to Alexander et al., 1991). This is 
a minor sediment discharge in the study area. 
Therefore, these rivers mainly affect the sediment 
distribution near estuaries. 

 The samples in this study are distributed in an area 
less than 50 m deep (Fig.1a), in close proximity to 
abundant human activities. An accurate discrimination 

 Table 1 Current and tidal current velocities in the SYS 

     Velocity 
(cm/s)  Data sources 

 Currents 

 YSCC (near the Shandong 
Peninsula Tip)  >30  (Sun, 2006) 

 YSCC (south of 34°N, 
east of 122°E)  25  (Sun, 2006) 

 YSWC  5–10  (Su and Yuan, 2005) 

 M 2  tidal 
current  

 West coast of SYS  20–40  (Fang, 1986) 

 Subei Coast  >60  (Fang, 1986) 

 Central SYS  20  (Fang, 1986) 
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of provenance and depositional environment can 
provide a better understanding of sediments 
transportation, along with the migration and diffusion 
of pollutants. 

 3 MATERIAL AND METHOD 
 A total of 245 surface sediment samples were 

collected with box or grab samplers during a series of 
cruises between June and November in 2008. The 
sampling interval is 6 km×6 km in the northwest, 
10 km×10 km in the west and south, and 14 km×14 km 
in the east (Fig.1b). After removal of organic matter 
and carbonate with 10% hydrogen peroxide and 10% 
acetic acid, respectively, the samples were fully 
cleaned with distilled water. According to the Stoke’s 
settling velocity principle, clay components smaller 
than 2 μm were separated out. Then the clay 
components were made into air-dried clay slides, and 
the same slides were saturated with ethylene glycol to 
prepare for analysis. To identify clay mineral 
compositions correctly, we heated some slides at 
550°C for 2 h before reanalysis. Clay minerals were 
analyzed by X-ray diffraction (XRD) on a D8 
ADVANCE diffractometer with CuKα radiation 
(40 kV, 40 mA). The step size was 0.02° with a step 
interval of 2 steps/s and a scan range between 3° and 
30° (2 θ ). 

 The semi-quantitative calculation of relative clay 
mineral content followed the method introduced by 
Biscaye (1965). The position of the (001) series of 
basal refl ections on the ethylene glycol saturation 
slide XRD spectrum was used for clay mineral 
identifi cation (Fig.2). The integrated peak areas of 
four kinds of clay minerals were calculated using the 
software TOPAS. The three integrated peak areas, 
smectite (17Å) (including mixed-layers), illite (10Å), 
kaolinite and chlorite (7Å) on the XRD spectrum of 

glycolated slides, were used to estimate the relative 
content of the four main clay minerals, with empirical 
factors of 1, 4, and 2, respectively. Relative proportions 
of chlorite and kaolinite were obtained by calculating 
the peak area ratio 3.54Å/3.57Å close to 25° (2 θ ) on 
the XRD spectrum.  

 Furthermore, to maintain data consistency, we 
analyzed the clay minerals of sediment samples 
collected from the downstream sections of the modern 
Huanghe and Changjiang Rivers, following the 
pretreatment and calculation methods introduced 
above. 

 Grain sizes of the 245 samples were analyzed with 
a Cilas 940L laser particle size analyzer (0.3–
2 000 μm) after separate pretreatments with 15% 
hydrogen peroxide and 0.25 mol/L hydrochloric acid 
to remove organic matter and carbonate. The light and 
heavy minerals in the fi ne-sand components (63–
125 μm) were separated with heavy liquid (density of 
2.80 g/cm 3 , bromoform diluted with alcohol). After 
the mineral species were identifi ed and counted with 
the microscope, the particle percentages were 
calculated. 

 The clay mineral, grain size and detrital mineral 
analyses were carried out in the Key Laboratory of 
Marine Geology and Environment, Institute of 
Oceanology, Chinese Academy of Sciences (IOCAS). 

 Salinity data were obtained with a SBE9 CTD 
(conductivity, temperature and depth sonde), and the 
velocities and directions of tidal currents in the SYS 
were collected by a ship-mounted ADCP (Acoustic 
Doppler Current Profi ler) during the May 2009 and 
July 2012 Open Cruises of Chinese Offshore 
Oceanography Research by IOCAS, respectively. 

 To better classify the provenances of all the surface 
sediment samples, we used cluster analysis provided 
by the software SPSS 13.  

 Table 2 Parameters of the main rivers in and around the study area 

 River  Length (km)  Drainage area (km 2 )  Water discharge  (10 8  m 3 /year)  Suspended sediment Load (10 6  tons/year)  Data source 

 Huanghe River  5 464  0.752×10 6   490  1 080  Hay (1998) 

 Changjiang River  6 300  1.8×10 6   9 000  500  Hay (1998) 

 Baima-Jili River  72.7  0.497×10 3   1.69  -  a 

 Xiuzhen River  45  0.396×10 3   -  -  a 

 Qingkou River  64  0.493×10 3   -  -  a 

 Linhong River  175  1.349×10 3   -  -  a 

 Guanhe River  74.5  8×10 3   15  0.7  Liu et al. (2006b) 

 Sheyang River  198  4.036×10 3   44.35  -  Ma et al. (2010) 

 a: http://zh.wikipedia.org; -: no data. 
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 4 RESULT 

 Sand content ranges between 0 and 90.86% (average 
23.50%), with higher values in the central part and 
lower values in the northern and southern parts of the 
study area (Fig.3a). In contrast, the silt content, ranging 
from 6.20% to 86.36% (average 53.34%) has the 
reverse distribution with lower values in the central 
part while the northern and southern parts are 
characterized by silt contents greater than 50% 
(Fig.3b). The clay content is between 1.22% and 
59.62%, with an average of 23.16% (Fig. 3c). The area 
between Qingdao and Lingshan Island as well as 
Haizhou Bay are defi ned by clay contents exceeding 
20%, whereas the clay content ranges from 20% to 
  50% in the abandoned old Huanghe River subaqueous 
delta. A tongue-like distribution of high clay content 
occurs in the northeastern study area off Qingdao 
coast. With the exception of some patches with a 
content in excess of 15%, the clay content in the other 
regions is less than 10%.  

 The clay minerals are composed of illite (average 
67%), smectite (14%), chlorite (11%), and kaolinite 
(8%).  

 Illite (average 67%) dominates the four clay 
minerals, with a range of concentrations between 
57% and 77% (Fig.4a). The northwestern part of the 
study area located between the coasts of Qingdao and 
Rizhao, and the estuaries of the Shanhou and Guanhe 
rivers in Haizhou Bay present a relatively high illite 
content (>67%). In contrast, the abandoned old 
Huanghe River subaqueous delta presents a medium 
illite content (about 65%). Except for these two areas, 
most of the study area has illite contents <65%. 

 Smectite content (average 14%) ranges from 7% to 
24% (Fig.4b), and the spatial distribution can be 
divided into three parts by the 14% contour. A 
relatively low smectite content (<14%) is observed in 
the northwest off the Qingdao and Rizhao coasts and 
in the south off the abandoned old Huanghe River 
subaqueous delta. In contrast, higher smectite content 
(>14%) occurs in the middle of the study area. The 
distribution characteristics of smectite are opposite to 
those of illite, such that high concentrations of 
smectite correspond to low concentrations of illite at 
the same locations. Therefore, there is a negative 
correlation between illite and smectite contents 
(Fig.5).  
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 Kaolinite (average 8%) is the lowest in the study 
area with a content range between 5% and 12% 
(Fig.4c). The kaolinite content in the northern region 
is mostly less than 8% and it displays an uneven 
distribution, while in the southern region it is more 
than 8%. 

 Chlorite contents vary from 8% to 17% (average 
11%) in the study area (Fig.4d). The regions of highest 
content (>13%) occur around Lingshan Island and the 

offshore areas of Rizhao and the southeastern area. 
The low content mainly occurs in the central part of 
the study area. 

 Results of clay mineral cluster analysis show that 
surface sediment samples in the study area can be 
clustered into four main zones (Fig.3d), a northern 
zone (I), central zone (II), southern zone (III), and 
bays (IV). Furthermore, the fourth zone (IV) could be 
subdivided into three zones, Aoshan Bay (IV-1), 
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Jiaozhou Bay (IV-2), and Haizhou Bay (IV-3). 
 The clay mineral assemblages of the four zones are 

listed in Table 3. 

 5 DISCUSSION 

 5.1 Provenance analysis 

 Previous studies have indicated that the main 
sediment sources in the western SYS are terrigenous 

materials derived from modern Huanghe sediments 
and carried by YSCC, substances resuspended and 
carried from the abandoned old Huanghe River 
subaqueous delta (Qin et al., 1989), and material from 
the Changjiang (Lee and Chough, 1989; Wei et al., 
2001; Lan et al., 2005; Lan et al., 2011). Other materials, 
such as authigenic minerals and aerosol materials, are 
only a minor component (Shi et al., 2012). 

 As the results show (Table 3), smectite contents 
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vary from 7% to 24%. This is clearly determined by 
the smectite contents of the sources (modern Huanghe 
River=26%, Changjiang River=7%), which is 
consistent with previous studies. Because of the 
addition of material from the Changjiang and other 
sediment sources, smectite content in the western 
SYS has been diluted. 

 We plotted a ternary diagram with smectite, illite 
and kaolinite+chlorite as end members to discriminate 
the provenance of clay minerals in the western SYS 
(Fig.6). Additionally, some surface sediment samples 
from the along-shelf clinoform in the East China Sea, 
which is derived from the Changjiang River (Liu et 
al., 2006a), are added in the diagram. The ternary 
diagram indicates that the composition of clay mineral 
assemblages in the western SYS lies between those of 

the modern Huanghe and Changjiang Rivers.  
 Because of the various possible clay mineral 

assemblages, the illite/smectite and kaolinite/chlorite 
ratios in modern Huanghe sediments are signifi cantly 
different from those of the Changjiang River. Fan et 
al. (2001) suggested that the illite/smectite ratios in 
modern Huanghe sediments characteristically exceed 
8, whereas, at the Changjiang River, the ratio is <6. In 
our results, the illite/smectite ratios range from 2.41 
to 10.41, with an average value of 5.09 (Table 3). This 
indicates that the sediment sources are derived from 
the modern Huanghe and Changjiang Rivers (Fig.7a). 

 The different characteristics of clay mineral 
assemblages in the modern Huanghe and Changjiang 
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 Table 3 Clay mineral assemblages of the four zones, Huanghe and Changjiang Rivers  

 Zones  Clay content (%)  Smectite (%)  Illite (%)  Kaolinite (%)  Chlorite (%)  Illite/Smectite  Kaolinite/Chlorite 

 I (41)  32.39   13   68   8   12   5.70   0.66  

 II (149)  12.56   15   66   8   11   4.84   0.73  

 III (35)  37.12   13   66   9   12   5.27   0.78  

 IV-1 (4)  23.49   13   70   6   10   5.45   0.63  

 IV-2 (3)  24.12   10   73   7   10   7.88   0.64  

 IV-3 (13)  16.37   15   65   8   12   4.66   0.72  

 Western SYS 
 0.28–59.62  7–24  57–77  5–12  8–17  2.41–10.41  0.45–1.07 

 21.46  14  67  8  11  5.09  0.72 

 Huanghe (19)  -  26   56   8   11   2.19   0.74  

 Changjiang (5)  -  7   71   7   14   10.83   0.53  

 Number in the parentheses represent sample numbers. 



518 CHIN. J. OCEANOL. LIMNOL., 33(2), 2015 Vol.33

sediments are dependent on distinctive climate types 
(Yang, 1988; Fan et al., 2001) and geological 
backgrounds (Yang and Li, 1999; Fan et al., 2001). 
About 90% of the Huanghe sediment come from loess 
deposits, which are widely distributed in the central 
reaches of the Huanghe River, where loess deposits 
suffer intense physical weathering (Chen et al., 1984; 
Ren and Shi, 1986). In comparison, the sediments in 
the Changjiang drainage basin have complex sources. 
Paleozoic carbonate rocks, acidic metamorphic rocks, 
and Quaternary clastic sediments dominate the upper, 
middle and lower reaches, respectively (Qu and Yan, 
1990; Zhang et al., 1990; Yang et al., 2000). In 
contrast with the Huanghe River, strong chemical 
weathering happens in the Changjiang drainage basin 
(Chen et al., 1984). 

 To eliminate the constant-sum constraint, a 
bivariate plot (Fig.7b) of log ratios transformed from 
kaolinite to smectite and illite is used to illustrate the 
extent of weathering (Vital et al., 1999). From the plot 
(Fig.7b), we can see that chemical weathering in the 
Changjiang drainage basin is stronger than that in the 
Huanghe basin, in accordance with the weathering 
conditions in the two river basins.  

 The clay minerals in the northern zone (I) are 
mainly derived from modern Huanghe sediments 
carried by the YSCC (Fig.1a) along the south coast of 
the Shandong Peninsula (Qin et al., 1989). Martin et 
al. (1993) pointed out that the infl uence of modern 
Huanghe sediments on the Yellow Sea was mostly 

limited to north of 36°N. However, fi ne-grained 
sediments, especially clay-sized particles, can be 
advected over a long distance before removal from 
the water mass, so they can settle far away from their 
original sources (Martin et al., 1993; Gingele et al., 
2001). During the process of alongshore transport 
(Fig.1a), the YSCC can interact with local waves, 
tides and upwellings (Yang and Liu, 2007), so the 
addition of coastal erosion and resuspended sediments 
probably increased the illite content, while lowering 
the smectite content (Fig.4a, b). So the strip of lower 
smectite content in the northwestern part of the study 
area can represent the region of infl uence of modern 
Huanghe sediments. From the smectite content 
distribution (Fig.4b), observe that to the north of 
35°N, the western SYS is mainly infl uenced by 
modern Huanghe sediments (Fig.3d). In winter, the 
infl uence of modern Huanghe sediments can be 
enhanced owing to the prevailing northerly winds. 
Moreover, the strip of higher smectite content in 
Haizhou Bay indicates that the YSCC (along the 
south coast of Shandong Peninsula) cannot connect 
with the SCC in winter (Fig.1a).  

 The central zone (II), with a lower clay content of 
about 12% (Table 3), is mainly composed of relict 
sediments (Wu, 1981; Wang, 1982; Liu, 1987). The 
relict sediments were deposited on the continental 
shelves during and immediately after the latest glacial 
stage of the Pleistocene, and as such are not related to 
their present environments (Emery, 1968). The relict 
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sediments experienced strong hydrodynamic sorting 
at the time of lower glacial-period sea levels, and fi ne-
grained sediments were removed (Wang, 1982). As a 
result, the clay content is low there, especially under 
the condition of a lack of any supplementary material. 
Additionally, the ancient Huanghe River delta was 
formed in the western SYS in the late Pleistocene (Li 
et al., 1993), so the higher smectite content in the 
central zone (II) (Fig.4b) may refl ect the original clay 
mineral compositions of pure Huanghe sediments. 
The western part of the central zone (II), just offshore 
from Rizhao, which is dominated by strong 
hydrodynamic conditions (probably strong tidal 
currents or waves) (Lü, 1982), is now in an erosional 
environment where clay minerals cannot accumulate. 

 The southern zone (III) covers the region of the 
abandoned old Huanghe River subaqueous delta 
(Milliman et al., 1985), which is governed by strong 
tidal currents and waves (Ding, 1985; Liu et al., 
1989). The surface sediments of the subaqueous delta 
are mainly composed of silty mud and muddy silt 
(Yuan and Chen, 1984), so from our results, the 
sediment types are classifi ed as silt and mud (Folk et 
al., 1970). Under the infl uence of strong hydrodynamic 
conditions, about (0.5–1.0)×10 9  tons of suspended 
sediment are produced near the abandoned old 
Huanghe delta mouth annually (DeMaster et al., 
1985; Saito and Yang, 1994). Clay minerals in the 
southern zone (III) mainly come from the abandoned 
old Huanghe River subaqueous delta sediments. 
Compared with the modern Huanghe River, the clay 
mineral assemblages of the abandoned old subaqueous 
delta present different characteristics (Fig.6 southern 
zone (III) compared with Huanghe River). Moreover, 
the chemical weathering refl ected from the clay 
minerals of the abandoned old Huanghe River 
subaqueous delta is stronger than that of modern river 
(Fig.7b southern zone (III) compared with the 
Huanghe River). After the Huanghe River channel 
shifted back into the Bohai Sea in AD 1855, the 
abandoned old Huanghe River subaqueous delta 
underwent reworking because of the strong 
hydrodynamic conditions of tidal currents and waves 
(Yuan and Chen, 1984; Liu et al., 2013). 

 The clay minerals in the bays (Aoshan Bay (IV-1), 
Jiaozhou Bay (IV-2), and Haizhou Bay (IV-3)) mostly 
originate from coastal erosions, resuspended sediment 
and discharge from small nearby rivers (Gao et al., 
1982; Zhao et al., 1983). So they present a different 
clay mineral assemblage (Fig.6). The chemical 
weathering in Aoshan, Jiaozhou, and Haizhou bays 

presents an increasing trend from north to south 
(Fig.7b), which indicates a different supply of 
sediment sources. 

 5.2 Sediment transport mechanism in the western 
SYS 

 Numerical studies and in-situ observations indicate 
that tidal currents dominate sediment resuspension, 
transport, and deposition in the Yellow Sea (Dong et 
al., 1989; Lee and Chu, 2001; Lu et al., 2011). By 
analyzing the clay mineralogy of surface sediments, 
one can track the transport pathway of suspended 
particles (Zöllmer and Irion, 1993). As discussed 
above, modern Huanghe sediments are carried by the 
YSCC and infl uence the northwestern part of the 
study area. Additionally, from the diagrams of clay 
mineral assemblages (Figs.6, 7), we fi nd that material 
from the Changjiang can also infl uence the western 
SYS, but how do these substances infl uence the 
western SYS?  

 Changjiang Diluted Water (CDW) is found in the 
vicinity of Changjiang estuary and Hangzhou Bay. It 
is composed of a mixture of fresh water (mainly from 
the Changjiang and Qiantang Rivers) and seawater. 
Generally, an isohaline of 30 has been defi ned as the 
CDW boundary, which can spread to the southwest of 
the SYS and connect to the SCC (Sun, 2006). Based 
on the distribution of maximum bottom stresses 
associated with the dominant M 2  and M 4  currents, 
Milliman et al. (1985) pointed out that the maximum 
bottom stress north of the Changjiang was directed 
northwestward, meaning that fi ne-grained material 
could be retained within the coastal region. From 
May to July, southerly and southeasterly winds are 
prevalent in the SYS (Qin et al., 1989), and surface 
currents fl ow in a predominantly northward direction 
(Pang et al., 2011). Therefore, about 0.34×10 8  tons of 
suspended sediments (including some Changjiang 
material) are transported from the East China Sea 
(ECS) to the SYS through the 32°N section in spring 
and summer (Pang et al., 2003). A clay mineralogy 
study shows that south of Jianggang (32°40′N), 
intertidal fl at sediments were greatly infl uenced by 
sediments from the Changjiang River (Ren and Shi, 
1986). A numerical simulation of tidal elevations and 
currents in the Yellow Sea showed that some of the 
Changjiang substances could be transported 
northward just offshore from the northern Jiangsu 
coast (Zhu and Chang, 2000); a MODIS satellite 
observation indicated that the northward expansion of 
the CDW in summer could refresh the Subei coasts 
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with Changjiang sediments (Yuan et al., 2008). Based 
on the Empirical Orthogonal Function and freshwater 
fl ux analysis, Wu et al. (2014) found that a portion of 
the Changjiang plume spread northward along the 
Jiangsu Coast in both summer and autumn seasons. In 
our results, the spatial distribution of salinity in May 
2009 (Fig.8a) also reveals northeastward and 
northward spread of CDW, which can be confi rmed 
by the tidal current directions measured by ship-
mounted ADCP (Fig.8b) and numerical simulations 
of surface tidal currents in July (Fig.8c). The CDW 
can connect with the SCC, therefore the sediment on 
Subei coasts can be redistributed and mixed with 
Changjiang substances. 

 Subei Coastal Water (SCW) is a mixture of fresh 
water (mainly from the Guanhe River, Jiangsu 
Irrigation Channel, Sheyang River and some other 
rivers along the northern Jiangsu coast) and seawater. 
Because of a fl at seafl oor and a shallow water depth, 
the horizontal distribution of the SCW is wide, and 
because of the strong hydrodynamic conditions along 
the Jiangsu coast, the SCW is found almost the whole 
way from the surface to the seabed (Sun, 2006). As 
described previously in the Regional Setting section, 
the SCC fl ows northward in summer, which can be 
further confi rmed by the tidal current directions 
measured by ship-mounted ADCP (Fig.8b), and the 
drift path of  Enteromorpha prolifera  outbreak in the 
summer of 2008 (Hu et al., 2010).  

 Dolomite is the characteristic mineral of Changjiang 
sediments, with an average dolomite content of about 
26%, much higher than that of the modern Huanghe 
sediments (average 4%) or the dolomite content in the 
abandoned old Huanghe River subaqueous delta 
(about 10%) (Chen, 1989). According to the different 
dolomite contents in these three sediments, which 
include the addition of Changjiang sediments, we 
conclude that the dolomite content in the abandoned 
old Huanghe River subaqueous delta has been 
increased; this is consistent with the results deduced 
from clay mineral assemblages (Figs.6, 7) that the 
abandoned old Huanghe River subaqueous delta has 
been reworked (AD 1855 to present) after the 
northward migration of the Huanghe River. Under the 
infl uence of Coriolis force, the drift path of the SCC 
continuously defl ects to the right. From the results of 
heavy mineral identifi cation, the narrow east-west 
corridor in dolomite spatial distribution (Fig.9a) could 
represent a northward transport pathway for sediments 
from the abandoned old Huanghe River subaqueous 
delta and some of the material from the Changjiang, 
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which are carried by the SCC in summer. Moreover, 
based on the distribution of mercury in surface 
sediments (He et al., 2009), one can fi nd a similar 
south-to-north trend (Fig.9a). Because clay minerals 
can adsorb Hg 2+  and other heavy metal ions in the 
water (Tang et al., 2002), and the mercury content of 
surface sediments in the Changjiang estuary (average 
0.048 mg/kg, Xu et al., 1982) is higher than that in the 
SYS (average 0.022 mg/kg, He et al., 2009), the 
mercury distribution probably indicates the transport 
of clay minerals from Changjiang sediments. 

 The quartz/feldspar ratio (including K-feldspar and 
plagioclase) can be used as an index to discriminate 
the weathering intensity and provenance of sediments 
(Kuhn and Diekmann, 2002). The study of quartz/
feldspar ratios in sediments from the Huanghe and 
Changjiang rivers shows that the quartz/feldspar 
ratios of Changjiang River sediment are signifi cantly 
higher than those of the Huanghe River. This indicates 
that the chemical weathering in the Changjiang 
drainage basin is stronger than that in the Huanghe 
basin (Yang et al., 2008). Our results show that the 
spatial distribution of quartz/feldspar ratios presents a 
northward extended tongue shape in the southern 
study area (Fig.9b), which corresponds with the 
northward spread of suspended material from the 
Changjiang, in agreement with the conclusion 
deduced from dolomite content distribution (Fig.9a). 
Furthermore, the lower quartz/feldspar ratio 
distribution in the northwestern part of the study area 

further supports the delimitation of modern Huanghe 
sediment infl uence concluded from clay minerals. 

 Therefore, based on detrital mineral distribution 
patterns (Fig.9), together with water mass hydrology 
analysis, one can see that in summer, under the 
infl uence of SCC, materials derived from the 
Changjiang can be carried northward into the western 
SYS. Based on the distribution of dolomite, the region 
of infl uence of Changjiang can reach as far as the area 
off the Qingdao coast, (Fig.9a). This conclusion can 
be confi rmed by measured tidal current directions 
(Fig.8b) and numerical simulation results (Fig.8c). 

 6 CONCLUSION 
 Analyses of clay minerals, detrital minerals and 

grain sizes in 245 surface sediment samples have 
been conducted in the western SYS to determine 
sediment provenance and transport paths. Combined 
with water mass hydrology analysis, we studied 
sediment transport mechanisms in the western SYS, 
and explained how Huanghe and Changjiang 
sediments have infl uenced the study area. 

 Results show that the clay mineral assemblage 
consists dominantly of illite (average 67%), with 
lesser amounts of smectite (14%), chlorite (11%), and 
kaolinite (8%). Sediments in the western SYS are 
mainly from the modern Huanghe River, the 
abandoned old Huanghe River subaqueous delta, 
some fraction of material from the Changjiang River, 
and coastal erosion. However, some input from small 
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coastal rivers may be locally important for sediment 
distributions. 

 Clay mineral content (illite and smectite) and 
quartz/feldspar ratio distribution patterns reveal that 
the infl uence of modern Huanghe sediments can reach 
as far as 35°N in the northwestern part of the study 
area, and the infl uence can be especially enhanced in 
winter because of the northerly winds. In summer, the 
sediments on the Jiangsu coast can be mixed with 
material from the Changjiang by the northward fl ow 
of CDW, and then the SCC carries the refreshed 
sediments northward into the western SYS. Material 
from the Changjiang can even infl uence areas as far 
away as off the coast of Qingdao, based on 
observations of dolomite distribution.  

 Sediment distribution and transport paths in the 
western SYS are primarily controlled by the oceanic 
circulation system (coastal currents, tidal currents, 
diluted water and waves), which in this region is 
intimately related to the monsoon. Oceanic circulation 
patterns vary with the season, so related changes in 
sediment distribution need further study in the future. 
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