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  Abstract             Colony morphology is important for  Microcystis  to sustain a competitive advantage in 
eutrophic lakes. The mechanism of colony formation in  Microcystis  is currently unclear. Extracellular 
polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some 
phytoplankton.  M  icrocystis   aeruginosa  was cultivated under varied abiotic conditions, including different 
nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological 
change. The results show that nutrient concentration and light intensity have great effects on EPS production 
in  M .  aeruginosa . There was a considerable increase in EPS production after  M .    aeruginosa  was cultivated 
in adjusted culture conditions similar to those present in the fi eld (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, 
light intensity: 100 μmol/(m 2   s)). These results indicate that abiotic factors might be one of the triggers for 
colony formation in    Microcystis . 
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 1 INTRODUCTION 

 Cyanobacteria blooms are an important 
environmental issue that has recently plagued several 
countries. Not only do the blooms upset the aquatic 
ecosystem (Reynolds and Walsby, 1975), but they 
also contaminate potable water with undesirable 
odorous compounds (Zhang et al., 2011) and 
microcystin (Humpage and Falconer, 1999). 
 M  icrocystis  has been reported to overwhelmingly 
dominate in most eutrophic lakes during a 
cyanobacteria bloom, especially in the summer 
(Reynolds and Walsby, 1975; Duan et al., 2009). 
Under natural conditions, these bacteria often occur 
as large colonies with thousands of algal cells. Large 
colonies provide a great competitive advantage for 
 M  icrocystis  in phytoplankton populations because 
they increase buoyancy (Oliver, 1994), photosynthetic 
effi ciency (Wu and Song, 2008), defensive abilities 
(Yang et al., 2009), and physiological activity (Li and 
Li, 2012). The colonial algae disaggregate and 
develop into unicellular algae after  M  icrocystis  are 

isolated from the fi eld and cultivated in axenic 
cultures in the laboratory for multiple generations 
(Reynolds   et al., 1987; Bolch and Blackburn, 1996). 
Their physico-chemical properties are completely 
different from those of colonial algae. Although many 
studies focus on the mechanism of colony formation 
in  Microcystis , there are not enough data to explain it 
completely (Šejnohová and Maršálek, 2012). 

 As an adhesion component, extracellular 
polysaccharide (EPS) plays an important role in algal 
cell aggregates, and its production directly correlates 
with colony formation in some phytoplankton (De 
philippis and Vincenzini, 1998; Van Rijssel et al., 
2000; Pajdak-stós et al., 2001; Bahat-Samet et al., 
2004). Similarly, quantitative analysis and 
ultrastructural observations showed colonial  M .  
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aeruginosa  cells had a signifi cantly higher EPS 
content than those of disaggregated cells (Zhang et 
al., 2007).  M  icrocystis  colonies induced by grazing 
pressure also showed a higher EPS content than 
unicellular  M  icrocystis  (Yang et al., 2008). These 
results indicate the importance of EPS content for 
colony formation in  M  icrocystis .  

 EPS production by phytoplankton partly depends 
on the environment in which they grow (Helm and 
Potts, 2012). During the last three decades, several 
important factors that control the production of 
phytoplankton EPS have been identifi ed. Lower 
nitrogen or phosphorus levels result in more EPS 
production in  Chlamydomonas mexicana  (Kroen and 
Raybum, 1984),  Cyanothece  sp. (De Philippis et al., 
1993),  Anabaena  sp. (Moreno et al., 1998), 
 Cylindrotheca closterium  (Staats   et al., 2000), and  
  Microcoleus vaginatus    (Chen   et al., 2006). Because 
excessive carbon is used for polysaccharide synthesis 
fi rst, the increased concentration of carbon in the 
culture caused an increase of EPS production in 
 Cyanospira   capsulata  (De Philippis et al., 1991). 
Light intensity and duration also have been reported 
to exert signifi cant effects on EPS production in 
 Prophyridium aerugineum  (Friedman et al., 1991), 
 Nostoc  sp. (Otero and Vincenzini, 2003),  Gloeocapsa 
gelatinosa  (Raungsomboon et al., 2006), and 
 Chlorococcum  sp. (Di Pippo et al., 2012). In addition, 
EPS production in  Anabaena  sp. is markedly enhanced 
with an increase in temperature (Moreno et al., 1998). 

 These fi ndings indicate that a change in EPS 
production would also contribute to the differences 
between growing environments in the fi eld and in the 
laboratory. To test this hypothesis, we cultivated 
unicellular  M  icrocystis  under varied abiotic 
conditions, including different nutrient, light, and 
temperature conditions, to investigate the effect of 

these factors on EPS production and colony formation 
in  M  icrocystis . 

 2 MATRIAL AND METHOD 

 2.1 Algal strain  

 Cyanobacteria  M  icrocystis   aeruginosa  (Kützing) 
Kützing PCC 7806 was obtained from the Institute of 
Hydrobiology, Chinese Academy of Sciences 
(FACHB905) and grown in axenic BG-11 culture 
medium (Stanier et al., 1971) at 25°C under fl uorescent 
light at an intensity of 40 μmol/(m 2   s) with a light-
dark period of 12 h:12 h.  

 2.2 Experimental design  

 The fl ask culture experiments were performed in 
250-mL fl asks containing 100 mL of BG-11 culture 
medium. To determine the effect of nutritional 
conditions on EPS production by  M .    aeruginosa , 
concentrations of carbon, nitrogen, and phosphorus in 
culture were adjusted individually (C↑, N↓, P↓) or 
simultaneously (C↑P↓, C↑N↓, N↓P↓, C↑N↓P↓) to 
levels that were similar to eutrophic lake conditions 
(Table 1). Varying light intensities (5, 40, and 
100 μmol/(m 2   s)) and temperatures (15, 25, and 30°C) 
were used to determine the effects of light intensity 
and temperature on EPS production by  M .  aeruginosa   
 cultivated with the unadjusted BG-11 culture medium. 
Under sterile conditions, exponentially growing 
unicellular  M .  aeruginosa    were inoculated and grown 
in different treatments for eight days (the initial 
number of algae cells was 1.0×10 6  cell/mL) after 
centrifuging and washing with deionized water. Algae 
that were cultivated in the BG-11 culture medium at 
25°C and under light at an intensity of 40 μmol/(m 2   s) 
were used as controls. All treatments and controls 
were run in triplicate, and cultures were shaken 
manually once every day. Cell concentrations and 
EPS content were determined by hemocytometer 
under a light microscope (Axio Scope A1, Zeiss, 
Germany) and the method described in 2.3 after 
incubation for eight days. Factors that could increase 
 M .  aeruginosa  EPS production were simultaneously 
investigated through further studies to expose possible 
synergistic effects on morphology changes and EPS 
production.  

 2.3 Polysaccharide assay  

 The EPS were extracted according to the methods 
of DelGallo and Haegi (1990) with slight modifi cations 

 Table 1 Nutrition concentration of different treatments 

 Treatments  Nitrogen 
density (mg/L) 

 Phosphorus 
density (mg/L) 

 Carbon density 
(mg/L) 

 Control (BG-11)  198  6.5  2.89 

 N↓  1.98  6.5  2.89 

 P↓  198  0.65  2.89 

 C↑  198  0.65  28.9 

 C↑P↓  198  0.65  28.9 

 C↑N↓  1.98  6.5  28.9 

 NP↓  1.98  0.65  2.89 

 C↑NP↓  1.98  0.65  28.9 
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and quantifi ed spectrophotometrically using the 
Anthrone method (Herbert et al., 1971). Samples 
(10 mL) were adjusted to pH 10 and incubated in 
45°C water for 4 h, then centrifuged at 27 476× g  for 
15 min. The supernatants were fi ltered through 0.45-
μm membrane fi lters and dialyzed against deionized 
water to remove any interference from the presence of 
ions in the cultures. The polysaccharide content in the 
dialyzed supernatant was determined using glucose 
solutions for calibration.  

 2.4 Data analyses 

 The specifi c growth rates ( μ , /d) were calculated by 
the equation:  μ =ln( N  t / N  0 )/ t , where  N  0  and  N  t  are the 
initial cell density and the cell density after incubation 
for  t  days. All data were presented as the mean±SD 
and were analyzed by one-way analysis of variance 
(ANOVA). Differences between the treatments and 
controls were compared using  t -tests. All statistical 
analyses were performed with SPSS 13.0. 

 3 RESULT 

 The adjustment of carbon, nitrogen, and phosphorus 
concentrations in the culture medium resulted in 
signifi cant effects on  M .  aeruginosa    (Fig.1). The 
growth rates of  M .  aeruginosa  in the nutrient adjusted 
culture medium were lower than those in unaltered 
culture. Lower nitrogen concentration showed a 
positive effect on EPS production by  M .  aeruginosa . 
The EPS production by  M .  aeruginosa  cultivated in 
C↑N↓P↓ was the highest (2.19±0.18 pg/cell) among 
the treatments and was signifi cantly increased 
( P <0.05) over that in the standard BG-11 culture 
medium (1.76±0.28 pg/cell).  

 The effect of temperature on  M .  aeruginosa  in this 
study   showed only in growth changes (Fig.2). 
Compared with a temperature of 25°C, the higher 
(30°C) or lower (15°C) temperatures signifi cantly 
( P <0.05) suppressed the growth rate of  M .  aeruginosa . 
However, there was no signifi cant difference ( P >0.05) 
in EPS production by  M .  aeruginosa  among the 
temperature treatments. 

 Growth rates of  M .  aeruginosa  cultivated under the 
high (100 μmol/(m 2   s)) and low (5 μmol/(m 2   s)) light 
intensities were signifi cantly lower ( P <0.05) than 
those under the medium (40 μmol/(m 2   s)) light 
intensity.  M .    aeruginosa  produced 2.43±0.34 pg/cell 
of EPS under 100 μmol/(m 2   s), which was signifi cantly 
higher ( P <0.05) than under light intensities below 
40 μmol/(m 2   s) (Fig.3). 

  M .  aeruginosa    was cultivated under conditions 
with C↑N↓P↓ and 100 μmol/(m 2   s) at 25°C to 
determine if there were synergistic effects of nutrient 
concentrations and light intensities on EPS production. 
After cultivating under these conditions for 4 days, 
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visible  M .  aeruginosa  cell aggregates were observed 
at the bottom of the fl ask. The aggregates had an 
average diameter (by counting at least 50 aggregates 
from each bottle under a light microscope) of 

95.2±34.2, 178.4±48.5, and 211.7±63.4 μm after 4, 6, 
and 8 days of culture (Figs.4, 5). Although the growth 
rate was lower than that of the controls,  M .  aeruginosa  
still showed a growth rate of 0.088/d   in culture 
conditions containing C↑N↓P↓ under an illumination 
of 100 μmol/(m 2   s). Compared with the control 
conditions (1.61±0.14 pg/cell   of EPS), the 
polysaccharide assay showed a considerable increase 
( P <0.05) of EPS (3.15±0.15 pg/cell) in cells treated 
with C↑N↓P↓ and 100 μmol/(m 2   s)   (Fig.6).  

 4 DISCUSSION 

 Colony morphology, an important factor 
contributing to the dominance of  Microcystis  over 
other phytoplankton, is often lost after  Microcystis  is 
cultivated in axenic culture for several generations. In 
general, nutrient concentrations, especially nitrogen 
and phosphorus, in the culture medium are excessive 
for algae growth and are much higher than in natural 
lakes, while the ratio of C:N in the culture medium is 
much lower than those found in the fi eld. The most 
common light intensity used for cyanobacteria culture 
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 Fig.4 Aggregate formation in  M .    a  eruginosa    cultivated with adjusted BG-11 medium culture (28.9 mg C/L, 1.98 mg N/L, 
0.65 mg P/L) under 100 μmol/(m 2   s)  
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in the laboratory is lower than phytoplankton obtain 
in the upper water column. We adjusted the nutrients 
concentrations in the culture to 28.9 mg C/L, 1.98 mg 
N/L, and 0.65 mg P/L, which were closer to those 
found in eutrophic lakes, such as Chaohu lake, China 
(Xu et al., 2012). Aggregation formation was observed 
when unicellular  M .    a  eruginosa    were cultivated in 
this adjusted culture medium under a higher light 
intensity. This fi nding indicates that differences in 
nutrient concentration and light intensity between the 
fi eld and the laboratory might be responsible for 
colony disaggregation in  M .  aeruginosa  cultures.  

 In this work, we demonstrated that EPS production, 
a major factor affects the stickiness of the cell surface 
and cell aggregation in  Microcystis  (Yang et al., 2008; 
Helm and Potts, 2012), was strongly affected by 
nutrient concentration and light intensity. Lower 
nitrogen concentrations exerted a positive infl uence 
on EPS production, which might contribute to the 
C:N ratio increase, thus promoting the incorporation 
of carbon into polymers (Otero and Vincenzini, 2003). 
Enhance EPS production by  M .  aeruginosa  under 
phosphorus limitation has been reported previously 
(Wang et al., 2010a). It may be because the phosphorus 
concentration was still suffi cient for  M .  aeruginosa 
 growth in our study, no signifi cant change was found 
on EPS production by  M .  aeruginosa  after   phosphorus 
concentration in the medium was deceased. Light 
provides the main source of energy for cellular 
material synthesis in phytoplankton. The net 
accumulation of EPS in phytoplankton is controlled 
by the ratio of carbon fi xation and utilization 
(Reynolds   et al., 1987; Reynolds, 2007). The rate of 
photosynthetic carbon fi xation is essentially governed 
by light intensity and ambient CO 2  density. Protein 
synthesis predominates in phytoplankton cells under 
low light intensity because of their low photon 
saturation (Hawes, 1990). When light intensity 
exceeds the photon saturation required for protein 
synthesis, the synthesis of other materials, such as 
EPS or pigments, will increase (Lancelot   et al., 1986). 
Although no morphological changes were found in 
the  M .    aeruginosa    population when unicellular algae 
were cultivated in adjusted cultures or at higher light 
intensity, the synergistic effects of nutrient adjustment 
and higher light intensity resulted in suffi cient EPS 
production to support cell aggregation in  M .  
  a  eruginosa .  

  Microcystis  aggregates in our experiments had 
differing morphology from colonies obtained from 
the fi eld, which were loose and without clear mucilage. 

Aggregates are clearly resulted from the adhesion of 
previously existing single cells because it was 
impossible to form an aggregate of thousands of cells 
after cell division over several days. Previous studies 
have demonstrated that grazing pressure from 
fl agellates could induce colony formation in  
Microcystis  (Yang et al.,   2008, 2009). These induced 
colonies were formed from daughter cells of a freshly 
divided cell that failed to separate during the 
reproductive process. Colony formation may be 
affected by the combined effects of nitrogen 
concentration and fl agellate grazing, which exist 
under laboratory conditions (Wang et al., 2010b). 
These results demonstrate that both biotic and abiotic 
factors may be responsible for colony disaggregation 
and formation in  Microcystis . The effects of other 
environmental factors, such as pH, dissolved oxygen, 
and micronutrients should be covered in future 
studies. 

 5 CONCLUSION 

 Our results show nutrient concentration and light 
intensity have large effects on EPS production in 
 M .    aeruginosa . A considerable increase in EPS 
production and aggregation formation was observed 
when unicellular  M .    a  eruginosa    were cultivated in an 
adjusted culture (28.9 mg C/L, 1.98 mg N/L, 0.65 mg 
P/L) with nutrient concentrations and light intensity 
closer to those in eutrophic lakes. This fi nding 
indicates that differences in nutrient concentration 
and light intensity between the fi eld and the laboratory 
might be responsible for colony disaggregation in 
 M .  aeruginosa  cultures. 
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 Fig.6 Growth rates and EPS production of  M .  aeruginosa  
under the control conditions (2.89 mg C/L, 198 mg 
N/L, 6.5 mg P/L, light intensity: 40 μmol/(m 2   s)) and 
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